Object Technology

Editor: Bertrand Meyetr, Eiffelsoft, 270 Storke Rd., Ste. 7,
Goleta, CA 93117; voice (805) 685-1006; fax (805) 685-6869;

ot-column@eiffel.com.

Teaching object technology

Bertrand Meyer
Eiffelsoft

ince 1986 I have hardly spent 2 month without
teaching at least one object technology class, to

groups large and small. In this column I will draw
from this experience to suggest a few rules for effective
object training in industrial environments. A future col-
umn will address the particular needs of object education.

Paradoxically, the trainer’s task may be harder now than
it was when object technology started to attract wide inter-
est. In the mid-80s;, objects had an aura of heresy, which
made the audience sit up and listen. Now no one will call
security if a guest declares a preference for objects.

In my books, I have called this the mOOzak effect (Object
Success, Prentice Hall, 1995, and Object-Oriented Software
Construction, 2nd Ed., Prentice Hall, 1997). The mOOzak
effect is caused by the omnipresence of OO this and OO
that in the computer press. The words flow so continuously
—object, class, polymorphism—as to cause a general dilu-
tion of the concepts.The words are familiar, but are the
concepts understood? Often they are not.

The trainer now has a new burden: convincing the
trainees that they do not yet know everything. The trainer
must do this, however, because no one can learn a subject
he thinks he already knows.

Hit them twice

The only strategy guaranteed to overcome the mOOzak
effect is to present the initial training course; have the stu-
dents try their hand at OO development; and present the
initial training course.

Step 3 is not a typo nor is it a marketing ploy to sell the
same thing twice. Although the firstiteration of the course
is necessary to provide the background, it may not be fully
effective. Only when students have grappled with the day-
to-day challenges of object-oriented software construction
can they internalize the concepts. The second iteration
really gets the concepts across.

The second iteration is not, of course, identical to the
first. For one thing, the questions will be more interesting:
Is a new class really necessary? Is this a proper use of inher-
itance? Do these two features justify introducing a new
node in the inheritance structure? Is this design pattern
from the course relevant here? The second course might
actually straddle the line between training and consulting,
but it should really be a reiteration of the same material,
not an advanced course.

Only the most enlightened companies are ready to
accept the “hit them twice” strategy. Others will dismiss it
as a waste of resources. In my experience, however, the
resultis well worth the extra effort; it is the best way I know
to train developers who truly understand object technol-
ogy and can apply it effectively.

What to hit them with

Once you've got them, what should you teach them?
Some people assume that the curriculum should start
with object-oriented analysis. This is a grave mistake. A
beginner cannot understand OO analysis (except in the
mOOzak sense of the term). To master QO analysis, you
must first master fundamental concepts, like class, con-
tracts, information hiding, inheritance, polymorphism,
dynamic binding, and the like, at the level of implemen-
tation, where they are immediately applicable. You must
also have used these concepts to build a few OO systems,
first small and then larger, all the way to completion. Only
after such a hands-on encounter with the operational use
of the method will you be equipped to understand the
concepts of OO analysis and their role in the seamless
process of object-oriented software construction. Initial
training, then, should focus on implementation and
design.

Do not limit yourself to introductory courses, however.
Reserve at least 50 percent of your training budget for
advanced courses. v

Finally, do not train developers only. A training cur-
riculum should include courses for managers as well as
software developers. It is unrealistic to hope to succeed—
on any level, in any kind of enterprise—by training devel-
opers only.

Regardless of the depth of their technical background,
managers must be introduced to OO basics and apprised of
their repercussions on task distribution, team organiza-
tion, life cycle process and economics. Management-ori-
ented books (such as Realizing the Object-Oriented Lifecycle,
by Claude Baudoin and Glenn Hollowell, Prentice Hall,
1996, and Succeeding with Objects, by Adele Goldberg and
Kenneth S. Rubin, Addison-Wesley, 1995, and the two
books of mine cited earlier) are appropriate for these
courses.

As an example of what managers must understand,
consider a common industry measure of productivity: the
ratio of produced code to production effort. A reuse-con-
scious process may spend some time improving software
elements that already work well to increase their poten-
tial for reuse in future projects. This generalization task
is an important step in the OO life cycle. Such efforts will
often remove code, decreasing the productivity ratio’s
numerator (code) and thus increasing the denominator
(effort)! Managers must be warned that old measures do
not tell the whole story and that the extra effort actually
improves the software assets of the company. Without
such preparation, serious misunderstandings may
develop, jeopardizing the success of the best planned
technical strategies.

December 1996

117



