
Towards an Anatomy of Software
Requirements

Bertrand Meyer1,2,3, Jean-Michel Bruel2(B), Sophie Ebersold2,
Florian Galinier2, and Alexandr Naumchev1,2

1 Innopolis University, Innopolis, Russia
2 University of Toulouse/IRIT, Blagnac Cedex, France

bruel@irit.fr
3 Schaffhausen Institute of Technology, Schaffhausen, Switzerland

Abstract. Requirements engineering is crucial to software development
but lacks a precise definition of its fundamental concepts. Even the basic
definitions in the literature and in industry standards are often vague
and verbose. To remedy this situation and provide a solid basis for dis-
cussions of requirements, this work provides precise definitions of the
fundamental requirements concepts and two systematic classifications:
a taxonomy of requirement elements (such as components, goals, con-
straints. . .); and a taxonomy of possible relations between these elements
(such as “extends”, “excepts”, “belongs” . . .). The discussion evaluates
the taxonomies on published requirements documents; readers can test
the concepts in two online quizzes. The intended result of this work is
to spur new advances in the study and practice of software requirements
by clarifying the fundamental concepts.

1 Introduction

A software system, like any other engineering construction, exists to satisfy cer-
tain human objectives, known as its requirements. The evolution of software
engineering has produced ample evidence that the quality of systems fundamen-
tally depends on the quality of their requirements.

It has also led to the realization that requirements are software: like code,
tests and other products of the software process, requirements for today’s ambi-
tious systems are software artifacts, susceptible to some of the same practices
(such as configuration management), and in need of theoretical studies. The
present discussion defines a standard framework for such studies.

Section 2 explains the scope of the discussion. Section 3 defines basic termi-
nology. The next two sections provide the principal contribution of this work in
the form of two taxonomies: a taxonomy of requirement elements themselves in
Sect. 4; and a taxonomy of relations between requirements in Sect. 5. The rest
of the discussion explores the application of these concepts: Sect. 6 applies the
taxonomies to analyze an extract from a representative requirements document;
Sect. 7 examines popular approaches to requirements engineering in light of the

c© Springer Nature Switzerland AG 2019
M. Mazzara et al. (Eds.): TOOLS 2019, LNCS 11771, pp. 10–40, 2019.
https://doi.org/10.1007/978-3-030-29852-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29852-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-29852-4_2

Towards an Anatomy of Software Requirements 11

taxonomies; after a discussion of related work in Sect. 8, Sect. 9 assesses the
applicability of the approach and prospects for future work, including automatic
analysis.

Two online quizzes [9,10] enable readers to test anonymously their under-
standing of the taxonomies of requirements and relations.

2 Scope

This presentation is descriptive rather than prescriptive. Textbooks are an exam-
ple of prescriptive presentation, stating how one should write requirements. Here
the intent is to study requirements as they are, which in the industry’s practice
does not always mean as they should be. For example, the relationship taxonomy
(Sect. 5) has a category for requirements that contradict each other, a case that
is obviously not desirable but occurs in practice. Prescriptive discussions will
benefit from the analysis, since they should be rooted in a precise understanding
of the concepts. Occasionally, as in Sect. 9, the discussion veers into prescriptive
territory.

The presentation is, however, normative, since it proposes standard defini-
tions and classifications of requirement concepts and terminology relevant to
requirements authors regardless of which methodology they follow.

Its ambition is also universal : we have tried to cover all possible properties
of requirements, with the understanding that this work should be revised if we
missed any. In this spirit, enumerations (see for example the list of activities in
the definition of “project” in Sect. 3.1) never end with such phrases as “etc.”,
useful to protect authors but detrimental to the quality of definitions. Here there
is no such protection; any omission is a mistake and will have to be corrected.

While Sect. 9 is the place for a more detailed analysis of the applicability of
this work, it is legitimate to ask at the outset for a general justification: why is
it worthwhile to engage in such an effort at precision (at the risk of pedantry) to
define and classify concepts that are widely used in practice with their intuitive
meaning?

The general justification is that requirements are a difficult concept to appre-
hend because they straddle the border between the formal and the informal, the
exact and the approximate, the technical and the human. Some software engi-
neering concepts are formal, exact and technical: programming languages, for
example, have precise definitions, and any single detail of a million-line program
may critically affect its correctness. At the other end of the spectrum, equally
important concepts of software engineering, such as methods of project manage-
ment, are informal, approximate and human.

Requirements bridge these two worlds. To be effective, they must cover the
needs of both. Insufficient rigor in the handling of requirements concepts ham-
pers this goal. As an example, there is wide disagreement in the field as to what
constitutes the difference between “functional” and “non-functional” require-
ments, to the point that some authors even reject this distinction altogether.
The rest of the literature treats it as a given, but without a generally agreed
precise definition.

12 B. Meyer et al.

A software system is often just one part of a larger system whose other
elements may be people and organizations, as in enterprise systems, or physical
devices, as in cyber-physical systems. While the authors’ primary interest and
the examples in this article are software-related, the intent of the definitions and
taxonomies is to encompass systems of any kind.

3 Underlying Concepts

To discuss requirements we need a set of basic concepts and their precise def-
inition. This section introduces the terminology that serves as a basis for the
rest of the discussion. It does not intentionally introduce any novel concept, but
gives precise definitions of known concepts. These definitions are not the most
general possible ones for the corresponding English words as used in an arbitrary
context; rather, they are tailored to the needs of this discussion of requirements.

3.1 General Concepts

Universe of Discourse. The assumed context for the present discussion is a
project to develop a system in a certain environment .

Comment : the definitions of project, system and environment follow.

Definition. A system is a set of related artifacts.
Comment : In the case of pure software systems, the artifacts are virtual:

programs, databases, design diagrams, test cases. . . In line with the goals stated
in Sect. 2, the definition is more general, encompassing enterprise and cyber-
physical systems. Even if the system involves only software, the project and the
environment may include material and human elements.

Definition. A project is the set of human processes involved in the planning,
construction, revision and operation of a system.

Comments:

– A project is, per this definition, applied to one system. While a project can
in practice involve the development of several systems, the definition loses no
generality since we can consider them, for the purpose of the definition, to be
subsystems of one larger system.

– A particular project may involve only some of the activities mentioned (plan-
ning, construction, revision, operation). In particular, the revision of a system
(which may also be called maintenance, reconstruction, redesign, evolution
and “brownfield development”) can be an extension of a previous project for
this system, or a new project.

Towards an Anatomy of Software Requirements 13

Definition. An environment for a project or system is the set of entities
(people, organizations, regulations, devices and other material objects, other
systems) external to the project or system but with the potential to affect it or
be affected by it.

Comments: the environment is also called, in classic Jackson-Zave terminol-
ogy [12], the “domain”. It includes all external elements constraining the project
or the system; “external” in the sense that unlike features of the system and
project they are imposed from the outside and not susceptible to decisions by
the project. As an example of the difference, “all accounts must maintain a non-
negative balance at all times” is an environment property (affecting the system);
“a withdrawal request for an amount greater than the balance shall produce an
error message and leave the balance unchanged” is a system property, devised to
enforce the preceding environment property. Similarly, “at least 50% of the code
shall be developed in-house” is an environment property (affecting the project);
“the implementation of the user interface module shall be outsourced to company
X ” is a project property, which should comply with the environment property.

Environment properties in requirements will be called constraints
(Sect. 4.1.F).

3.2 Properties and Their Statements

The definition of “requirement” will use the auxiliary concept of “statement”,
itself relying on the notion of “property” (a term already used informally). These
are general term, not specific to software or requirements; although they essen-
tially retain their ordinary meaning, it is useful for the purposes of the present
work to give them precise, slightly more restricted definitions.

Definition. A property is a boolean predicate.
Comments: an example of property is that today is Sunday, a predicate (true

or false in a given context). The properties of interest for this discussion will
apply to a project, system or environment. A system example is the property
that response time for a certain kind of query must not exceed one second. A
project example is the property that the project uses sprints (iterations) of one
month each. An environment example is the property that no more than 50
vehicles at a time are permitted in a tunnel.

Definition. A statement is a human-readable expression of a property.
Comments:

– Discussions of programming languages use the term “statement” to mean
“instruction”, a command to be executed by a computer (prescriptive).
Instead “statement” as used here retains the same connotation as in ordi-
nary English: a phrasing that “states” a property (descriptive).

– “Today is Sunday” and “query response time shall not exceed one second” are
statements. The difference between a property and a statement is that the

14 B. Meyer et al.

property is the abstract predicate and a statement its expression in a certain
notation. Different statements can express the same property; for example the
statement “c’est aujourd’hui dimanche” is a different statement (in French)
of the first example’s property.

– A statement, however, specifies just one property. This convention causes no
loss of generality since a property, being a predicate, can be built out of logical
combinators such as “and” and “or”, and hence arbitrarily complex. The next
definition will reflect this observation.

– Not all statements have to be expressed, like the preceding examples, in nat-
ural language: a statement could be a UML diagram specifying a system
property, a mathematical formula describing a constraint property, a PERT
diagram or (in agile development) a burndown chart specifying a task prop-
erty. For any statement, it should be clear what underlying notation it uses
(see the notion of “requirement type” in Sect. 3.5).

Definition. A property, and a statement expressing it, are composite if the
property is a logical combination of simpler properties, and elementary other-
wise.

Comments: since a property is a boolean predicate, it may result from apply-
ing boolean operators to one or more simpler properties, in which case we call
it composite.

Definition. A composite property, and a composite statement expressing it,
are homogeneous if the property combines properties of a similar nature, and
heterogeneous otherwise.

Examples: “customers will have access to customer functions, and employees
to both customer and flight management functions” (from [4]) is homogeneous.
“Error messages shall be recorded in a log” specifies both the presence of a
system component (if the log is not defined elsewhere) and a system behavior,
and hence heterogeneous.

Comments: from a prescriptive viewpoint (as discussed in Sect. 2), it is good
practice for requirements documents to avoid heterogeneous statements. The
second example would be better expressed, in a requirements document, by two
distinct requirements: one specifying the need for a log; the other stating that
error messages must be recorded in that log.

3.3 Relevant Properties

The definitions of “property” and “statement”, when applied to projects and
the associated system and environment, underlie the definition of “requirement”.
But many properties are not of interest as requirements, for example the system
property that the executable has a “load” instruction at offset 3FD04, or the
project property that no code was committed past 11:30 PM on December 31st.
We are interested in properties that are relevant to some stakeholder.

Towards an Anatomy of Software Requirements 15

Definition. A stakeholder for a project is a person who may affect or be
affected by the project or its associated system.

Comments:

– This definition is a considerably simplified version of the one on the IEEE
systems and software terminology standard [1]. The IEEE version talks of a
person or organization, but organizations can only be involved through their
(human) members. It specifies “individual or organization having a right,
share, claim, or interest in a system or in its possession of characteristics
that meet their needs and expectations”, “individual, group or organization
that can affect, be affected by, or perceive itself to be affected by, a risk”
etc., all possibly interesting but only adding musings to the simple definition
above. (The mention of perceiving to be affected is correct but not necessary:
if you believe you are affected by the system you are affected by it, if only
through the effect on your mindset.) There seems to be no need for such a
bloated definition for a clear and simple concept.

– Concretely, stakeholders may include users of the system, people responsible
for commissioning and accepting the system (such as “product owners” in
agile methods), developers, testers and many others as discussed in detail in
the software engineering literature, e.g. [13].

– The definition only mentions the project and system. Affecting or being
affected by the environment is not enough to make you a stakeholder. As
a taxpayer you are affected by the tax rules, but that does not make you a
stakeholder of a tax-related project if the resulting system does not apply to
your category of taxpayer.

Definition. A property of a project, system or environment, is relevant if it
is of interest to a stakeholder.

Comments: we saw above examples of non-relevant project and system prop-
erties. As an example of an environment property, knowing that the system
might be deployed in Costa Rica is relevant for a payroll system which must
take local regulations into account, but probably not for a computer game.

3.4 Requirement

Definition. A requirement is a statement of a relevant project, system or
environment property.

Comments:

– This definition introduces the central concept of the present discussion. From
the definition of “statement”, a requirement is a specification of a property
of a project, system or environment. (For simplicity we limit ourselves to
requirements characterizing only one of the three dimensions.)

– The classification of Sect. 4 defines what kinds of property are pertinent for
software requirements.

16 B. Meyer et al.

– Software engineering discussions often use the plural “requirements” as a
collective, as in “the requirements of a system”, a phrase that denotes a whole
(the specification of the system) beyond just the collection of its parts (the
individual requirements). To avoid any ambiguity, the present discussion only
uses “requirements” as the plural of “requirement”, as in “four requirements”,
meaning four statements of project, system or environment properties. For
the collective we can always use a more elaborate phrase such as (depending
on the exact meaning sought) “the requirements document” or “the overall
requirements for the system”, or “the Software Requirement Specification”,
often abbreviated SRS.

– The definition only says that a requirement specifies a property, and does
not specify a level of granularity for that property: it could characterize the
entire project, system or environment, one of its major components, or just an
elementary component. At one extreme, the entire SRS is “a requirement”;
so is, at the other extreme, the statement of a single elementary property,
such as “Clicking Exit shall result in termination of the session”. The next
definition addresses this variety.

– By specifying a boolean property, a requirement defines a criterion which an
actual environment, project or system either confirms or refutes. “Have the
test plan ready for next Monday!” is not boolean and hence not a require-
ment. (“The testing team shall produce the test plan in at most a week” is a
requirement.) When teaching requirements engineering we go further, telling
students that requirements must be verifiable: “the query shall be processed
in real time” is not good enough, “query response time shall be one millisec-
ond or less” is better (see e.g. [19] for such advice). Here again, the present
document is descriptive and taxonomic, not normative. Except in Sect. 9 it
does not discuss what makes requirements “good”, only what makes them
requirements.

3.5 Characterizing Requirements

Definition. A requirement is composite if it includes other requirements (its
sub-requirements) and elementary otherwise.

Comments: the distinction is the same as for “statements” in general
(Sect. 3.2) but introduces the notion of sub-requirement, which will become more
precise through the definitions of “component”, “sub-goal” etc. in Sect. 4.

Definition. The type of a requirement is the notation in which it states its
associated property.

Comments: the term “notation” is taken here in its ordinary meaning. Exam-
ples of notation are English text, a UML diagram type, a tabular format, a par-
ticular programming language, a (well-defined) mathematical notation. Since
requirements can be composite, the notion of “notation” must support the pos-
sibility of a combination of notations, as in the example of a requirements doc-
ument that contains both English text and graphical illustrations.

Towards an Anatomy of Software Requirements 17

Definition. A requirement R specifies a property P if P follows from the
property stated by R or a sub- requirement of R.

Comments: this definition is a bit of hair-splitting but reflects the different
nature of statements and properties. A property is just a predicate: the border of
a certain control on the screen is (or is not) black. A statement is an expression
of that property in some notation, for example “The border shall be black” or
“La bordure doit être noire”, both of which express the same property although
in different notations (types). Yet another way to specify that property would be
a figure, or an entry in a table listing attributes of UI elements. The definition
uses the informal term “follows from” since it cannot use “R implies P” unless
requirements are expressed in a formal mathematical notation.

4 Classification of Requirements

This section introduces the first of the two fundamental taxonomies proposed
by this article: the taxonomy of requirements themselves. Section 4.1 defines the
fundamental categories, disjoint from each other. Section 4.2 introduces other
categories, important in practice but defined as subcategories of the fundamental
ones.

4.1 Requirements Classification: Basic Categories

Classification. Every requirement states a property of one of the following
categories. Section 4.2 will introduce more categories as special cases of the fun-
damental ones given here.

A. Component: the property that the system, project or environment includes
a certain part.
Comments: a component can be material, virtual or human. A human com-
ponent can be a single person, group of persons, organization or category of
persons involved in the system, project or environment. A component of the
environment can be another system with which the given system must be
interfaced.
Examples: “the operating system is designed to run on the iPhone 8 and later
models” (system component, material); “database operations shall run in a
separate process” (system component, virtual); company CEO (if referenced
explicitly in the requirements, single person); reservation agents (category of
persons).

B. Goal: an objective of the project or system, in terms of their desired effect
on the environment.
Comments: Requirements documents often present goals at the beginning
of the text. The external entity could be a company (enterprise goals) or
a physical device such as a phone (cyber-physical goals). Having an effect
on the environment means having an effect on an external entity, such as a
company (enterprise goals, as in this example) or a physical device (cyber-
physical goals).

18 B. Meyer et al.

Example: “One of the advantages expected from the system is to reduce the
amount of fraudulent invoices”.

C. Behavior: a property of the results or effects of the operation of the system
or some of its components.
Comments: requirements in this category often get the most attention since
they describe elements of what the system will do. A behavior can charac-
terize the system as a whole or a specific component. Section 4.2 introduces
the classic distinctions of behaviors into functional and non-functional.
Example: “Display the list of available elements.”

D. Task: the property that the project includes a certain activity.
Examples: program coding, stakeholder interview, daily meeting.

E. Product: the property that a task uses or produces a material or virtual
object.
Examples: a test plan, a user story, a design document, a program module.

F. Constrain: an environment property that may affect components, goals,
behaviors, tasks or products.
Comments: it would seem enough to say “an environment property”, since
by definition the environment is (Sect. 3.1) the set of external entities that
have the potential to affect or be affected by the project (and hence the
system and the environment). But this does not work, since those entities
have other properties with no relation to the project. Hence the restrictive
formulation. Section 4.2 will distinguish between obligation and assumption
constraints.
Examples: “every transfer over EUR 10,000 requires authorization” (behavior
constraint); “testing shall use the JUnit framework” (task constraint).

G. Role: the property that a component carries some or all of the responsibility
for a behavior or task.
Example: “the Bangalore subsidiary shall be responsible for the implemen-
tation of the user interface subsystem” (task role, human component of the
project); “the reservation system’s UI shall be designed for operation by
railway-station booking agents” (behavior role, human component); “smart
contract computations shall be executed on the GPU” (behavior role, mate-
rial component).

H. Limit: the property that the project, system or environment does not include
a requirement of one of the preceding kinds.
Example: “Providing a interface to SAP accounting falls outside of the scope
of the present system” (component limit); Integration testing will be per-
formed in a follow-up project (project limit).

I. Lack: a property that should have a requirement, but does not.
Comments: this category is different from the others, and paradoxical since it
characterizes what is not in the requirements. Our discussions with require-
ments practitioners indicate that they spend a considerable part of their
efforts uncovering lacks. Human scrutiny is indeed usually required to find
lacks, although some automatic analysis is possible; for example, a term that
appears repeatedly in an SRS but not as an entry in the glossary (a list of def-
initions of project, system and environment concepts, which any SRS should

Towards an Anatomy of Software Requirements 19

include) may signal that the requirements are missing the specification of an
important property.

J. Meta-requirement: a property of requirements themselves (not the sys-
tem, project or environment).
Example: a section title in the requirements document (which does not
express any new property but helps structure and understand the actual,
non-meta properties); more generally, any observation intended to facilitate
the reading of an SRS, such as “the details will appear in Sect. 7”; a state-
ment of priority between requirements, such as a classification of components
into “critical”, “necessary” and “nice to have”; an explanation, such as “the
behavior in this case is specified by table 7.1” or “figure 7.2 illustrates the
concept”.

Comments: large composite requirements, for example an entire SRS, will
contain requirements in several of these categories. The classification is, how-
ever, designed with the intent that in practical usage it will be possible with-
out much hesitation to classify any elementary requirement (or small composite
requirement) into just one category.

The classification makes it possible to be more precise about the elements of
a composite requirement (a requirement made of other requirements):

Definition. A sub-goal , sub-component , sub-behavior etc. is a sub-
requirement of respectively a goal, component, behavior etc.

And consequently:

Definition. A goal, component, behavior etc. is elementary (non-composite)
if it has no sub-goal, sub-component, sub-behavior etc.

Comments: in principle, the definition of sub-requirement allows arbitrary
mixing of categories, for example a task as a sub-requirement of a goal. The
above definitions only cover sub-requirements that are of the same category as
the enclosing requirements.

4.2 Some Derived Categories

The following kinds of requirement are special cases, important in practice, of
the categories of Sect. 4.1.

An actor is a human component. Examples include the stakeholders of a
project as defined in Sect. 3.3 (project actors); and people involved in the oper-
ation of the system, such as an end-user or a system administrator (system
actors).

A justification is a meta-requirement explaining the rationale for a require-
ment (of any kind) in terms of a goal. As an example, if an SRS for a software
system does not specify Android among the platforms to be supported, it might
include the justification that the company has made the strategic decision to
equip its sales agents with iPhones.

20 B. Meyer et al.

A responsibility is a human role. (In the general case, roles can be defined
for components other than humans, e.g. software components.) The first two
examples in the above definition of “role” (Sect. 4.1.H) are responsibilities.

An obstacle is a goal defined as the need to overcome a negative property of
the environment, as in “with the current system, too many enquiries that could
lead to sales are missed”. KAOS [18] has a closely related definition.

A widely established terminology for behavior distinguishes between state-
ments of “what” and “how” properties:

– A functional behavior specifies results or effects of the system.
– A non-functional behavior specifies a property of how these results or

effects are to be achieved. Classical examples are timing limits and security
conditions.

The following subcategories exist for constraints (environment properties):

– A business rule is a constraint resulting from organizational practices.
Examples are the rules on bank accounts from Sect. 3.1 and Sect. 4.1.F.
Another is “delivery of phosgene [a chemical] requires that the recipient have
taken a refresher course in handling hazardous chemicals in the past twelve
months”. This example appears in [19], as the background for a system prop-
erty: the software must reject a request for chemical if the requester does not
meet the criterion.

– A physical rule is a constraint resulting from laws of nature. A typical
example is the application of the laws of mechanics to a satellite launching
system.

– An engineering decision is a constraint resulting from human choices.
Examples are the minimum and maximum bandwidths for a networking sys-
tem.

A separate classification of constraints is between:

– An obligation, describing a property that the environment is known to pos-
sess. Examples: the rules on bank transfer in Sect. 4.1.E; in a cyber-physical
system, limits (such as signal transmission speed, laws of mechanics, band-
width) imposed by physics and engineering.

– An assumption, describing a property that the environment may or may not
possess but which the project may assume to hold for the development of the
system. Example (in a system to control a railroad crossing): “cars travel at
no more than 200 km/h and trains at no more than 400 km/h”. Unlike the
absolute limits imposed by the laws of nature or by a choice of technology,
an assumption is the result of an explicit human decision, and might conceiv-
ably not hold, but may be needed for the requirements to guarantee certain
properties. In the example, it may be possible to make trains run faster than
400 km/h, but no railroad-crossing system can guarantee the avoidance of
collisions without assuming some upper limit on the speed of trains.

Towards an Anatomy of Software Requirements 21

– An invariant, describing a property that is both as an assumption and as a
behavior. Example (in a factory control system): “the system shall operate
between −30 and +50 ◦C”, which means both that the system’s operations
may assume they start within this temperature range and that they must
refrain from causing overheating or over-cooling.

While requirements of all three kinds cover properties of the environment,
the difference is important in practice since obligations make the work of system
developers harder and assumptions make it easier. (Invariants do both. To keep
the three categories disjoint we classify a constraint as an obligation if it is not
also an assumption, and conversely.)

The two classifications are orthogonal: for example, a business rule can be
an obligation (as the bank transfer example rule) or an assumption (the New
York Stock Exchange is closed on Labor Day). The same observation holds for
engineering decisions, which gave us an example of obligation (car and train
speeds) and an example of invariant (temperature limits).

The following table, intended for reference, includes all the categories in
alphabetical order, and their subcategories. Every requirement should fit into
exactly one category and at most one subcategory (except for constraints which
may belong to elements of the two orthogonal classifications) (Table 1).

Table 1. Categories and subcategories of requirements

Basic categories Subcategories Short definition (for full definition see text)

Behavior Property of an operation’s effects

Component Part of the project, environment or system

Special case: Actor Human component

Constraint Environment property

Classification

by nature

Assumption Assumed constraint

Obligation Imposed constraint

Invariant Both assumption and obligation

Classification

by source

Business rule Constraint due to organizational practices

Engineering

decision

Constraint due to human choices

Physical rule Constraint due to laws of nature

Goal Intended effect of project or system on

environment

Lack Missing requirement

Limit Property beyond scope of

project/system/environment

Meta-requirement Property of requirements but not of project,

system or environment

Special case: Justification Rationale expressed in terms of a goal

Product Material or virtual object used or produced

by a task

Role Component’s responsibility for behavior or

task

Task Project activity

22 B. Meyer et al.

An anonymous online quiz [9] invites readers to test the practicality of the
requirements classification and their understanding of it by classifying require-
ments elements from a sample requirements document [3], which also provides
the background for the discussion in Sect. 6.

5 Taxonomy of Inter-requirements Relations

With requirement elements sorted into categories, we proceed to a classification
of the relations that may hold between them.

Classification. A requirement Y may depend on another X in one of the follow-
ing ways, each given with: a name in upper case (a verb, such as “REPEATS”,
whereas names of requirement categories were nouns); a symbol (generally bor-
rowed from mathematics, for its mnemonic value only); a definition of its mean-
ing; a comment if necessary.

DISJOINS X Y Y and X are unrelated.
Comment : In this case, the most common for two ran-
domly selected statements in a requirements document,
there is no relation between the properties they specify.

BELONGS X Y X is a sub-requirement of Y.
Comment : this case corresponds to textual inclusion
(sub-section, sub-figure etc.), unlike inclusion of prop-
erties as in EXTENDS below.

REPEATS X Y X specifies the same property as Y.
Comment : this case is identity of the properties although
not necessarily of their statements (since they might use
different notations). See below for variants: EXPLAINS
(different notations), DUPLICATES (same notation).

CONTRADICTS X Y X specifies a property in a way not compatible with Y.
Comment : remember that this discussion is descriptive,
not prescriptive. No one would recommend writing con-
tradictory requirements. But existing SRS, especially
large ones, may contain contradictions; in some contexts
it might be crucial to detect them.

FOLLOWS X Y The property specified by X is a consequence of the prop-
erty specified by Y.
Comment : interesting in particular if Y is a goal and X
a behavior or task.

EXTENDS X Y X assumes Y and specifies a property not specified by
Y.
Comment : also called “refines”.

EXCEPTS X Y X changes or removes, for a specified case, a property
specified by Y.
Comment : this case is not the same as CONTRADICTS.
It is the explicit and often legitimate introduction of an
exception to a general property.

CONSTRAINS X Y X specifies a constraint on a property specified by Y.
CHARACTERIZES X Y X is a meta-requirement involving Y.

Towards an Anatomy of Software Requirements 23

The following derived cases are useful in practice:
DETAILS X Y X adds detail to a property specified by Y.

Comment : this is a case of X Y (EXTENDS). The
nuance is that in this case there is no fundamentally
new property, just more detail about an already speci-
fied property.

SHARES X Y X Y for some sub-requirements X’ and Y’ of X and
Y.

DUPLICATES X Y X Y , and X has the same type as Y.
Comment : also a case of REPEATS. This is the true re-
dundancy case. From a prescriptive viewpoint, it usually
reflects a deficiency in an SRS; compare with the next
case.

EXPLAINS X Y X Y , and X has a different type from Y.
Comment : again a case of REPEATS, but not necessarily
bad. Y introduces no new property but helps understand
Y. For example Y may describe a property textually, and
X may be a graphical illustration of that property.

Comments:

– As with the taxonomy of requirements, the intent is to ensure that given two
arbitrary requirement elements their relationship can be classified in at most
one of the primary relations and at most one of the derived ones. If two or
more categories appear to apply, one should clearly be more relevant than
the others.

– The mathematical symbols informally suggest the relations’ meaning, but
do not imply theproperties, such as associativity or commutativity, of their
ordinary mathematical counterparts. Further research should indeed study
(in the style of [15]) the mathematical properties of these relations.

– The relations may hold between requirements of any complexity. In practice,
one should first look for their occurrences between elementary requirements.

– SHARES is an example of a relation on composite requirements derived from
another (DUPLICATES) on their sub-requirements. It is possible to gener-
alize some of the other relations in the same way, or simply to accept, as a
small abuse of language, that for example Y > X holds if Y ′ > X ′ holds for
sub-requirements. Except for SHARES, we ignore this issue in light of the
preceding comment.

– An analysis examining how two given requirements are connected may in
principle identify more than one of the relations. For simplicity, it is advisable
to choose only one (from the complete list including derived relations); just
pick the relation that comes out as most relevant.

Like its counterpart for the first taxonomy, the following table provides a list
of all the categories and subcategories of the relation taxonomy (Table 2).

24 B. Meyer et al.

Table 2. List of all the categories and subcategories of the relation taxonomy

Basic categories Subcategories Symbol Short definition (for full
definition see text) – X is first
operand, Y second operand

Belongs ⊆ X textually included in Y

Characterizes → Meta-requirement X applies to
Y

Constrains � Constraint X applies to Y

Contradicts ⊕ X Properties specified by X and
Y cannot both hold

Disjoins ‖ Y and X are unrelated

Excepts \\ X specifies an exception to the
property specified by Y

Extends > X adds to properties of Y

Special case: Details � X adds detail to properties of Y

Follows � X is a consequence of Y

Repeats ⇔ X specifies the same property as
Y

Shares ∩ Some subrequirements are
common

Duplicates ≡ Same properties, same type
(notation)

Explains ∼= Same property, different type

As with the previous taxonomy, an anonymous online quiz [10] invites read-
ers to test the practicality of the requirements-relations classification and their
understanding of it by classifying requirements relations from a sample require-
ments document [3], which also provides the background for the discussion in
Sect. 6.

6 Dissecting an Example

[3] is an example requirements document, obviously inspired by industrial prac-
tice but devised for a course at Ohio State University. It provides a good testbed
for the concepts of this article since it is small enough to lend itself to analysis yet
large and realistic enough to be representative of the contents of requirements
for actual industry projects.

We analyzed the entire text and found that the taxonomies cover both all
requirements and all the relations we considered. Here we only show a few rep-
resentative samples of the analysis. The entire analysis is available as an online
complement to this article [8].

First, examples of classifying requirements according to the first taxonomy:

Towards an Anatomy of Software Requirements 25

Section 1. Introduction Meta-requirement

1.1 Purpose of Document Meta-requirement

This is a Requirements Specification document for a new web-
based sales system for Solar Based Energy, Inc. (SBE)

Goal

1.2 Project Summary Meta-requirement

Project Name: SBE Sales System Component

. . .
1.4 Project Scope

The scope of this project is a web-based system that supports
the marketing of SBE products directly to customers as well as
through the existing sales agent network.

Goal

Advertising of products, inventory control, and account billing
are not part of this project.

Limit

In addition, changes to the logical and physical design of the
current databases are expected.

Obstacle

The primary responsibilities of the new system: Meta-requirement

provide customers direct access to up-to-date, accurate product
information on which they can make a decision to buy

Behavior

. . .
Section 2. Functional Objectives

2.1. High Priority Meta-requirement

“The system shall allow for on-line product ordering by either
the customer or the sales agent”

Behavior

“For customers, this will eliminate the current delay between
their decision to buy and the placement of the order”

Goal

“This will reduce the time a sales agent spends on an order by
x%. The cost to process an order will be reduced to $y”

Goal

“The system shall display information that is customized based
on the user’s company, job function, application and locale”

Behavior

2.2 Medium Priority Meta-requirement

The system shall provide a search facility that will allow full-text
searching of all web pages that the user is permitted to access.

Goal

The system must support the following searches:

– find all words specified
– find any word specified
– find the exact phrase
– Boolean search

Behavior

. . .
Section 3: Non-Functional Objectives

3.1” Reliability” Meta-requirement

* “The system shall be completely operational at least x Constraint

* “Down time after a failure shall not exceed x hours” Constraint

26 B. Meyer et al.

. . .
Section 4: The Context Model

4.1 “Goal Statement” Meta-requirement

“The goal of the system is to allow SBE to increase sales revenue
by x% over the next y years with only a z% increase in sales and
customer service staff by”

Goal

“allowing complete and accurate customer and order informa-
tion to be captured directly from the customer as well as from
sales agents”

Goal

4.2 “Context Diagram” Meta-requirement

Behavior

4.3 “System Externals” Meta-requirement

“Customer” Actor

“A customer is any user of the system that has not identified
himself as an SBE employee”

Actor

“A customer may search for public product information by key-
word, access white papers for a particular product, order a prod-
uct or request assistance from a sales agent”

Role

“A customer who provides personal information will get search
and query results customized to his preferences”

Behavior

. . .
5.2 Use Case Descriptions (for selected cases)

“For all use cases, the user can cancel the use case at any step
that requires user input. This action ends the use case. Any data
collected during that use case is lost”

Behavior

“For all use cases that require a logged in user, the current login
session is updated during the use case to reflect the navigation
paths through the use case”

Behavior

Use Case Name: Login User Meta-requirement

Summary: In order to get personalized or restricted information,
place orders or do other specialized transactions a user must
login so that the system can determine his access level

Goal

Basic Flow Meta-requirement

1. The use case starts when a user indicates that he wants to
login.

Constraint

2. The system requests the username and password. Behavior

3. The user enters his username and password.Role

4. The system verifies the username and password against all
registered users.

Behavior

Alternative Flows Meta-requirement

Step 4: if username is invalid, the use case goes back to step 2. Behavior

Extension Points: none Component

Preconditions: The user is registered. Constraint

Postconditions: The user can now obtain data and perform func-
tions according to his registered access level.

Behavior

Business Rules: Some data and functions are restricted to certain
types of users or users with a particular access level”

Constraint

Towards an Anatomy of Software Requirements 27

Now, some examples of requirements relationships per the second taxonomy.
CONSTRAINS:

“Preconditions: The user is regis-
tered.”

“Postconditions: The user can now obtain data
and perform functions according to his registered
access level.”

EXCEPTS:

“if the password is invalid the sys-
tem requests that the user re-enter
the password. When the user enters
another password the use case con-
tinues with step 4 using the original
username and new password.”

“4. The system verifies the username and pass-
word against all registered users”.

BELONGS:

“A customer is any user of the sys-
tem that has not identified himself
as an SBE employee.”

“4.3 System Externals Customer A customer is
any user of the system that has not identified him-
self as an SBE employee. A customer may search
for public product information by keyword, ac-
cess whitepapers for a particular product, order a
product or request assistance from a sales agent. A
customer who provides personal information will
get search and query results customized to his
preferences. Sales Agent A sales agent is a user
who has been verified as an SBE employee. A sales
agent may access all available product information
and whitepapers, including the product owner. A
sales agent may place an order on behalf of a cus-
tomer. He will be informed by the system of any
customers in his region who have requested assis-
tance. Product Owner The product owner is a user
who has been verified as an SBE employee. The
product owner may update product information
and whitepapers for those products for which he is
responsible. Accounting The Accounting depart-
ment is responsible for all SBE financial transac-
tions. The Accounting department is informed of
all purchases and is responsible for later collection
of accounts receivable. Shipping The Shipping de-
partment is informed of purchases so that it can
process the order and update inventory. Market-
ing The Marketing department is responsible for
creating demand for SBE products. It will receive
website navigation data to use in planning mar-
keting strategies.”

28 B. Meyer et al.

DETAILS:

“The system shall be completely opera-
tional at least x% of the time”

“Down time after a failure shall not exceed
x hours”

CHARACTERIZES:

“2.1 High Priority” “The system shall allow for on-line product
ordering by either the customer or the sales
agent.”

DISJOINS:

“A sales agent may access all available
product information and whitepapers, in-
cluding the product owner. A sales agent
may place an order on behalf of a cus-
tomer”

“if the password is invalid the system re-
quests that the user re-enter the password.
When the user enters another password the
use case continues with step 4 using the
original username and new password.”

EXPLAINS:

“The goal of the system is to allow SBE to
increase sales revenue by x% over the next
y years with only a z% increase in sales and
customer service staff by

– - allowing complete and accurate cus-
tomer and order information to be
captured directly from the customer as
well as from sales agents

– - providing customers and sales agents
fast access to up-to-date and accu-
rate product information and whitepa-
pers.”

Towards an Anatomy of Software Requirements 29

7 Analyzing Available Requirements Methodologies

This section surveys a few important requirements methodologies, selected from
those covered in a recent survey involving some of the authors [6]. At this stage
we only consider the classification of requirements in well-known requirements
textbooks.

7.1 Wiegers-Beatty

Wiegers and Beatty (“WB”), include in [19], page 7, a table of requirements cat-
egories, with the following figure (page 8) illustrating their connections (Fig. 1):

Fig. 1. Categories and relationships (from [19])

The first two columns in the following table are reproduced from Wiegers
and Beatty; the third column gives in each case the corresponding category in
the present classification.

The classification of this article appears to cover the Wiegers-Beatty
categories.

30 B. Meyer et al.

WB category WB definition Category from
the present
discussion

Comment

Business
requirement

A high-level business objective of
the organization that builds a
product or of a customer who
procures it

Goal Can also
include limits

Business rule A policy, guideline, standard, or
regulation that defines or
constrains some aspect of the
business. Not a software
requirement in itself, but the origin
of several types of software
requirements

Constraint See also
business rule
subcategory
(Sect. 4.2)

Constraint A restriction that is imposed on
the choices available to the
developer for the design and
construction of a product

External
interface
requirement

A description of a connection
between a software system and a
user, another software system, or a
hardware device

Component

Feature One or more logically related
system capabilities that provide
value to a user and are described
by a set of functional requirements

Behavior From viewpoint
of actor (e.g.
user)

Functional
requirement

A description of a behavior that a
system will exhibit under specific
conditions

Behavior

Nonfunctional
requirement

A description of a property or
characteristic that a system must
exhibit or a constraint that it must
respect

Constraint on
the system

Quality
attribute

A kind of nonfunctional
requirement that describes a
service or performance
characteristic of a product

Constraint on
the system or
products

From viewpoint
of actor (e.g.
user)

System
requirement

A top-level requirement for a
product that contains multiple
subsystems, which could be all
software or software and hardware

Component

User
requirement

A goal or task that specific classes
of users must be able to perform
with a system, or a desired product
attribute

Goal

7.2 Van Lamsweerde

In the same style as Sect. 7.1, the following table considers the classification by
[17] (“AVL”) from which the first two columns are reproduced verbatim.

Towards an Anatomy of Software Requirements 31

AVL category AVL definition Category from
the present
discussion

Comment

Functional
requirements

Functional effects that the
software-to-be is required to
have on its environment

Constraint or
Behavior

Non-
functional
requirements

Constraints on the way the
software-to-be should satisfy its
functional requirements or on
the way it should be developed

Task Can also be
product

Quality
requirements

Additional, quality-related
properties that the functional
effects of the software-to-be
should have

Constraint Usually
engineering
decisions

Compliance
requirements

Prescribed software effects on
the environment to conform to
national laws, international
regulations, etc

Constraint Usually
business rule

Architectural
requirements

Imposed structural constraints
on the software to fit its
environment

Component

Development
requirements

Non-functional requirements on
the way the software-to-be
should be developed

Task Can also be
product

The following artifacts are not defined as requirements categories in [17], but
are important enough for inclusion here:

Goals Prescriptive statements of intent
that the system should satisfy
through the cooperation of its
agents (active system
components)

Goal

Expectations CPrescriptive statements of
intent that the system should
satisfy through the cooperation
of its agents (active system
components)

Goal

Domain properties NDescriptive statement about
the environment, expected to
hold invariably regardless of
how the system behaves

Constraint Or Component if
the property
holds on a
structural
description

Coverage again appears good.

32 B. Meyer et al.

8 Normative Work

This section considers some existing normative work on requirements.

8.1 IEEE Definition

The current version of the IEEE standard for software terminology [1], released
in 2010, offers a definition of “requirement”, retained and confirmed from a 1990
version. Under that definition, a requirement is:

1. A condition or capability needed by a user to solve a problem or achieve an
objective.

2. A condition or capability that must be met or possessed by a system, system
component, product, or service to satisfy an agreement, standard, specifica-
tion, or other formally imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).
4. A condition or capability that must be met or possessed by a system, product,

service, result, or component to satisfy a contract, standard, specification, or
other formally imposed document. Requirements include the quantified and
documented needs, wants, and expectations of the sponsor, customer, and
other stakeholders.

That definition cannot be right. Its very length is just a symptom of the
problem: “requirement”, either in ordinary usage or as applied to software, is a
simple concept which merits a simple definition.

In clause 1, a requirement is a “condition or capability”, but it is not clear
what these terms mean and how the meanings differ; “capability” is not defined
in the standard, and “condition” is defined as “a description of a contingency
to be considered in the representation of a problem, or a reference to other
procedures to be considered as part of the condition”, where “contingency” is
not defined. This definition of “condition” is indefensible: it is again far too
complex and mysterious, especially in light of the ordinary- language meaning
of the term (as everyone knows, a condition is simply, a property that can be true
or false). That ordinary meaning would seem just right in a systems/software
context too. Coming back to the definition of “requirement”, the distinction
between “solve a problem” or “achieve an objective” seems spurious (solving a
problem is an objective, and reaching an objective raises problems).

The distinction between clause 2 and clause 1 is equally uninteresting, since
the definition of “user” in the standard, too long (18 lines!) to be reproduced
here, is broad enough to encompass anyone having an interest in an agreement,
standard etc. Worse, clause 2 makes the definition circular, since a “specification”
(defined as “a detailed formulation, in document form, which provides a definitive
description of a system for the purpose of developing or validating the system”)
certainly includes the description of all “conditions” and “contingencies” of the
system, whatever those may be; so a requirement is defined as a condition that
must be met to satisfy a specification of conditions!

Towards an Anatomy of Software Requirements 33

Viewed in light of the distinction between a property and a statement of
that property (Sect. 3.2), clause 3 commingles these two notions under the term
“requirement”, a source of confusion: a property is not the same thing as one
representation of that property in some notation such as English, UML or Telugu.

Clause 4 is entirely mystifying, since it is almost identical to clause 2 but not
quite, raising issues of consistency; in addition, the commingling of property and
statement of clause 3 does not apply to clause 4, leaving the reader wondering.

As to the last sentence, it is not in the form of a definition like the preceding
ones, but comments on what requirements may “include”; such sentences, inap-
propriate in a definition since they can only serve to confuse the reader further
(if the first four clauses, already lengthy and redundant, are supposed to define
requirements, what else is needed?); it sounds more like a “remorse”, a typical
flaw of definitions [14], trying to make up for an unsatisfactory definition by
adding a broad net of precautionary qualifications at the end.

Insistent as it is on including irrelevant and redundant details, the definition
manages to miss crucial aspects of requirements: it focuses on system require-
ments, but does not cover properties of the project, and may cover environment
properties only by a stretch of the imagination.

This addled attempt at a definition, which sounds like an attempt to integrate
the comments of everyone in a committee, is unlikely ever to have helped a
software practitioner. One should note here that such self-defeating pomposity
is inevitable neither for standards in general nor for IEEE standards. The 1998
IEEE requirements standard [2], long marked as obsolete but still widely used
in the industry (which prefers it to its successors, an understandable attitude
in light of the present discussion’s example), is a short, clear, no-frills standard,
and as a result remarkably useful in practice.

The IEEE-2010 definition does have one redeeming feature: its restriction to
properties “needed by a user”. Through this clause, the definition expresses that
not all properties (of a project, system or environment) are interesting as require-
ments only if they are of interest to someone. That someone should be defined
not as “a user” but as a stakeholder. (Many legitimate requirements are intended
for stakeholders other than users, for example to company management in the
case of requirements that the present discussion classifies as goals. A goal such
as “take market share away from competitor X” is relevant as a requirement, but
hardly “needed by a user”. It is needed by a stakeholder. This sloppiness in ter-
minology is all the more surprising that the standard does define “stakeholder”.)
Still, the underlying idea is correct: a requirement is not just any property of the
system (or project, or environment) but one that some stakeholder (e.g. a user)
finds important. The present article’s definition of requirement recognizes that
idea by defining the concept of a relevant property (Sect. 3.3) and including it
in the definition of “requirement” (Sect. 3.4).

34 B. Meyer et al.

8.2 SWEBOK

SWEBOK, the IEEE-originated Software Engineering Body of Knowledge [5], is
an effort to classify existing knowledge in software engineering, with numerous
elements in common with the IEEE standard discussed above.

SWEBOK defines a “requirement” as “a property that must be exhibited by
something in order to solve some problem in the real world”. This definition is
in part useless and in part wrong:

– It is grammatically challenged. As written, it implies that it is the “property”
that must “solve some problem”. Since properties do not solve problems, the
most reasonable interpretation, which we will assume, is that the definition is
incorrect English for “. . . in order for someone to solve some problem”. This
point of pure form is not just quibbling since a definition, particularly in a
document attempting to define best practices, is only useful if it is clear.

– On the substance: why the “real” world? What would be a “problem” in an
unreal world? “Real world” is informal language, not a concept for a standard
of industrial practice. SWEBOK uses it more than a dozen times but does
not define it. The intention seems to be that software should not exist just for
itself, and instead should be related to some issue in the non-software world,
like banks or airplanes. But this view, while common in simplistic discussions
of software engineering, is incorrect: requirements are defined and necessary
for systems that are entirely virtual and not part of the physical world, like
a compiler, an operating system, a Web browser...

– While too restrictive in its focus on the “real world”, the definition is too
general in other ways. “In order to solve” the “problem” of building a software
system, a “property” that must be “exhibited by” the building hosting the
team (“something”) is that it should not be on fire, and a property of the
team members (another “something”) is that they should be awake. Those
are hardly requirements in any meaning pertaining to software engineering.

After this useless definition, SWEBOK introduces some more relevant con-
cepts, such as “product requirement” and “process requirement” which, tellingly,
are defined without reference to it: respectively, “need or constraint on the soft-
ware to be developed” and “essentially” (?) “a constraint on the development
of the software”. The first of these definitions seems to confuse behaviors and
constraints, since it is illustrated by the example “The software shall verify that
a student meets all prerequisites before he or she registers for a course”. Such a
property is not “a need or constraint on the software” (which would be some-
thing like “registration to a course is conditional on satisfying the prerequisites”,
an environment property) but a property of the software (a behavior in the ter-
minology of the present work). The fundamental distinction between properties
of the environment and properties of the system is one of the insights gained in
the progress of software engineering over the past two decades, but SWEBOK is
not aware of it, other than in a brief mention of “business rules” in the section
on requirements elicitation.

Towards an Anatomy of Software Requirements 35

As these samples illustrate, SWEBOKS’s strength is not in definitions of
software engineering concepts, or more generally in precision and clarity (all
the more regrettable that many textbooks reverently cite SWEBOK as a font
of software engineering wisdom). It naturally tends to the prescriptive mode
and includes (aside from such time-wasting platitudes as requirements elicita-
tion being “fundamentally a human activity”) some reasonable advice, such as
ensuring “effective communication between the stakeholders” to guarantee good
requirements elicitation.

The aspect of SWEBOK most relevant to the present effort at taxonomy is
the attempt at requirements classification along “a number of dimensions”: func-
tional vs nonfunctional, single versus emergent, product versus process, higher
or lower priority, scope, volatility versus stability.

8.3 Essence

Essence [11], by the Semat consortium under the leadership of Ivar Jacobson, is
an effort to develop a systematic understanding of software engineering concepts
and best practices. Requirements appear as one of seven “alphas” (key elements)
of Essence, along with Software System, Team, Work, Way of Working, Oppor-
tunity (“The set of circumstances that makes it appropriate to develop or change
a software system”) and Stakeholders. Essence defines the role of requirements
as “what the software system must do to address the opportunity and satisfy the
stakeholders”. This definition is indefensible since it covers only one of the three
relevant aspects, the system (Sect. 3.4), missing the project and the environment.
(It fails to cover such typical requirement examples “version 1 shall be opera-
tional no later than September 2023” and “the social security number uniquely
identifies a person”, respectively project and environment properties.)

Like many software engineering discussions, Essence does not devote much
effort to defining basic concepts and instead veers quickly into prescriptive mode.
In fact, immediately after the preceding definition comes the prescriptive obser-
vation that “It is important to discover what is needed from the software system,
share this understanding among the stakeholders and the team members, and use
it to drive the development and testing of the new system.” The main contribu-
tion of the Essence discussion of requirements is indeed prescriptive: defining
a sequence of states through which requirements progressively become more
mature, including successively:

– Four states relative to the requirements just by themselves: Conceived (need
for a new system agreed), Bounded (purpose is clear), Coherent (consistent
description of system essentials), Acceptable (requirements are satisfactory
for stakeholders).

– Two states that also involve the implementation: Addressed (enough to satisfy
the need for a new system); Fulfilled (fully satisfies stakeholders).

Could Essence contribute to the present effort at taxonomy? Unfortunately
(and surprisingly for such a recent effort) Essence suffers from the same dated

36 B. Meyer et al.

view of requirements as SWEBOK, not integrating the progress of its under-
standing over the last two decades. The basic definition, as noted above, cov-
ers only the system part. Interestingly, the notion of environment does appear,
but only twice and without explanation, in the description of the Bounded
state (“constraints are identified and considered” and “assumptions are clearly
stated”). There is no mention of project aspects, other than a condition in the
Conceived state that “the stakeholders that will fund the initial work on the new
system are identified”. The early section on “Justification: Why requirements?”
starts: “the requirements capture what the stakeholders want from the system”;
this view is näıve since the requirements for a practical system requirements can-
not just consider what the stakeholders want but also what is possible. In fact,
out of the nine basic categories of requirements from Sect. 4.1 (ignoring meta-
requirements), an SRS capturing only “what the stakeholders want” would only
cover one, goals, and possibly part of another, behaviors.

Essence does introduce a concept useful to the discussion of requirements:
one of the alphas, “opportunity” defined (as noted) as “the set of circumstances
that makes it appropriate to develop or change a software system”. In relation
to the present work’s terminology, an opportunity is the basic reason behind
a goal. For example, if one of the goals of a project (back in the late 1990s)
was “make our billing system ready for the transition to the Euro”, that goal
only made sense because of the opportunity, in the Essence meaning, that some
European countries are replacing their separate currencies by a common one.
For the discussion of requirements, this notion is one level too far from software
development: a software system does not directly “address the opportunity”, as
the Essence definition of requirements (cited above) says: it addresses a goal.
Between the switch to the euro, an opportunity in Essence terms, and the soft-
ware update, a system effort, stands a goal: adapt the software to be ready
for the switch. The goal addresses the opportunity; the requirements address
the goal. Still, by highlighting the concept of opportunity Essence reminds us
that in the broader context of software engineering behind every goal stands an
opportunity.

The six stages in the Essence progression of requirements are also an inter-
esting contribution, but they belong to the prescriptive realm beyond the scope
of the present work.

The other way around in the relationship, we suggest that future versions
of Essence could take advantage of the present work. Essence is a commendable
effort to establish software engineering on a more solid basis, but cannot reach
this goal without precise definitions (which, as we saw, industry standards do
not provide) of the core concepts. In the case of requirements it needs to be
brought in line with the modern understanding of these concepts.

9 Assessment and Future Work

The expected contributions of this work include providing a basis for:

Towards an Anatomy of Software Requirements 37

1. Clarifying requirements concepts, through precise, non-bureaucratic, non-
pompous but effectively usable definitions.

2. Requirements methodology (“prescriptive” discussions of requirements).
3. The critical analysis of requirements documents, as part of a quality assurance

and improvement process.
4. Automatic processing of natural-language requirements documents.
5. Formal approaches to requirements (as discussed in a survey [6]).

On point 2, we may note that much of the existing literature on requirements
is prescriptive: textbooks tell students what distinguishes good requirements
from bad, and research articles propose new requirements methods meant to
improve on existing practices. This focus is understandable, particularly since
it is a widely shared assessment that the quality of requirements as actually
written in industry is overall not very good. The present work is at a different,
more basic level: providing fundamental definitions and taxonomies to enable
better understanding and discussions of requirements. As one of its applications,
it can help inform prescriptive discussions, and make them more effective, by
defining the framework precisely. We saw some examples of possible prescriptive
consequences of the descriptive approach of this work:

– The distinction between homogeneous and heterogeneous composite require-
ments (Sect. 3.2) leads to the observation that the second kind is to
be avoided. If a requirement is composite, it should bind together sub-
requirements of a similar nature and not, for example, a component and
a behavior, or a behavior (applying to the system) and a constraint (charac-
terizing the environment).

– The notion of component is closely connected to the advice (present in all
good requirements methods, going back to the venerable IEEE standard on
requirements [2]) to list and define all relevant concepts in a glossary. All
important components should appear in the glossary.

– The notion of lack directs requirements engineers and quality assurance teams
to look for requirement elements that have been overlooked. An example of
lack is a component that does not appear in the glossary.

– The notion of contradiction again provides guidelines for quality assurance
on requirements. Practical requirements document often contain a surprising
number of contradictions, arising in particular from long periods of require-
ments development and the intervention of many different people in the pro-
cess.

– The notion of repetition (REPEATS relation) is also important, in particu-
lar when distinguishing between two of the relation’s variants: EXPLAINS
is legitimate (provide different views of the same property, in different nota-
tions), although it is important to ensure consistency as in the “multire-
quirements” approach [16]; DUPLICATES, on the other hand, is in our view
always bad. (One could state that repeating the same information in different
ways but in the same notation can be harmless, but it is not: the duplication
contributes to requirements document bloat; it wastes the reader’s time; it
can confuse the reader who does not know which of different explanations of

38 B. Meyer et al.

the same property to believe; and it fares poorly in the context of software
evolution since it is easy to update one variant and forget the others.)

– The important recurring debate between traditional (“waterfall”) and agile
approaches to requirements can benefit from the precise analyses of the
present work.

On points 3 and 4 (analysis of SRS), the precision that we have tried to apply
to the definitions and taxonomies should help efforts to perform automatic NLP
(Natural-Language-Processing) analysis of requirements document. There has
been considerable research interest in this topic. NLP and more generally AI
techniques have made astounding advances, but they are better at inferring a
good-enough approximation of a considerable amount of information than at
inferring precise information. An example (hijacked from a discussion of agile
methods in [7]) is, in a requirements specification for a seminar scheduling sys-
tem, the property that “the hotel is booked”: it could mean that we have just
succeeded in booking the hotel, or that it was already booked by someone else
and hence that we have to look for another. While humans can handle this kind
of subtlety, it seems beyond the reach of algorithms. But automatic analysis
does not raise that level of difficulty if it focuses on structure rather than deep
semantics. Its goal then is to organize the requirements, decode (“parse”) the
structure of the project, system and environment, and identify relations. Such an
analysis could yield a first level of formalization of informal requirements, useful
by itself (and also as a starting point for finer semantic analysis, automatic or
partly manual). Building the corresponding tools, by relying on the concepts
developed in this article, seems a promising avenue of research with achievable
goals.

Such NLP processing based on the taxonomies of this article is part of our
current work. Other efforts in progress include:

– Exploring properties of requirements in relation to other software artifacts,
such as code, whereas the present discussion mostly considers requirements
by themselves.

– Validating the approach on many further examples, academic and industrial.
– Assessing its teachability, by using it in courses on software engineering and

requirements.
– Using it as a basis for a formal specification of requirements concepts. There

have been various attempts to describe software engineering concepts in for-
mal frameworks. (An early example was [15] which provides a mathematical
model for binary relations between program elements such a modules, express-
ing formal properties of these relations.) The present discussion provides a
solid basis for discussing requirements concepts, but it is still expressed in nat-
ural language rather than mathematics. We believe it provides an excellent
starting point for mathematical modeling of the concepts under discussion
and hope to develop the corresponding formal specifications, with a view to
uncovering laws of software engineering that admit rigorous mathematical
statements.

Towards an Anatomy of Software Requirements 39

Even without these further developments, we hope to have provided a clearly
defined framework that can serve as a reference for future work on requirements,
and help improve the state of the art in this critical area of software engineering.

Acknowledgements. We are grateful to Dr. Bettina Bair from Ohio State University
for writing the original (2006) version of the course project document [3] and providing
us with a more recent version.

Attendees of talks given on this work by some of the authors provided particularly
relevant feedback: at Politecnico di Milano (Meyer, March 2019), Elisabetta Di Nitto,
Carlo Ghezzi, Dino Mandrioli and Maurizio Patriarca; at the University of Toulouse
(Meyer, March 2019), Mamoun Filali Amine, whose comments led to a revision of the
classification of constraints; at Innopolis University (Meyer, March 2019); at the GDR
meeting, Génie de la Programmation et du Logiciel, also in Toulouse (Bruel, June
2019).

We are further indebted to Joëlle Guion for important comments on the concerns
of practicing requirements engineers.

References

1. IEEE 24765-2010. ISO/IEC/IEEE International Standard - Systems and software
engineering - Vocabulary (2010). https://standards.ieee.org/standard/24765-2010.
html

2. IEEE 830-1998. IEEE Recommended Practice for Software Requirements Specifi-
cations (1998). https://standards.ieee.org/standard/830-1998.html

3. Bair, B.: SBE Sales System (2006). Example requirements document for a course
at Ohio State University. http://bit.ly/2OsNdmN

4. Bandakkanavar, R.: Software Requirements Specification document with example
(2017). Technical paper. http://bit.ly/2XTSjOs

5. Bourque, P., Fairley, R.E., et al.: Guide to the Software Engineering Body of Knowl-
edge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press (2014)

6. Bruel, J.-M., Ebersold, S., Galinier, F., Naumchev, A., Mazzara, M., Meyer, B.:
Formality in Software Requirements (2019, to appear)

7. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson
Education, London (2010)

8. Galinier, F., Ebersold, S., Bruel, J.-M., Meyer, B., Naumchev, A.: Detailed analy-
sis and classification of a requirements document, September 2010. http://bit.ly/
2F8NY2I

9. Galinier, F., Ebersold, S., Bruel, J.-M., Meyer, B., Naumchev, A.: Online quiz on
taxonomy of requirements, September 2010. http://bit.ly/2Ww1vYk

10. Galinier, F., Ebersold, S., Bruel, J.-M., Meyer, B., Naumchev, A.: Online quiz on
taxonomy of requirements relations, September 2010. http://bit.ly/2Ww7fBl

11. Object Management Group. Essence - Kernel and Language for Software Engi-
neering Methods, October 2018. http://semat.org/essence-1.2

12. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
1995 17th International Conference on Software Engineering, p. 15. IEEE (1995)

13. Laplante, P.A.: Requirements Engineering for Software and Systems, 3rd edn.
Auerbach Publications (2017)

14. Meyer, B.: On formalism in specifications. IEEE Softw. 3(1), 6–25 (1985)

https://standards.ieee.org/standard/24765-2010.html
https://standards.ieee.org/standard/24765-2010.html
https://standards.ieee.org/standard/830-1998.html
http://bit.ly/2OsNdmN
http://bit.ly/2XTSjOs
http://bit.ly/2F8NY2I
http://bit.ly/2F8NY2I
http://bit.ly/2Ww1vYk
http://bit.ly/2Ww7fBl
http://semat.org/essence-1.2

40 B. Meyer et al.

15. Meyer, B.: The software knowledge base. In: Proceedings of the 8th International
Conference on Software Engineering, pp. 158–165. IEEE Computer Society Press,
August 1985

16. Meyer, B.: Multirequirements. Modelling and Quality in Requirements Engineering
(Martin Glinz Festscrhift) (2013)

17. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software, vol. 10. Wiley, Chichester (2009)

18. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)

19. Wiegers, K., Beatty, J.: Software Requirements, 3rd edn. Microsoft Press (2014)

	Towards an Anatomy of Software Requirements
	1 Introduction
	2 Scope
	3 Underlying Concepts
	3.1 General Concepts
	3.2 Properties and Their Statements
	3.3 Relevant Properties
	3.4 Requirement
	3.5 Characterizing Requirements

	4 Classification of Requirements
	4.1 Requirements Classification: Basic Categories
	4.2 Some Derived Categories

	5 Taxonomy of Inter-requirements Relations
	6 Dissecting an Example
	7 Analyzing Available Requirements Methodologies
	7.1 Wiegers-Beatty
	7.2 Van Lamsweerde

	8 Normative Work
	8.1 IEEE Definition
	8.2 SWEBOK
	8.3 Essence

	9 Assessment and Future Work
	References

