
: Applying “Design by
Contract”

Bertrand Meyer

Interactive Software Engineering

Reliability is even more
important in object-

oriented programming
than elsewhere. This
article shows how to

reduce bugs by building
software components

on the basis of carefully
designed contracts.

40

s object-oriented techniques steadily gain ground in the world of software
development. users and prospective users of these techniques are clam-
oring more and more loudly for a “methodology” of object-oriented

software construction - or at least for some methodological guidelines. This
article presents such guidelines, whose main goal is to help improve the reliability
of software systems. Reliability is here defined as the combination of correctness
and robustness or. more prosaically, as the absence of bugs.

Everyone developing software systems. or just using them, knows how pressing
this question of reliability is in the current state of software engineering. Yet the
rapidly growing literature on object-oriented analysis, design, and programming
includes remarkably few contributions on how to make object-oriented software
more reliable. This is surprising and regrettable, since at least three reasons justify
devoting particular attention to reliability in the context of object-oriented devel-
opment:

l The cornerstone of object-oriented technology is reuse. For reusable compo-
nents, which may be used in thousands of different applications, the potential
consequences of incorrect behavior are even more serious than for application-
specific developments.

l Proponents of object-oriented methods make strong claims about their bene-
ficial effect on software quality. Reliabi!ity is certainly a central component of
any reasonable definition of quality as applied to software.

*The object-oriented approach, based on the theory of abstract data types,
provides a particularly appropriate framework for discussing and enforcing
reliability.

The pragmatic techniques presented in this article, while certainly not providing
infallible ways to guarantee reliability, may help considerably toward this goal.
They rely on the theory of design by contract. which underlies the design of the
Eiffel analysis, design, and programming language’ and of the supporting libraries,
from which a number of examples will be drawn.

The contributions of the work reported below include

l a coherent set of nwthodological principles helping to produce correct and
robust software;

l a systematic approach to the delicate problem of how to deal with abnormal
cases. leading to a simple and powerful exception-handling mechanism; and

*a better understanding of inherit-
ance and of the associated techniques
(redeclaration, polymorphism, and
dynamic binding) through the no-
tion of subcontract, allowing a sys-
tematic approach to using these pow-
erful but sometimes dangerous
mechanisms.

Most of the concepts presented here
have appeared elsewhere. They were
previewed in the book Object-Oriented
Software Construction’; and a more com-
plete exposition was presented in a re-
cent book chapter,’ from which this ar-
ticle has been adapted. More profoundly,
this work finds its root in earlier work
on systematic program development”.i
and abstract data types. h-X This article
focuses on the central ideas, introduc-
ing them concisely for direct applica-
tion by developers.

Defensive programming
revisited

Software engineering and program-
ming methodology textbooks that dis-
cuss reliability often emphasize the tech-
nique known as defensive programming,
which directs developers to protect ev-
ery software module against the slings
and arrows of outrageous fortune. In
particular, this encourages programmers
to include as many checks as possible,
even if they are redundant with checks
made by callers. Include them anyway,
the advice goes; if they do not help. at
least they will not harm.

This approach suggests that routines
should be as general as possible. A par-
tial routine (one that works only if the
caller ensures certain restrictive condi-
tions at the time of the call) is consid-
ered dangerous because it might pro-
duce unwanted consequences if a caller
does not abide by the rules.

This technique, however, often de-
feats its own purposes. Adding possibly
redundant code “just in case” only con-
tributes to the software’s complexity -
the single worst obstacle to software
quality in general. and to reliability in
particular. The result of such blind check-
ing is simply to introduce more soft-
ware. hence more sources of things that
could go wrong at execution time, hence
the need for more checks, and so on ad
infinitum. Such blind and often redun-
dant checking causes much of the com-

plexity and unwieldiness that often char-
acterizes software.

Obtaining and guaranteeing reliabil-
ity requires a more systematic approach.
In particular, software elements should
be considered as implementations meant
to satisfy well-understood specifications,
not as arbitrary executable texts. This is
where the contract theory comes in.

The notion of contract
Assume you are writing some pro-

gram unit implementing a task to be
performed at runtime. Unless the task
is trivial, it involves a number of sub-
tasks. For example, it might appear as

my-task is
d0

subtask, ;
subtask? ;

subtask,, ;
end

a form that suffices for this discussion.
although in many cases the control struc-
ture linking the various subtasks is less
simple than the mere sequencing shown
here.

For each of these subtasks, you may
either write the corresponding solution
in line as part of the body of my-task, or
rely on a call to another unit. The deci-
sion is a typical design trade-off: Too
much calling causes fragmentation of
the software text: too little results in
overcomplex individual units.

Assume you decide to use a routine
call for one of the subtasks. This is sim-
ilar to the situation encountered in ev-
eryday life when you decide to contract
out for a certain (human) task rather
than doing it yourself. For example. if
you are in Paris and want an urgent

Table 1. Example contract.

letter or package delivered to another
Paris address, you may decide to deliver
it yourself, or you may contract out the
task to a courier service.

Two major properties characterize
human contracts involving two parties:

*Each party expects some benefits
from the contract and is prepared to
incur some obligations to obtain them.

*These benefits and obligations are
documented in a contract document.

Table 1 shows an imaginary roster of
obligations and benefits for the courier
service of the example.

A contract document protects both
sides:

l It protects the client by specifying
how much should be done: The client is
entitled to receive a certain result.

l It protects the contractor by speci-
fying how little is acceptable: The con-
tractor must not be liable for failing to
carry out tasks outside of the specified
scope.

As evidenced by this example, what is
an obligation for one party is usually a
benefit for the other.

This example also suggests a some-
what more subtle observation, which is
important in the following discussion
(and in studying the application of these
ideas to concurrent computation). If the
contract is exhaustive, every “obliga-
tion” entry also in a certain sense de-
scribes a “benefit” by stating that the
constraints given are the only relevant
ones. For example, the obligation entry
for the client indicates that a client who
satisfies all the constraints listed is enti-
tled to the benefits shown in the next
entry. This is the No Hidden Clauses
rule: With a fully spelled out contract
between honest parties, no requirement

Party Obligations Benefits

Client Provide letter or package of no Get package delivered to
more than 5 kgs. each dimension recipient in four hours or
no more than 2 meters. less.
Pay 100 francs.

Supplier Deliver package to recipient
in four hours or less.

No need to deal with
deliveries too big, too
heavy, or unpaid.

October 1992 41

other than the contract’s offi-
cial obligations may be im-
posed on the client as acondi-
tion for obtaining the
contract’s official benefits.

The No Hidden Clauses
principle does not prevent us
from including references.
implicit or explicit, to rules
not physically part of the con-

routine-name (argument declarations) is
-- Header comment

require
Precondition

do
Routine body, ie. instructions

eusare
Postcondition

end

tract. For example, general Figure 1. A routine equipped with assertions.
rules such as the relevant laws
and common business prac-
tices are implicitly considered
to be part of every contract of
a certain kind. even if not ex-
plicitly repeated in the text of
each contract. They apply to
both client and supplier and
will lead below to the notion
of class invariant.

put-child (new: NODE) is
-- Add new to the children of current node

require
new /= Void

do
. . . Insertion algorithm . . .

ensure
new.parent = Current;
child-count = old child-count + 1

end -- put-child
Assertions:

This is the contract en-
forced by put-child on any
potential caller. It contains
the most important informa-
tion that can be given about
the routine: what each party
in the contract must guaran-
tee for a correct call, and what
each party is entitled to in
return. Because this informa-
tion is so crucial to the con-
struction of reliable systems
using such routines, it should
be a formal part of the rou-
tine’s text (see Figure 2).

A few more details about
the rules of object-oriented
programming as embodied in
Eiffel should help make this
example completely clear:

l A reference such as new
is either void (not attached
to any object) or attached to

Contracting for Figure 2. Assertions for child insertion routine.

software -

It is not difficult to see how the pre-
ceding ideas apply to software construc-
tion. If the execution of a certain task
relies on a routine call to handle one of
its subtasks, it is necessary to specify the
relationship between the client (the call-
er) and the supplier (the called routine)
as precisely as possible. The mecha-
nisms for expressing such conditions
are called assertions. Some assertions.
called preconditions and postconditions.
apply to individual routines. Others, the
class invariants, constrain all the rou-
tines of a given class and will be dis-
cussed later.

It is important to include the precon-
ditions and postconditions as part of
routine declarations (see Figure 1).

In this Eiffel notation, the Require
and Ensure clauses (as well as the head-
er comment) are optional. They intro-
duce assertions-respectively the pre-
condition and the postcondition. Each

Table 2. The put-child contract.

assertion is a list of Boolean expres-
sions, separated by semicolons: here a
semicolon is equivalent to a Boolean
“and” but allows individual identifica-
tion of the assertion clauses.

The precondition expresses require-
ments that any call must satisfy if it is to
be correct; the postcondition expresses
properties that are ensured in return by
the execution of the call.

A missing precondition clause is equiv-
alent to the clause Require True, and a
missing postcondition to the clause En-
sure True. The assertion True is the
least committing of all possible asser-
tions. Any possible state of the compu-
tation will satisfy it.

Consider, for example. in a class TREE
describing tree nodes. a routineput-child
for adding a new child to a tree node
Currmr. The child is accessible through
a reference, which must be attached to
an existing node object. Table 2 infor-
mally expresses the contract.

an object: In the first case, it
equals the value Void. Here
the precondition expresses

that the reference new must not be void,
as stated informally by the correspond-
ing entry in Table 2.

l In accordance with Eiffel’s object-
oriented principles, the routine will ap-
pear in the text of a class describing
trees, or tree nodes. This is why it does
not need an argument representing the
node to which the routine will add the
reference new as a child; all routines of
the class are relative to a typical tree
node. the “current instance” of the class.
In a specific call such as some-
node.put-child (x), the value before the
period, here some-node, serves as the
current instance.

*In the text of the class, the pre-
defined name Current serves, if neces-
sary, to refer to the current instance.
Here it is used in the postcondition.

*The notation Old child-count, ap-
pearing in the postcondition ofput-child,
denotes the value of child-count as cap-
tured on entry to a particular call. In

Party

Client

Supplier

Obligations

Use as argument a reference, say new. to an
existing node object.

Insert new node as required.

Benefits

Get updated tree where the Current node has
one more child than before; new now has
Current as its parent.

No need to do anything if the argument is not
attached to an object.

42 COMPUTER

other words, the second clause of though practically significant,
the postcondition expresses that comes only after achieving that
the routine must increase
child-countby one. The construct Another way of expressing this
Old may appear only in a routine
postcondition.

~~ more fundamental goal.

observation is to notice that as-
sertions do not describe special

Figure 3. Handling a special case. but expected cases that call for

The role of
special treatment. In other words,
the above assertions are not a

assertions assertions are monitored at runtime, way to describe (for example) the han-
depending on programmer wishes. But dling of void arguments to put-child. If
this is not a crucial question at this point. we wanted to treat void arguments as an

You may well be wondering what The prime goal of this discussion is to acceptable (although special) case, we
happens if one of these conditions fails find ways of writing reliable software ~ would handle it not through assertions
to be satisfied during execution. This systems that work. The question of what but through standard conditional con-
question will be answered by whether happens when they do not work, al- trol structures (see Figure 3).

Further sources
One of the two primary sources of inspiration for this work

is the research on program proving and systematic program
construction pioneered by Floyd,’ Hoare, and Dijkstra.3
Other well-known work on the application of proof methods
to software construction includes contributions by Gries’
and Mills.5 The other major influence is the theory of ab-
stract data types (see references in the body of the article).

The use of assertions in an object-oriented language and
the approach to inheritance presented here (based on the
notion of subcontracting) appear original to Eiffel. The ex-
ception-handling model and its implementation are also
among Eiffel’s contributions. These mechanisms, and the
reasoning that led to them, are discussed in detail in refer-
ences 1 and 2 of the main bibliography at the end of the ar-
ticle.

The rescue clause notion was actually derived from a cor-
responding formal notion of surrogate function, also called
doppelgtinger, which appeared in the specification method
and language M,‘s a direct successor to Abriaf’s origin&l 2
Ianguage.*4 Like 2 and unlike Eiffel, M was a formal specffi-
cation language, not an executable language. Functions in
an M specification may be partial. A surrogate is associated
with a partial function and serves as a backup for arguments
that do not belong to that function’s domain.

References

The notion of class invariant comes directly from Hoare’s
data invariants. Invariants, as well as other assertions, also
play an important role in the VDM software specification
method, as described by Jones.7 The transposition of data
invariants to object-oriented software development, in the
form of class invariants, appears to be new with Eiffel.

1. R.W. Floyd, “Assigning Meanings to Programs,” Pmt. Am. Math.
Sot. Symp. in Applied Math., Vol. 19, J.T. Schwartz, ed.. American
Mathematical Society, Providence, RI., 1967, pp. 19-31.

2. C.A.R. Hoare, “An Axiomatic Basis for Computer Programming,”
Comm. ACM, Vol. 12, No. 10, Oct. 1969, pp. 576-660, 663.

3. E.W. Dijkstra, A Discipline of Programming, Prentice Hall, Engle-
wood Cliffs, N.J., 1976.

Nonobject-oriented research languages that support as-
sertions have included Euclid8 and Alphards; see also the
Ada-based specification language Anna.‘O CLU, cited in the
text, includes nonformal assertions.

4. D. Gries. The Science of Programming, Springer-Vertag, Berlin
and New York, 1961.

5. H.D. Mills et al., Principles of Computer Prvgramming: A Maths
maksl Approach, Allyn and Bacon, Boston, 1987.

The view of programs as mechanisms to compute partial
functions is central in the mentioned VDM method.

6. CAR. Hoare, ‘Proof of Correctness of Data Representations,”
Acta Infonnatica, Vol. 1, No. 4, 1972, pp. 271-261.

Another view of exceptions can be found in Cristian.”
Eiffel’s notion of a rescue clause bears some resemblance
to Randell’s recovery blocks,1z but the spirit and aims are
different. Recovery blocks as defined by Randell are alter-
nate implementations of the original goal of a routine, to be
used when the initial implementation fails to achieve this
goal. In contrast, a rescue clause does not attempt to carry
on the routine’s official business; it simply patches things up
by bringing the object to a stable state. Any retry attempt
uses the original implementation again. Also, recovery
blocks require that the initial system state be restored be-
fore an alternate implementation is tried after a failure. This
appears impossible to implement in any practical environ-
ment for which efficiency is of any concern. Eiffel’s rescue
clauses do not require any such preservation of the state;
the only rule is that the rescue clause must restore the
class invariant and, if resumption is attempted, the routine

7. C.B. Jones, Systematic Sofhvare Development Using VDM, Pren-
tice Hall, Englewood Cliis, N.J., 1966.

6. B.W. Lampson et al., ‘Report on the Programming Language Eu-
clid,” SlGPlan Notices, Vol. 12, No. 2, Feb. 1977, pp. l-79.

9. Mary Shaw et al., Alphard: form and Content, Springer-Veriag,
Berlin and New York, 1961.

IO. D. Luckham and F.W. von Henke, ‘An Overview of Anna, a Speci-
fication Language for Ada,” /EEE Software, Vol. 2, No. 2, Mar.
1965, pp. 9-22.

11. F. Cristian, Y)n Exceptions, Failures, and Errors,” Technology and
Science of lnformetics, Vol. 4, No. 4, July-Aug. 1985.

12. B. Randell, “System Structure for Software Fault Tolerance,” /E/X
Trans. Software Eng., Vol. SE-I, No. 2, June 1975, pp. 220-232.

13. 8. Meyer, ‘M: A System Description Method,” Tech. Repot?
TRCS65-15. Computer Science Dept., Univ. of California, Santa
Barbara, 1966.

precondition.

14. J.-R. Abrial, S.A. Schuman, and B. Meyer, “A Specification Lan- _- guage,” in On the Construction of Programs, R. McNaughten and
R.C. McKeag, eds., Cambridge University Press, England, 1960.

Assertions (here the pre-
condition) are something else:
ways to describe the condi-
tions on which software ele-
ments will work, and the con-

invariant
ular the design of the librar-
ies, suggests that the system-

left /= Void ierpriss (lefiqareni = Curreni);
right I= Void int@ies (righyareni = Current)

atic use of a demanding style
can be quite successful. In this

. approach, every routine con-
ditions they will achieve in Figure 4. An invariant for binary trees.

- return. By putting the condi-
tion rrew /= Void in the pre-
condition, we make it part of the rou-
tine’s specification; the last form shown
(with the If) would mean that we have
changed that specification, broadening
it to include the special case new = Void
as acceptable.

As a consequence. any runtime viola-
tion of an assertion is not a special case
but always the manifestation of a soft-
ware bug. To be precise:

checking blindly, as with defensive pro-
gramming, you can use clearly defined
contracts that assign the responsibility
for each consistency condition to one of
the parties. If the contract is precise and
explicit, there is no need for redundant
checks.

centrates on doing a well-de-
fined job so as to do it well,
rather than attempting to

handle every imaginable case. Client
programmers do not expect miracles.
As long as the conditions on the use of
a routine make sense, and the routine’s
documentation states these conditions
(the contract) explicitly, the program-
mers will be able to use the routine
properly by observing their part of the
deal.

l A precondition violation indicates
a bug in the client (caller). The caller
did not observe the conditions imposed
on correct calls.

One objection to this style is that it
seems to force every client to make the
same checks, corresponding to the pre-
condition, and thus results in unneces-
sary and damaging repetitions. But this
argument is not justified:

l A postcondition violation is a bug in
the supplier (routine). The routine failed
to deliver on its promises.

The stronger the precondition, the
heavier the burden on the client. and
the easier for the supplier. The matter
of who should deal with abnormal val-
ues is essentially a pragmatic decision
about division of labor: The best solu-
tion is the one that achieves the simplest
architecture. If every routine and caller
checked for every possible call error,
routines would never perform any use-
ful work.

In Table 2, the bottom-right entry is
particularly noteworthy. If the precon-
dition is not satisfied, the routine is not
bound to do anything, like a mail deliv-
ery company given a parcel that does
not meet the specification. This means
that the routine body should not be of
the form mentioned above:

In many existing programs, one can
hardly find the islands of useful pro-
cessing in oceans of error-checking code.
In the absence of assertions, defensive
programming may be the only reason-
able approach. But with techniques for
defining precisely each party’s respon-
sibility, as provided by assertions, such
redundancy (so harmful to the consis-
tency and simplicity of the structure) is
not needed.

l The presence of a preconditionp in
a routine r does not necessarily mean
that every call must test for p, as in

Observations on
software contracts

if x.p then
x.r

else
. . . Special Treatment .,.

end

Who should check?

What the precondition means is that the
client must guarantee property p; this is
not the same as testingfor thiscondition
before each call. If the context of the
call implies p, then there is no need for
such a test. A typical scheme is

if new = Void then The rejection of defensive program-
ming means that the client and supplier
are not both held responsible for a con-
sistency condition. Either the condition
is part of the precondition and must be
guaranteed by the client, or it is not
stated in the precondition and must be
handled by the supplier.

x.s; x.r
. . .

else where the postcondition of s implies p.

end

Using such a construction would de-
feat the purpose of having a precondi-
tion (Require clause). This is an abso-
lute rule: Either you have the condition
in the Require, or you have it in an If
instruction in the body of the routine,
but never in both.

This principle is the exact opposite of
the idea of defensive programming, since
it directs programmers to avoid redun-
dant tests. Such an approach is possible
and fruitful because the use of asser-
tions encourages writing software to spell
out theconsistencyconditions that could
go wrong at runtime. Then instead of

Which of these two solutions should
be chosen? There is no absolute rule;
several styles of writing routines are
possible, ranging from “demanding”
ones where the precondition is strong
(putting the responsibility on clients) to
“tolerant” ones where it is weak (in-
creasing the routine’s burden). Choos-
ing between them is to a certain extent
a matter of personal preference; again,
the key criterion is to maximize the
overall simplicity of the architecture.

*Assume that many clients will in-
deed need to check for the precondi-
tion. Then what matters is the “Special
Treatment.” It is either the same for all
calls or specific to each call. If it is the
same, causing undue repetition in vari-
ous clients, this is simply the sign of a
poor class interface design, using an
overly demanding contract for r. The
contract should be renegotiated and
made broader (more tolerant) to in-
clude the standard Special Treatment
as part of the routine’s specification.

The experience with Eiffel, in partic-

l If, however, the Special Treatment
is different for various clients, then the
need for each client to perform its own
individual test for p is intrinsic and not

44 COMPUTER

a consequence of the design method
suggested here. These tests would have
to be included anyway.

The last case corresponds to the fre-
quent situation in which a supplier sim-
ply lacks the proper context to handle
abnormal cases. For example, it is im-
possible for a general-purpose STACK
module to know what to do when re-
quested to pop an element from an empty
stack. Only the client - a module from
a compiler or other system that uses
stacks - has the needed information.

Class invariants Figure 5. The invariant in an object’s
life cycle.

Routine preconditions and postcon-
ditions may be used in non-object-ori-
ented approaches, although they fit par-
ticularly well with the object-oriented
method. Invariants, the next major use
of assertions, are inconceivable outside
of the object-oriented approach.

necessary here; they have been added
for clarity.)

The optional class invariant clause
appears at the end of a class text:

class BINARY-TREE [q feature
A class invariant is a property that

applies to all instances of the class, tran-
scending particular routines. For exam-
ple, the invariant of a class describing
nodes of a binary tree could be of the
form shown in Figure 4, stating that the
parent of both the left and right chil-
dren of a node, if these children exist, is
the node itself. (The Implies operator
denotes implication. Eiffel operator pre-
cedence rules make the parentheses un-

. . . Attribute and routine
declarations

invariant
. . As shown above

end-class TABLE

Two properties
invariant:

characterize a class

l The invariant must be satisfied after The invariant corresponds to what

On the assertion language
This article includes many examples of typical asser-

tions. But what exactly is permissible in an assertion?
Eiffel assertions are Boolean expressions, with a few ex-

tensions such as the old notation. Since the whole power
of Boolean expressions is available, they may include
function calls. Because the full power of the language is
available to write these functions, the conditions they ex-
press can be quite sophisticated. For example, the invari-
ant of a class ACYCLIC-GRAPH may contain a clause of
the form

not cyciic

where cydic is a Boolean-valued function that determines
whether a graph contains any cycles by using the appro-
priate graph algorithm.

In some cases, one might want to use quantified expres-
sions of the form “For all x of type T, p (x) holds” or “There
exists x of type 7, such that p (x) holds,” where p is a cer-
tain Boolean property. Such expressions are not available
in Eiffel. It is possible, however, to express the corre-
sponding properties by using the same technique: calls to
functions that rely on loops to emulate the quantifiers.

Although some thought has been given to extend the
language to include a full-fledged formal specification lan-

the creation of every instance of the
class (every binary tree in this exam-
ple). This means that every creation
procedure of the class must yield an
object satisfying the invariant. (A class
may have one or more creation proce-
dures, which serve to initialize objects.
The creation procedure to be called in
any given case is specified in the cre-
ation instruction.)

l The invariant must be preserved by
every exported routine of the class (that
is to say, every routine available to cli-
ents). Any such routine must guarantee
that the invariant is satisfied on exit if it
was satisfied on entry.

In effect. then, the invariant is added
to the precondition and postcondition
of every exported routine of the class.
But the invariant characterizes the class
as a whole rather than its individual
routines.

Figure 5 illustrates these requirements
by picturing the life cycle of any object
as a sequence of transitions between
“observable” states. Observable states,
shown asshaded rectangles, are the states
that immediately follow object creation,
and any states subsequently reached
after the execution of an exported rou-
tine of the object’s generating class. The
invariant is the consistency constraint
on observable states. (It is not necessar-
ily satisfied in between these states.)

guage, with first-order predicate calculus, the need for
such an extension does not seem crucial. In Efffef, intend-
ed as a vehicle for industrial software development rather
than just for research, the use of function calls in asser-
tions seems to provide an acceptable trade-off between
different design goals: reliability, the ability to generate ef-
ficient code, and overall simplicity of the language.

In fact, first-order predicate calculus would not neces-
sarily be sufficient. Many practically important properties,
such as the requirement that a graph be noncyclic, would
require higher order calculus.

The use of functions - that is to say, computations -
is not without its dangers. In software, a function is a case
of a routine: it prescribes certain actions. This makes soft-
ware functions imperative, whereas mathematical func-
tions are said to be applicative. The major difference is
that software functions can produce side effects (change
the state of the computation). lntroducfng functions into
assertions lets the imperative fox back into the applicative
chicken coop.

In practice, this means that any function used in asser-
tions must be of unimpeachable quality, avoiding any
change to the current state and any operation that oould
result in abnormal situations.

-- Add new to the children of current node
reqaire

new I= Void
ensure

newgarent = Current;
child-count = old child-count + 1

put-child (new: NODE)

Figure 6. The short form of a routine.

was called “general conditions” in the
initial discussion of contracts: laws or
regulations that apply to all contracts of
a certain category. often through a clause
of the form “all provisions of the XX
code shall apply to this contract.”

Documenting a
software contract

For the contract theory to work prop-
erly and lead to correct systems, client
programmers must be provided with a
proper description of the interface prop-
erties of a class and its routines - the
contracts.

Here assertions can play a key role.
since they help express the purpose of a
software element such as a routine with-
out reference to its implementation.

The short command of the Eiffel en-
vironment serves to document a class
by extracting interface information. In
this approach. software documentation
is not treated as a product to be devel-
oped and maintained separately from
the actual code: instead, it is the more
abstract part of that code and can be
extracted by computer tools.

The short command retains only the
exported features of a class and. for an
exported routine, drops the routine body
and any other implementation-related
details. However. pre- and postcondi-
tions are kept. (So is the header com-
ment if present.) For example, Figure 6
shows what the short command yields
for the plct routine. It expresses simply
and concisely the purpose of the rou-
tine. without reference to a particular
implementation.

All documentation on the details of
Eiffel classes (for example, the class
specifications in the book on the basic
libraries’) is produced automatically in
this fashion. For classes that inherit from
others, the short command must be com-
bined with another tool.flar. which flat-
tens out the class hierarchy by including

46

inherited features at the same level as
“immediate” ones (those declared in
the class itself).

Monitoring assertions

What happens if. during execution. a
system violates one of its own asser-
tions?

In the development environment. the
answer depends on a compilation op-
tion. For each class. you may choose
from various levels of assertion moni-
toring: no assertion checking. precondi-
tions only (the default). preconditions
and postconditions. all of the above plus
class invariants. or all assertions. (The
difference between the last two follows
from the existence of other assertions.
such as loop in\ ariants. not covered in
the present discussion.)

For a class compiled under the “no
assertion monitoring” option. assertions
have no effect on system execution. The
subsequent options cause evaluation of
assertions at various stages: routine en-
try for preconditions, routine exit for
postconditions. and both steps for in-
variants.

Under the monitoring options, the
effect of an assertion violation is to raise
an exception. The possible responses to
an exception are discussed later.

Why monitor?

As noted, assertion violations are not
special (but expected) cases; they result
from bugs. The main application of run-
time assertion monitoring. then, is de-
bugging. Turning assertion checking on
(at any of the levels previously listed)
makes it possible to detect mistakes.

When writing software. developers
make many assumptions about the prop-
erties that will hold at various stages of
the software’s execution, especially rou-
tine entry and return. In the usual ap-
proaches tosoftwareconstruction. these

assumptions remain informal and im-
plicit. Here the assertion mechanism
enables developers to express them ex-
plicitly. Assertion monitoring, then, is a
way to call the developer’s bluff by check-
ing what the software does against what
its author thinks it does. This yields a
productive approach to debugging, test-
ing. and quality assurance, in which the
search for errors is not blind but based
on consistency conditions provided by
the developers themselves.

Particularly interesting here is the use
of precorzditions in library classes. In
the general approach to software con-
struction suggested by the Eiffel meth-
od, developers build successive “clus-
ters” of classes in a bottom-up order.
from more general (reusable) to more
specific (application-dependent). This
is the “cluster model” of the software
life cycle.“’ Deciding to release a library
cluster 1 for general use normally im-
plies a reasonable degree of confidence
in its quality - the belief that no bugs
remain in 1. So it may be unnecessary to
monitor the postconditions of routines
in the classes of 1. But the classes of an
application cluster that is a client of I
(see Figure 7) may stilt be “young” and
contain bugs: such bugs may show up as
erroneous arguments in calls to rou-
tines of the classes of 1. Monitoring pre-
conditions for classes of I helped to find
them. This is one of the reasons why
precondition checking is the default
compilation option.

Introducing inheritance

One of the consequences of the con-
tract theory is a better understanding
and control of the fundamental object-
oriented notion of inheritance and of
the key associated techniques: redecla-
ration, polymorphism, and dynamic
binding.

Through inheritance. you can define
newclasses bycombiningpreviousones.
A class that inherits from another has
all the features (routines and attributes)
defined in that class, plus its own. But it
is not required to retain the exact form
of inherited features: It may redeclare
them to change their specification. their
implementation, or both. This flexibili-
ty of the inheritance mechanism is cen-
tral to the power of the object-oriented
method.

For example. a binary tree class could
provide a default representation and

COMPUTER

the corresponding implementations for
search and insertion operations. A de-
scendant of that class may provide a
representation that is specifically adapt-
ed to certain cases (such as almost full
binary trees) and redeclare the routines
accordingly.

Such a form of redeclaration is called
a redefinition. It assumes that the inher-
ited routine already had an implemen-
tation. The other form of redeclaration,
called effecting, applies to features for
which the inherited version, known as a
deferred (or abstract) feature, had no
implementation. but only a specifica-
tion. The effecting then provides an im-
plementation (making the feature ef-
fective, the reverse of deferred). The
subsequent discussion applies to both
forms of redeclaration, although for sim-
plicity it concentrates on redefinition.

Redeclaration takes its full power
thanks to polymorphism and dynamic
binding. Polymorphism is type adapta-
tion controlled by inheritance. More
concretely, this means that if you have b
of type BINARY-TREE and sb of type
SPECIAL-BINARY-TREE, the latter
class a descendant of the former, then
the assignment

b:=sb

is permitted, allowing b to become at-
tached at runtime to instances of
SPECIAL-BINARY-TREE, of a more
specialized form than the declaration of
b specifies. Of course, this is only possi-
ble if the inheritance relation holds be-
tween the two classes as indicated.

What happens then for a call of the
form

t.insrrt (v)

which applies procedure insert, with
argument v, to the object attached to t?
Dynamic binding means that such a call
always uses the appropriate version of
the procedure - the original one if the
object to which t is attached is an in-
stance of BINARY-TREE, the rede-
fined version if it is an instance of
SPECIAL-BINARY-TREE. The re-
verse policy, static binding (using the
declaration of b to make the choice),
would be an absurdity: deliberately
choosing the wrong version of an oper-
ation.

The combination of inheritance, re-
declaration, polymorphism, and dynamic
binding yields much of the power and

October 1992

Figure 7. Library cluster and applica-
tion cluster.

flexibility that result from the use of the
object-oriented approach.: Yet these
techniques may also raise concerns of
possible misuse: What is to prevent a
redeclaration from producing an effect
that is incompatible with the semantics
of the original version -fooling clients
in a particularly bad way, especially in
the context of dynamic binding? Noth-

ing, of course. No design technique is
immune to misuse. But at least it is pos-
sible to help serious designers use the
technique properly; here the contract
theory provides the proper perspective.

What redeclaration and dynamic bind-
ing mean is the ability to subcontract a
task; preventing misuse then means guar-
anteeing that subcontractors honor the
prime contractor’s promises in the orig-
inal contract.

Consider the situation described by
Figure 8. A exports a routine r to its
clients. (For simplicity, we ignore any
arguments to r.) A client X executes a
call

u.r

where u is declared of type A. Now B, a

The concurrency issue
The theory of design by contract raises important questions regarding the

application of object-oriented ideas to concurrent computation. In discussing
contracts, this article mentions that clients may view the precondition of a
routine not just as an obligation but also in part as a benefit, since the con-
tract implicitly indicates that a call satisfying the precondition will be serviced
correctly. This is the No Hidden Clause rule. For example, if the insertion
routine put for a BOUNDED-QUEUE class has the precondition

not full

to state that an insertion operation requires a queue that is not full, then a
protected call of the form

q: BOUNDED-QUEUE [l-J;
XT;
. . .
if not q.full then
end q.put (4

will succeed, since the client executing this call has taken the trouble to
check the.precondition explicitly.

In parallel computation, however, things are not so nice. The bounded
queue in this example may be used as a bounded buffer, accessible to sev-
eral processors. The processor in charge of the client, which will carry out
the above instructions, and the prodessor in charg& of q, which will carry out
the execution of put, could be different processors. Then, even if the test for
q.full yields false, between the time the client executes this test and the time
it executes the call q.put (x), quite a few events may have occurred. For ex-
ample, another client may have made the queue full by executing its own
call to put.

In other words, a different semantic interpretation may be necessary for
preconditions in the context of parallel computation. This observation serves
as the starting point for some of the current work on models for concurrent
object-oriented programming.1,2

References

1. 9. Meyer, “Sequential and Concurrent Object-Oriented Programming,” in TOOLS 2
(Technology of Object-Oriented Languages and Systems), Angkor/SOL, Paris, June
1990, pp. 17-28.

2. J. Potter and G. Jalloul. “Models for Concurrent Eiffel,” in TOOLS 6 (Technology of Ob-
ject-oriented Languages and Systems), Prentice Hall, Englewood Cliffs, N.J., 1991, pp.
183-192.

descendant of A, redeclares r. Through
polymorphism, u may well become at-
tached to an instance of B rather than
A. Note that often there is no way to
know this from the text of X alone; for
example, the call just shown could be in
a routine of X beginning with

some-routine (u: A) is . . .

where the polymorphism only results
from a call of the form

zsome-routine (v)

for which the actual argument v is of
type B. If this last call is in a class other
than X, the author of X does not even
know that u may become attached to an
instance of B. In fact, he may not even
know about the existence of a class B.

But then the danger is clear. To ascer-
tain the properties of the call u.r, the
author of X can only look at the con-
tract for r in A. Yet, because of dynamic
binding, A may subcontract the execu-
tion of r to B, and it is B’s contract that
will be applied.

How do you avoid “fooling” X in the
process? There are two ways B could
violate its prime contractor’s promises:

l B could make the precondition stron-
ger, raising the risk that some calls that
are correct from x’s viewpoint (they
satisfy the original client obligations)
will not be handled properly.

l B could make the postcondition
weaker, returning a result less favor-
able than what has been promised to X.

None of this, then, is permitted. But
the reverse changes are of course legit-
imate. A redeclaration may weaken the
original’s precondition or it may
strengthen the postcondition. Changes
of either kind mean that the subcon-
tractor does a better job than the origi-
nal contractor-which there is no rea-
son to prohibit.

These rules illuminate some of the
fundamental properties of inheritance,
redeclaration, polymorphism, and dy-
namic binding. Redeclaration. for all
the power it brings to software develop-
ment. is not a way to turn a routine into
somethingcompletelydifferent.Thenew
version must remain compatible with
the original specification. although it
may improve on it. The noted rules ex-
press this precisely.

These rules must be enforced by the

48

Figure 8. Redefinition of a routine un-
der contract.

language. Eiffel uses a simple conven-
tion. In a redeclaration, it is not permit-
ted to use the forms require... and en-
sure.... The absence of a precondition or
postcondition clause means that the re-
declared version retains the original
version’s assertion. Since this is the most
frequent situation, the class author is
not required to write anything special in
this case. A class author who does want
to adapt the assertion will use either or
both of the forms

require else
new_pre

ensure then
new-post

which yield the following as
condition and postcondition:

new pre-

newgre or else originalgrecondition

newgost and then
original_postcondition

where Or Else and And Then are the
noncommutative versions of the “or”
and “and” operators (evaluating their
second argument only if necessary). In
this way. the new precondition is guar-
anteed to be weaker than or equal to the
originals, and the new postcondition is
guaranteed to be stronger than or equal
to the originals.

Invariants and
dynamic binding

In addition to the rules on precondi-
tions and postconditions, another con-
straint ties assertions with inheritance:
Invariants are always passed on to de-
scendants.

This is a direct result of the view that
inheritance is (among other things) clas-
sification. If we want to consider every
instance of a class B as being also an
instance of R’s ancestors. we must ac-

cept that consistency constraints on a
parent A also apply to instances of B.

For example, if the invariant for a
class TREE, describing tree nodes, in-
cludes the clause

child.parent = Current

expressing that the parent of a node’s
currently active child is the node itself,
this clause will automatically apply to
instances of a class BINARY-TREE,
which inherits from TREE. As a result,
the language specification defines “the
invariant of a class” as the assertion
obtained by concatenating the asser-
tion in the invariant clause of the class
to the invariants of all parents (obtained
recursively under this definition).’

As a result, the invariant of a class is
always stronger than or equal to the
invariants of each of its parents.

These rules lead to a better under-
standing of why static binding would be,
as previously stated, such a disaster.
Assume again the declaration and call

u: A:
.

u.r

where a descendant B of A redefines r.
Call rA and r,,, the two implementations.
Then r, must preserve INV,, the invari-
ant of A, and rg must preserve INV,, the
invariant of B, which is stronger than or
equal to INV,.

There is, of course, no requirement
that ra preserve INV,. In fact, class A
may have been written long before B,
and the author of A does not need to
know anything about eventual descen-
dants of this class.

If LL dynamically becomes attached to
an instance of B, dynamic binding re-
quires the execution of rH for this call.
Static binding would trigger ra. Since
this version of the routine is not re-
quired to preserve INV,, the result would
yield a catastrophic situation: an object
of type B that does not satisfy the con-
sistency constraint-the invariant -of
its own class. In such cases, any attempt
at understanding software texts or rea-
soning about their runtime behavior
becomes futile.

A simple example will make the situ-
ation more concrete. Assume a class
ACCOUNT describing bank accounts,
with the attributes shown in Figure Ya
and a procedure to record a new deposit
shown in Figure 9b.

COMPUTER

With this version of the class,
ohtainlng an account’s current
balance requires a computation
expressed by a function. Figure
10 shows how the balance func-
tion could appear, assuming the
appropriate functionsum in class
TRANSACTION-LIST.

In a descendant class AC-
COUNTl, it may be a better
space-time trade-off to store the
current balance with every ac-
count object. This can be
achieved by redefining the func-
tion balance into an attribute (a
process that is indeed supported
by the language). Naturally, this
attribute must be consistent with
the others; this is expressed by
the invariant of ACCOUNTI,
shown in Figure 11.

For this to work, however, B
must redefine any routine of A
that modified deposits or with-
drawals; the redefined version
must also modify the balance
field of the object accordingly,
so as to maintain the invariant.
This is the case, for example,
with procedure record-deposit.

Now assume that we have the
declaration and call

a: ACCOUNT,

a.record-deposit (1~000~000)

initial-deposit: INTEGER;
deposits, withdrawals; TRANS&CT~~N~L~~T

(8)

record-deposit (d: INTEGER) b
do

Figure 9. Features of a Bank Account class.

balance: INTEGER is balance: INTEGER is
-- cun’ent -- cun’ent

de de
bu&mce := bu&mce :=

end -- balance end -- balance

FigurelO. Computing the balance.

invariant
balance = initial-deposit + dqmitssum

- withd~~ls~~

Figure 11. Invariant of the Account class.

fails to define precisely what an abnor-
mal case is. Then exception handling
often becomes a kind of generalized,
interroutine “goto” mechanism, with no

If in a certain execution, a happens to
be attached to an object of type AC-
COUNT1 at the time of the call, static
binding would mean applying the orig-
inal, A CC0 UNT version of record- de-
posit - which fails to update the bal-
ance field. The result would be an
inconsistent ACCOUNT1 object and
certain disaster.

Dealing with abnormal
situations

The Design by Contract theory has
one more immediate application to the
practice of reliable software develop-
ment: exception handling.

Exceptions-abnormal cases-have
been the target of much study: and sev-
eral programming languages, notably
Ada, PLiI, and CLU, offer exception-
handling mechanisms. Much of this work
is disappointing, however, because it

October 1992 49

clear guidelines for proper use.
To understand the issue better, I per-

formed a study (reported elsewhere’)
of Ada and CLU textbooks, looking for
examples of exception handling and
methodological principles. The results
were disappointing, as the books showed
many examples of triggering exceptions
but few of how to handle them. Further-
more, some of the latter were hair-rais-
ing. For example, one textbook pro-
posed an example of a square root
routine which, when confronted with a
negative argument, triggers an excep-
tion. The exception handler prints a
message and then simply returns to the
caller without notifying the caller that
something wrong has occurred - fool-
ing the caller, as it were, into believing
that everything is going according to
plan. Since a typical use for square roots
in a typical Ada program is a missile
trajectory computation, it is easy to fore-
see the probable consequences.

Beyond the bad taste of such individ-

ual examples, one may fault the
design of the exception mecha-
nism itself for failing to encour-
age, or even to define, a proper
discipline for handling abnor-
mal cases.

The contract theory provides
a good starting point for a more
rational solution. If a routine is
seen not just as some “piece of
code” but as the implementa-
tion of a certain specification -
the contract - it is possible to
define a notion of failure. Fail-
ure occurs when an execution of
a routine cannot fulfill the rou-
tine’s contract. Possible reasons
for a failure include a hardware
malfunction, a bug in the imple-
mentation, or some external
unexpected event.

“Failure” is here the basiccon-
cept. “Exception” is a derived
notion. An exception occurs
when a certain strategy for ful-
filling a routine’s contract has
not succeeded. This is not a fail-
ure, at least not yet, because the
routine may have an alternative
strategy.

The most obvious example of
exception is the failure of a called
routine: r’s strategy for fulfilling

its contract involved a call to s; the call
failed; clearly, this is an exception for r.
Another example, previously men-
tioned, is a runtime assertion violation,
if assertions are monitored. It is also
convenient to treat as exceptions the
signals sent by the operating system or
thehardware:arithmeticoverflow,mem-
ory exhaustion, and the like. They in-
deed correspond to failures of calls to
basic facilities (arithmetic operations,
memory allocation).

Equipped with this notion of failure
and exception, we can define a coherent
response to an exception. The excep-
tion occurs because the strategy used to
achieve the routine’s contract did not
work. Only three possible responses then
make sense:

(1) Perhaps an alternative strategy is
available. We have lost a battle, but we
have not lost the war. In this case the
routine should put the objects back into
a consistent state and make another
attempt, using the new strategy. This is
called resumption.

(2) Perhaps, however, we have lost
the war altogether. No new strategy is

get&egerfom-user: INTEGER is
-- Read an integer (allow user up to five attempts)

local
failures: INTEGER

do
Result := getint

failures := failures + 1;

iE failures < 5 then
message (“Znput must be an integer. Please enter again: “);
retry

end -- getintegerfrom-user

Figure 12. Reading an integer with an unsafe primitive.

available. Then the routine should put
back the objects in a consistent state,
give up on the contract, and report fail-
ure to the caller. This is called orga-
nized panic.

(3) A rare but possible third case is
the false alarm. This may occur only for
operating-system or hardware signals.
On some multiwindowing systems, for
example, a process receives a signal
(transformed by the runtime into an
exception) when its window is resized.
In most cases, the process should be
able to continue its execution, possibly
after taking some corrective actions
(such as registering the new window
dimensions for use by editors and other
tools).

The description of both resumption
and organized panic mentions putting
back the objects “in a consistent state.”
This is essential if further executions
(after an eventual resumption) will use
the objects again. The notion of consis-
tent state should be clear from the pre-
ceding discussion: Any exception han-
dling, whether for resumption or for
organized panic, should restore the in-
variant.

A disciplined
except&m-handling
mechanism

It is not hard to devise an exception
mechanism that directly supports the
preceding method for handling abnor-
mal cases.

50

To specify how a routine should be-
have after an exception, the author of
an Eiffel routine may include a “res-
cue” clause, which expresses the al-
ternate behavior of the routine (and is
similar to clauses that occur in human
contracts, to allow for exceptional, un-
planned circumstances). When a rou-
tine includes a rescue clause, any
exception occurring during the rou-
tine’s execution interrupts the execu-
tion of the body (the Do clause) and
starts execution of the rescue clause.
The clause contains zero or more in-
structions, one of which may be a Retry.
The execution terminates in either of
two ways:

l If the rescue clause terminates with-
out executing a Retry, the routine fails.
It reports failure to its caller by trigger-
ing a new exception. This is the orga-
nized panic case.

l If the rescue clause executes a Re-
try, the body of the routine (Do clause)
is executed again.

As an example, here is a solution to a
problem found in many Ada textbooks:
Using a function getint, which reads an
integer, prompt a user to enter an inte-
ger value; if the input is not an integer,
ask again, unless the user cannot pro-
vide an integer after five attempts, in
which case a failure occurs. It is as-
sumed that getint is an external routine,
perhaps written in C or assembly lan-
guage, and we have no control over it. It
triggers an exception when applied to
input that is not an integer; the routine
should catch that exception and prompt

the user again. Figure 12 shows a solu-
tion.

The first five times the interactive
user enters a wrong input, the routine
starts again, thanks to the Retry. This is
the direct implementation of resump-
tion.

The local entity failures serves to
record the number of failed calls to
getint. Like any integer local entity, it is
automatically initialized to zero on rou-
tine call. (The Eiffel language defini-
tion’ specifies simple initialization val-
ues for every possible type.)

In this example, only one type of ex-
ception is possible. In some cases, the
rescue clause might need to discrimi-
nate between possible types of excep-
tions and handle them differently. This
is made possible through simple fea-
tures of the kernel library class EX-
CEPTIONS, although it isn’t necessary
to look at the (straightforward) details
here. This class also provides mecha-
nisms for handling the false alarm case
by specifying that for certain signals
execution may be allowed to resume.

What happens after five successive
failures of getint? The rescue clause ter-
minates without executing a Retry and
the routine execution fails (organized
panic). The key rule in this case is that
the caller of get-integer will get an ex-
ception, which it will have to handle by
using the same policy, choosing between
organized panic, resumption, and false
alarm.

In a typical system, only a handful of
routines have an explicit rescue clause.
What if an exception occurs during the
execution of a routine that has no such
clause? The rule is simple: An absent
clause is considered equivalent to an
implicit clause of the form

rescue
default-rescue

where default-rescue is a general-pur-
pose procedure that, in its basic form,
does nothing. Then an exception simply
starts the rescue clause, which, execut-
ing the empty default-rescue, causes fail-
ure of the routine; this triggers the res-
cue clause, explicit or implicit. If
exceptions are passed in this manner all
the way back to the “root object” that
started the execution, that execution
halts after printing an exception history
table that clearly documents the se-
quence of recorded abnormal events.
But, of course, some routine in the call

COMPUTER

chain may have a rescue clause. even
one containing a Retry that will attempt
a resumption.

Why, define the default behavior as a
call to default-rescttc rather than just as
an empty rescue clause? The reason
comes from the methodological discus-
sion. In the case of organized panic. it is
essential to restore the invariant before
conceding defeat and surrendering. A
null action would not achieve this for a
class with a nontrivial invariant.

The solution is provided once again
by the coalesced forces of inheritance
and assertions. Procedure d&ult- res-
clre. in its default null form. appears as
a procedure of the general-purpose class
ANY. This library class, as defined by
the language rules,’ is automatically an
ancestor of all possible developer-de-
fined classes. So it is the responsibility
of designers of a class C. if they are
concerned about possible exceptions
occurring in routines that do not have
specific rescue clauses. to redefine
default-rescue so that it will ensure the
class invariant of C.

Often, oneof thecreation procedures
may serve as a redefinition of tlrfatrlt~
rescue. since creation procedures are
also required to ensure the invariant.

This illuminates the difference be-
tween the body (the Do clause) and the
rescue clause:

l The body must implement the con-
tract, or ensure the postcondition. For
consistency. it must also abide by the
general law of the land-preserve the
invariant. Its job is made a bit easier by
the assumption that the invariant will
hold initially, guaranteeing that the rou-
tine will find objects in a consistent state.

*In contrast, the rescue clause may
not make any such assumption: it has no
precondition, since an exception may
occur at any time. Its reward is a less-
demanding task. All that it is required
to do on exit is to restore the invariant.
Ensuring the postcondition - the con-
tract - is not its job.

A useful analogy is the contrast
between the grandeur and ser-
vitude of two equally respect-

able professions -cook and fire fight-
er. A cook may assume that the restau-
rant is not burning (satisfies the
invariant) when the workday begins. If
the restaurant is indeed nonburning.
the cook must prepare meals (ensure

Status of Eiffel
The definition of the Eiffel lan-

guage, used as the vehicle for
this article, is in the public do-
main. The language evolution is
under the control of an organiza-
tion of users and developers of
Eiffel technology: the Nonprofit
International Consortium for Eiffel
(NICE). Membership in NICE is
open to any interested organiza-
tion. The address is PO Box
6884, Stinta Barbara, CA 93160.

the postcondition). It is also a part of
the cook’s contract. although perhaps
an implicit one, to avoid setting the
restaurant on fire in the process (to
maintain the invariant).

When the fire fighter is called for
help, in contrast, the state of the restau-
rant is not guaranteed. It may be burn-
ing or (in the case of a wrong alert) not
burning. But then the fire fighter’s only
duty is to return the restaurant to a
nonburning state. Serving meals to the
assembled customers is not part of the
fire fighter’s ,job description. n

Acknowledgments
I have been greatly influenced by the orig-

inators of the classical work on systematic
software dcvclopmcnt, mentIoned in the
“Further sources” sldehar. With his usual
thoroughness. Kim Walden read the text and
pointed nut errors and possible improve-
ments. The anonymous referees made sevcr-
al useful comments.

Eiffel i) a trademark of the Nonprofit In-
ternational Consortium for Eiffel.

References
I, B. Meyer. Ei,ffe/: The Langzdagc. Prentice

Hall. Englewood Cliffs. NJ.. 1991.

2. B. Meyer. Objrct-OrierltrtlSoftware Con-
.strwfiotf. Prentice Hall. Englewood Cliffs.
N.J.. 198X.

3. B. Meyer. “Design by Contract.” in Ad-
vances in Object-Oriented Software En-
gineering, D. Mandrioli and B. Meyer.
eds.. Prentice Hall. Englewnod Cliffs, N.J..
1991. pp. I-SO.

4. C.A.R. Hoare. “An Axiomatic Basis for
Computer Programming,” Comm. ACM,
Vol. 12. No. 10. Oct. 1969. pp. 576-580.
583.

5. E.W. Dijkstra. A Discipline of Program-
r,lin~. Prcnticc Hall, Englewood Cliffs,
N.J.. 1976.

6. J.A. Gogucn. J.W. Thatcher, and E.G.
Wagner. “An Initial Algebra Approach
to the Specification, Correctness. and Im-
plementation of Abstract Data Types,”
in Current Trends in Programming Meth-
odolog?;. Vol. 3. R.T. Yeh. ed.. Prentice
Hall. Englcwood Cliffs, N.J., 1978. pp.
80-119.

7. J.V. Guttag. “Abstract Data Types and
the Development of Data Structures.”
Comm. ACM, Vol. 20. No. 6. June 1977,
pp. 396-404.

8. B. Meyer. “La Description des Struc-
tures Je DonnCes.” Bulletin de 10 Direc-
tion des Etudeset Recherches d’Electricit6
t/e Frtlncr. SCrie C (Informatique). No. 2,
Paris, 1976.

9. B. Meyer. E/ffelc The Libraries. Prentice
Hall. Englewood Cliffs, N.J., (to appear
in 1993).

IO. B. Meyer. “The New Culture of Software
Development.” TOOLS 2 (Technology
of Object-Oriented Languages and Sys-
tems). SOL. Paris, Nov. 1989, pp. 13-23.
Slightly revised version in Advances in
Object-Orrented Software Engineering
(see reference 3).

Bertrand Meyer is president of Interactive
Software Engineering Inc. and SocittC des
Outils du Logiciel, Paris. His areas of inter-
est include formal specification, design meth-
ods, programming languages, interactive sys-
tems, software development environments,
and various aspects of object-oriented tech-
nology.

Meyer holds an engineering degree from
Ecole Polytechnique, an MS from Stanford
University, and a PhD from the University of
Nancy. He is the author of a number of
technical hooks and articles, editor of the
Prentice Hall Object-Oriented Series, and
chairman oft he TOOLS (Technology of Ob-
ject-oriented Languages and Systems) con-
ference series.

The author can bc contacted at Interactive
Software Engineering, 270 Storke Rd., Suite
7. Goleta, CA 93117.

October 1992 51

