
From programming
to software engineering:

Notes of an
accidental teacher

Bertrand Meyer
ETH Zurich & Eiffel Software

Chair of
Software Engineering

http://se.ethz.ch/�
http://se.ethz.ch/�
http://www.ethz.ch/�
http://eiffel.com/�

2

About these slides

This is the slide set for my Education Keynote at ICSE
(International Conference on Software Engineering), Cape
Town, South Africa, 5 May 2010.

Usual caveats apply: this is only supporting material, not all
of it understandable independently of the talk. Many of
the original slides (in particular the programming-related
examples) include animation, not visible in this version.

URLs are clickable and have associated screen tips.

3

“Accidental”*

*Post-talk note: slide removed

4

Thanks to…

Michela Pedroni, Manuel Oriol, Martin Nordio, Peter Kolb,
Till Bay, Roman Mitin, Karine Arnout and many others

5

Content

1. Definitions: programming and software engineering

2. Lessons from experience: teaching programming

3. Lessons from experience: teaching software engineering

4. General lessons

6

Teaching programming: concepts or skills?

7

Quiz

Your boss gives you the source code of a C compiler and
asks you to adapt it so that it will also find out if the
program being compiled will not run forever (i.e. it will
terminate its execution).

1.  Yes, I can, it’s straightforward

2.  It’s hard, but doable

3.  It is not feasible for C, but is feasible for Java

4.  It cannot be done for any realistic programming
language

8

Teaching programming: concepts or skills?

Skills supporting
concepts

9

Teaching programming: some critical concepts

Structure

Typing

Specification vs implementation,
information hiding, abstraction

Algorithmic reasoning

Change

Reuse

Complexity

Scaling up

Static vs dynamic

Classification

Notation

Invariant

Recursive reasoning

Syntax vs validity vs semantics

Function vs data

Complexity & impossibility

10

Software engineering definitions

SWEBOK, Wikipedia:
Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software, and the study of
these approaches; that is, the application of engineering to
software.

The application of engineering to software.

Parnas (cited in Ghezzi, Jazayeri, Mandrioli): “The multi-
person construction of multiversion software”

*Post-talk note: the discussion explained why
this definition is unsatisfactory.

http://en.wikipedia.org/wiki/Software�
http://en.wikipedia.org/wiki/Engineering�
http://www.infosys.tuwien.ac.at/se-book/�

11

Teaching software engineering

“DIAMON”:
 Description: specify (requirements, systems,

designs,implementations...) and document
 Implementation: build the products (includes both

programming & design)
 Assessment: verify, validate, analyze, test, measure

(both products and processes)
 Management: organize the work, communicate,

collaborate
 Operation: deploy systems and oversee their proper

functioning
 Notation: devise and apply appropriate formalisms

12

The natural path

Implementation

Management
Operation

Description
Assessment

Notation

13

1. Definitions: programming and software engineering

2. Lessons from experience: teaching programming

3. Lessons from experience: teaching software
engineering

4. General lessons

14

Introductory programming teaching

Teaching first-year programming is a politically sensitive
area, as you must contend not only with your students but
also with an intimidating second audience — colleagues who
teach in subsequent semesters….
Academics who teach introductory programming are placed
under enormous pressure by colleagues.
As surely as farmers complain about the weather,
computing academics will complain about students’
programming abilities.

Raymond Lister: After the Gold Rush: Toward
Sustainable Scholarship in Computing,
10th Conf. on Australasian computing education, 2008

http://crpit.com/confpapers/CRPITV78Lister.pdf�
http://crpit.com/confpapers/CRPITV78Lister.pdf�

15

Some challenges in teaching programming

 Ups and downs of high-tech economy, image of CS

Offshoring and globalization raise the stakes

 Short-term pressures (e.g. families), IT industry fads

Widely diverse student motivations, skills, experience

16

The Facebook generation: 1st-year CS students
Computer experience Programming experience

≥10 yrs: 54%
5-9 yrs: 42%

2-4 yrs: 4%

For year-by-year figures & analysis: see Pedroni, Meyer,
Oriol, What do beginning CS majors know?, 2009,
se.ethz.ch/~meyer/publications/teaching/background.pdf

Averages, 2003-2008
(yearly variations small)

http://se.ethz.ch/~meyer/publications/teaching/background.pdf�

17

Ways to teach introductory programming

 1. “Programming in the small”

 2. Learn APIs

 3. Teach a programming language: Java, C++, C#

 4. Functional programming

 5. Completely formal, don’t touch a computer

Our approach: Outside-In (inverted curriculum)

18

Concepts or skills?

Skills supporting
concepts

19

Teaching programming: some critical concepts

Structure

Typing

Specification vs implementation,
information hiding, abstraction

Algorithmic reasoning

Change

Reuse

Complexity

Scaling up

Static vs dynamic

Classification

Notation

Recursive reasoning

Syntax vs validity vs semantics

Function vs data

Complexity & impossibility

Invariant

20

Invariants: loops as problem-solving strategy

A loop invariant is a property that:

 Is easy to establish initially
(even to cover a trivial part of the data)

 Is easy to extend to cover a bigger part

 If covering all data, gives the desired result!

21

from
???

invariant
???

across structure as i loop

Result := max (Result, i.item)
end

Computing the maximum of a list

22

Loop as approximation strategy

s1 s 2 s i s n

Result = a 1

Result = Max (s 1 .. s 2)

Result = Max (s 1 .. s i)

Result = Max (s 1 .. sn)

= Max (s 1 .. s 1) i := i + 1
Result := max (Result , s i)

The loop
invariant

Loop body:

23

Reversing a list

from
pivot := first_element
first_element := Void

until pivot = Void loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

24

Reversing a list

from
pivot := first_element
first_element := Void

until pivot = Void loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

25

Reversing a list

from
pivot := first_element
first_element := Void

until pivot = Void loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

26

Reversing a list

from
pivot := first_element
first_element := Void

until pivot = Void loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

27

ii pivotpivot

Reversing a list

from
pivot := first_element
first_element := Void

until pivot = Void loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)

end

first_element

right

1 2 3 4 5

28

Why does it work?

from
pivot := first_element
first_element := Void

until pivot = Void loop
i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

Invariant: from first_element
following right, initial items
in inverse order; from pivot,
rest of items in original order

29

Levenshtein distance

B

Operation

“Beethoven” to “Beatles”

Distance

E E

A

E T N

S

NH V EO

L

OB E T H V E

0 0 1

R

1 2

D

3

R

4

D

5

R

4

B E A T L E S

B

E

E

T

H

30 1 2 5 6 74

0

1

2

3

5

4

30 1 2 5 6 74

1

2

3

5

4

0 2 3 4 5 6

1

1

1

0 1 2 3 4 5

2 1 2 3 3 4

3 2 2 1 2 3 4

4 3 3 2 2 3 44

D

31

Levenshtein algorithm

across r : 1 |..| rows as i loop
across c : 1 |..| columns as j invariant

loop
if source [i] = target [j] then

D [i, j] := D [i -1, j -1]
else

D [i, j] := 1 +
min (D [i -1, j], D [i , j - 1], D [i - 1, j - 1])

end
end

end
Result := D [rows, columns]

???
-- For all p : 1 .. i, q : 1 .. j –1, we can turn source [1 .. p]
-- into target [1 .. q] in D [p, q] operations

B E A T L E S

B

E

E

T

H

30 1 2 5 6 74

0

1

2

3

5

4

30 1 2 5 6 74

1

2

3

4

0 2 3 4 5 6

1

1

1

0 1 2 3 4 5

2 1 2 3 3 4

3 2 2 1 2I

I
Insert

D

D
Delete

R

Replace
R

Invariant: each D [i, j]
is distance from
source [1..i] to target [1..j]

33

Concepts or skills?

Skills supporting
concepts

34

Outside-in (Inverted Curriculum): intro course

Fully object-oriented from the start, using Eiffel
Design by Contract principles from the start

Component based: students use existing software
(TRAFFIC library):
 They start out as consumers
 They end up as producers!

“Progressive opening of the black boxes”

TRAFFIC is graphical, multimedia and extendible

Michela Pedroni &
numerous students

≈ 150,000 lines of Eiffel

35

(Approach 3: teaching a specific language)

First Java program:

You’ll understand
when you grow up!

Do as I say,
not as I do

class First {

public static void main(String args[])

{ System.out.println("Hello World!"); } }

36

Our first “program”

class PREVIEW inherit
TOURISM

feature
explore

-- Prepare & animate route
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

Text to input

37

38

Supporting textbook

touch.ethz.ch

Springer, 2009

http://touch.ethz.ch/�

39

Principles of the ETH course

 Reuse software : inspiration, imitation,
abstraction

 See lots of software
 Learn to reuse through interfaces and

contracts
 Interesting examples from day one
 Combination of principles and practices

Traditional topics too: algorithms, control structures,
basic data structures, recursion, syntax & BNF, …

Advanced topics: closures & lambda-calculus, some design
patterns, intro to software engineering…

touch.ethz.ch

http://touch.ethz.ch/�

40

1. Definitions: programming and software engineering

2. Lessons from experience: teaching programming

3. Lessons from experience: teaching software engineering

4. General lessons

41

Teaching software engineering

Basic courses:
 Software engineering (3rd year)
 Software architecture (2nd year)

Advanced courses:
 Distributed & outsourced software engineering (DOSE)
 Software verification
 (etc.)

42

Some principles for SE/SA courses

Basic goal: cover what a good programming
student does not know about SE

Do not attempt a catalog
 Do teach key industry practices (e.g. UML)
 Emphasize non-”I” & non-”N”parts
 SE is not SA
 A university is not a company
 Emphasize falsifiable knowledge
 Include a project (see next)

 Description
 Implementation
 Assessment
 Management
 Operation
 Notation

43

Principles for SE course projects

 Include implementation
 Students implement what they specify
 Swap development & testing
 Manage collaboration
 Spell out project’s pedagogical goals
 Choose which industry characteristics to include & not

44

The object-oriental bazaar

45

One thing I would like to know…

Designing good non-multiple-choice exam questions for SE
Example from a medical textbook*:

Case History B
A woman (24 years of age; height: 1.70 m; weight: 60 kg) is in hospital due to a
tremendous thirst, and she drinks large amounts of water. Since she is
producing 10 or more litres of urine each day, the doctors suspect the diagnosis
to be diabetes insipidus. The vasopressin concentration in plasma (measured by
a RIA method) is 10 fmol per l. […] The extracellular volume (ECV) is 20% of
her body weight. […]
1. Calculate the secretion of vasopressin (in mg/hour) from the
neurohypophysis of a normal 60-kg person and of this patient […]
4. Estimate the relation between this concentration and that of a healthy
individual.
5. Does this ratio have implications for the interpretation of her special type
of diabetes insipidus?
6. Is it dangerous to lose 10 litres of urine per day?

*www.mfi.ku.dk/ppaulev/chapter26/Chapter%2026.htm

http://www.mfi.ku.dk/ppaulev/chapter26/Chapter 26.htm�

46

Distributed software engineering

Today’s software development is multipolar
University seldom teach this part!

“Software Engineering for Outsourced and Offshore
Development” since 2003, with Peter Kolb

Since 2007: Distributed & Outsourced Software
Engineering (DOSE)

The project too is distributed. Currently: ETH, Politecnico di
Milano, U. of Nijny Novgorod, Odessa Polytechnic, U.
Debrecen, Hanoi University of Technology

47

The DOSE project

Setup: each group is a collection of teams from different
university; usually 2 teams, sometimes 3

Division by functionality, not lifecycle
Results:

 Hard for students
 Initial reactions often negative
 In the end it works out
 The main lesson: interfaces & abstraction

Open to more institutions (mid-Sept to mid-Dec 2010):
http://se.ethz.ch/dose

http://se.ethz.ch/dose�

48

1. Definitions: programming and software engineering

2. Lessons from experience: teaching programming

3. Lessons from experience: teaching software engineering

4. Lessons: general

49

Hindering SE teaching & research

(More on these issues on my blog, bertrandmeyer.com)

1. No systematic postmortem on software disasters
such as:

Ariane 5
(Lions/Kahn, see Jézéquel & Meyer)

Tokyo Stock Exchange
(Tetsuo Tamai, Social Impact of
Information System Failures,
IEEE Computer, June 09)

2. Difficulty of funding programmer positions

3. Need better empirical software engineering

http://bertrandmeyer.com/�
http://archive.eiffel.com/doc/page.html/manuals/technology/contract/ariane/�
http://archive.eiffel.com/doc/page.html/manuals/technology/contract/ariane/�
http://archive.eiffel.com/doc/page.html/manuals/technology/contract/ariane/�
http://www.computer.org/portal/web/csdl/doi?doc=doi/10.1109/MC.2009.199�
http://www.computer.org/portal/web/csdl/doi?doc=doi/10.1109/MC.2009.199�
http://www.computer.org/portal/web/csdl/doi?doc=doi/10.1109/MC.2009.199�

50

General lessons learned

1. Whatever we teach should be falsifiable
2. Let us not lower our intellectual guards
3. Tools and languages matter
4. Teach skills supporting concepts
5. Technology is key
6. Programming is at the center of software engineering
7. We are still at the beginning, but should be proud

se.ethz.ch (chair)

touch.ethz.ch (intro textbook)

se.ethz.ch/dose (distributed course)

bertrandmeyer.com (blog)

eiffel.com (languages & tools)
Chair of
Software Engineering

http://se.ethz.ch/�
http://touch.ethz.ch/�
http://se.ethz.ch/dose�
http://bertrandmeyer.com/�
http://eiffel.com/�
http://se.ethz.ch/�
http://se.ethz.ch/�
http://www.ethz.ch/�
http://eiffel.com/�

	Slide Number 1
	About these slides
	“Accidental”*
	Thanks to…
	Content
	Teaching programming: concepts or skills?
	Quiz
	Teaching programming: concepts or skills?
	Teaching programming: some critical concepts
	Software engineering definitions
	Teaching software engineering
	The natural path
	Slide Number 13
	Introductory programming teaching
	Some challenges in teaching programming
	The Facebook generation: 1st-year CS students
	Ways to teach introductory programming
	Concepts or skills?
	Teaching programming: some critical concepts
	Invariants: loops as problem-solving strategy
	Computing the maximum of a list
	Loop as approximation strategy
	Reversing a list
	Reversing a list
	Reversing a list
	Reversing a list
	Reversing a list
	Why does it work?
	Levenshtein distance
	Slide Number 30
	Levenshtein algorithm
	Slide Number 32
	Concepts or skills?
	Outside-in (Inverted Curriculum): intro course
	(Approach 3: teaching a specific language)
	Our first “program”
	Slide Number 37
	Supporting textbook
	Principles of the ETH course
	Slide Number 40
	Teaching software engineering
	Some principles for SE/SA courses
	Principles for SE course projects
	The object-oriental bazaar
	One thing I would like to know…
	Distributed software engineering
	The DOSE project
	Slide Number 48
	Hindering SE teaching & research
	General lessons learned

