
Evotec: Evolving the Best Testing Strategy for Contract-Equipped Programs

Lucas Serpa Silva, Yi Wei, Bertrand Meyer
Chair of Software Engineering

ETH Zurich, Switzerland
Email:lssilva@gmail.com,

{yi.wei,bertrand.meyer}@inf.ethz.ch

Manuel Oriol
Dept. of Computer Science

University of York, York, UK
Email: manuel@cs.york.ac.uk

Abstract—Automated random testing is effective at detecting
faults but it is certainly not an optimal testing strategy for every
given program. For example, an automated random testing
tool ignores that some routines have stronger preconditions,
they use certain literal values, or they are more error-prone.
Taking into account such characteristics may increase testing
effectiveness.

In this article, we present Evotec, an enhancement of random
testing which relies on genetic algorithms to evolve a best
testing strategy for contract-equipped programs. The resulting
strategy is optimized for detecting more faults, satisfying more
routine preconditions and establishing more object states on a
given set of classes to test.

Our experiment tested 92 classes over 1710 hours. It shows
that Evotec detected 29% more faults than random+ and 18%
more faults than the precondition-satisfaction strategy.

Keywords-Automated Software Testing, Genetic Algorithm,
Static-Analysis

I. INTRODUCTION

Random testing [1] is widely used because it is effective
in detecting faults [2], [3] as well as easy to implement. One
issue with a random strategy, however, is that this simplicity
comes at the cost of only using straightforward strategies.
In particular, it does not leverage on information from past
executions.

Most commonly, a random strategy tests all routines with
the same frequency and use primitive values (integers, reals)
with a fixed probability. But in reality, routines may have
specific characteristics which need special treatment. For
example, some routines use certain literal values, contain
more errors, or have preconditions which are hard to satisfy.
An optimized testing strategy should take into account such
characteristics and test these routines more thoroughly to
maximize the effectiveness of testing. The difficulty is that
static analysis alone is not enough to provide an optimized
version of the testing session as the number of literals, the
complexity of the contracts, or even the number of errors
in the code that are loosely associated to the actual failure
rate obtained with a specific strategy. We thus need smarter
strategies for random testing.

This paper presents a fully automated random-based test-
ing strategy ev-strategy which adapts and optimizes itself
for the classes under test in order to maximize the number

of detected faults, the number of satisfied preconditions
and the number of established object states. The ev-strategy
uses a genetic algorithm [4] to evolve a set of randomly
generated test suites into a best testing strategy for a given
set of classes, and then uses that best strategy to test the
classes. Genetic algorithms are commonly used [5]–[7] in
testing tools, but mostly with the focus on maximizing code
coverage. None of them maximizes at the same time the
number of faults, contract-satisfying ability and object states.

We implemented the ev-strategy in a tool called Evotec1

which builds on top of AutoTest [8], an automated testing
framework for Eiffel. In a large scale experiment involving
92 classes and 1710 hours of testing time, we compared
the ev-strategy with two other existing testing strategies
available in AutoTest:

• The original random+ [9] testing strategy
(the rp-strategy), with no optimization at all.

• The precondition-satisfaction strategy [10]
(the ps-strategy) which aims at satisfying the most
preconditions of the routines under test.

The results show that the ev-strategy detected 29% more
faults than the rp-strategy and 18% more faults than the
ps-strategy.

Section II provides background information on contract-
based testing and genetic algorithms; Section III describes
the ev-strategy in detail; Section IV presents the experiments
evaluating the effectiveness of the ev-strategy; Section VI
lists relevant research; and we conclude in Section VII.

II. BACKGROUND

This section presents background information for
contract-based random testing and genetic algorithm.

A. Contract-Based Random Testing

A test consists of two parts: test inputs and test ora-
cles. Test inputs drive the software under test into certain
execution path, and test oracles decide if the execution
or the results from the execution are valid. Various test
input generation methods exists. To a large extent, building

1Source code of the tool and experiment details are available at
http://evotec.origo.ethz.ch/

automatically test oracles remains an open issue in the
testing community. Most of the testing tools either rely on
manual inspection of the testing results or use code coverage
as their test oracle.

Design by Contract [11] is a software methodology in
which every routine is associated with contracts in forms of
pre and postcondition assertions. A precondition expresses
the constraints under which a routine will function properly.
A postcondition expresses properties of the state resulting
from a routine’s execution. Design by Contract is natively
supported in the Eiffel programming language [12]. In prac-
tice, programmers write (partial) contracts systematically
[13]. As an example, Listing 1 demonstrates the contracts
for routine put from the class ARRAY.

Listing 1. Pre and postcondition of routine put from class ARRAY

put (v : like item ; i : INTEGER)
−− Replace i−th entry, by v.

require i ≥ lower and i ≤ upper
ensure item (i) = v

The precondition (require clause) specifies that i must
be within the index range [lower, upper] of the array.
The postcondition (ensure clause) specifies that after the
routine’s execution, v must be put at the i-th entry.

Contracts greatly facilitate testing. Preconditions serve as
input filters and postconditions serve as test oracles. This
enables random testing as a fully automated strategy, as
implemented in AutoTest: objects of both primitive and ref-
erence types are generated randomly. Only inputs satisfying
the precondition of the routine under test are passed to
execution, and if there is a postcondition violation during
the routine’s execution, a fault1 is detected.

AutoTest uses the following original rp-strategy to con-
struct objects needed for routines under test:

• To select an object of primitive type, AutoTest either
generates one randomly or picks one from a predefined
set of potentially interesting values, such as 0, ±1, ±2,
±10, ±100.

• To select an object of reference type, AutoTest either
creates a new one by calling a constructor from the
underlying class or picks an existing object of con-
forming type. All created objects or objects returned
from a routine call are kept for further selection because
objects with diversified states are valuable for detecting
faults.

Experiments showed that this rp-strategy, even though seems
to be naive, is effective at detecting faults [2].

One problem with the above rp-strategy is that for routines
with strong preconditions, random selection may fail to
select even a single valid input, leaving those routines

1A failed test execution reveals an exception. We map exceptions
happening at the same location and with the same type to the same fault

untested at all. The idea behind the precondition-satisfaction
strategy ps-strategy is to increase the likelihood of selecting
a precondition-satisfying object from the object pool. It is
an extension to the rp-strategy strategy. Besides the object
pool, the ps-strategy keeps track which objects satisfy which
precondition assertions. During object selection, the ps-
strategy choose those precondition-satisfaction objects with
higher probability. Experiments [10] showed that the ps-
strategy was able to test more routines and detected slightly
more faults than the rp-strategy.

Both the rp-strategy and the ps-strategy treats classes
routines and values under test equally and do not take into
account any static or runtime profiling of the program under
test.

B. Genetic Algorithms

Genetic algorithms are robust [4] search algorithms based
on natural selection. The algorithm starts by initializing or
randomly generating a set of chromosomes and at the end
of each generation, each chromosome is evaluated based on
a fitness function. The next generation is created using the
best chromosomes of the previous and generating new ones
using two mechanisms: breeding and mutation. Breeding
essentially consists in mixing two or more chromosomes to
producing a third one, while mutation consists in replacing
random parts of a chromosome with random values. This
process repeats for a predefined number of generations or
until the objective value of the population has converged.

Genetic algorithms are widely used in testing, where
chromosomes encode testing strategies, such as routines to
test and arguments for those routines. Most of the genetic
algorithm based testing tools optimize code coverage [5]–
[7]. In this work, we use a generic algorithm to optimize the
fault detecting ability, contract-satisfaction ability and object
state diversification of a testing strategy. Our chromosomes
are the calls and arguments that we use during testing.

III. EVOLUTIONARY TESTING

This section first gives an overview (Section III-A) of
how the ev-strategy works and then it provides details of the
technique: how to encode (Section III-B) and rank (Section
III-C) a testing strategy, how to evolve the best strategy from
random ones (Section III-D) and finally how to apply the
evolved best strategy to classes under test (Section III-E).

A. Overview

The ev-strategy is fully automated. Figure 1 provides an
overview of how it proceeds when given a set of classes
under test:

1) Extracting literal values such as integers from those
classes. These literal values are potentially interesting
as test inputs.

2) Running AutoTest, the random testing framework for
Eiffel to collect an initial set of test suites.

Classes

Literal

values

Random

test suites

Best testing

strategy

New test suite &

detected faults

AutoTest

Statically analyze

evolve execute

Figure 1. Overview of how the ev-strategy works.

3) The ev-strategy first encodes the test suites and lit-
eral values as testing strategy chromosomes, then it
uses a genetic algorithm to mutate and evolve those
strategies according to a fitness function. The fitness
function favours strategies which detect more faults,
satisfy more routine preconditions and induce more
diversified object states.

4) After strategy evolution, the ev-strategy selects the
best strategy and executes it on classes under test to
generate the final test suite.

B. Encoding Testing Strategies

Components of Testing Strategies A testing strategy
consists of three sets of parameters:

• Primitive values: specifies a set of values for each of
the five primitive types (boolean, natural, integer, real
and character).

• Routine call sequence: a sequence of invocations to the
routines under test. Each invocation specifies the target
and argument objects for that routine.

• Object pool: A collection of objects of both primitive
and reference types, used to provide candidate objects
for routine invocations. The object pool has restrictions
on the maximal number of objects for each type.

For primitive types, the rp-strategy and the ps-strategy
use both randomly generated values as well as values from
a predefined set, such as 0, ±1, ±2, ±10, ±100. Although
previous experiment [2] showed that those predefined prim-
itive values contribute to detecting more faults, it is unlikely
that they are optimal for every group of classes.

For reference types, the rp-strategy and the ps-strategy
both try to create new objects via constructor methods
or reuse existing ones from the object pool. The rp-
strategy treats each object equally, and the ps-strategy selects
precondition-satisfying objects with a higher probability.
Compared to these two strategies, the ev-strategy takes
the fault-detecting ability, the precondition-satisfying ability
and the object state diversification into account, favouring
objects that reveal more faults, satisfy more preconditions
and diversify in more object states.

3 5 2 4 9 20 40 … …

Section 14 Section 15

Figure 2. Testing strategy encoding

Encoding a Testing Strategy A testing strategy is en-
coded as an array of floating numbers with 15 sections. Each
section holds values for a parameter in the testing strategy.
Table I lists these 15 parameters (Column PARAMETER),
their section length (Column #VALUES) and the range of
the values in each section (Column RANGE).

The first 13 sections store 20 values for each primitive
type. These values are used when instantiating objects.
Section 15 encodes the maximum number of objects for
each type in the object pool. Section 14 as illustrated in
Figure 2 encodes the routine calls.

The chromosome does not specify the specific routine or
object to be used but instead specifies indexes. Figure 2
provides a simplistic illustration of a chromosome. In this
scenario, to test a routine Evotec reads the value 3 from the
chromosome, and use it as an index to select a routine from
the table of possible routines to test.

Having selected the routine, Evotec then verifies how
many parameter this routine takes, in this case two param-
eters so it reads value 5 and 2 from the chromosome. It
checks the type of the first parameter, retrieves a table of
compatible objects and uses the object with index 5. This
process is repeated for each parameter.

Since Evotec knows which types are needed to execute
each routine, the chromosome just needs to specify which
object from the list of possible objects has to be used.

Because the number of routines and the number of avail-
able types is not known in advance, the values from the
chromosome may specify invalid indexes, thus a real index
is computed:

realIndex ≡ chromosomeIndex mod listSize (1)

Where the listSize is the size of the list of routines when
computing the indexes of routines to be called or the size of
the list of available objects of a given type when computing
the indexes of objects for a routine call.

With this approach, adding or removing a routine call
is very simple. Whenever a mutation makes the realIndex
equals zero, the routine call is removed and when the
realIndex is modified from zero to a different number, a
routine call is added. With this approach, different mutations
and crossover methods can be used without having to worry
about corrupting the chromosome.

Table I
CHROMOSOME ALLELE SPECIFICATION

SECTION PARAMETER #VALUES RANGE[FROM,TO]
1 BOOLEAN 20 -1,1
2 CHARACTER 32 20 0 , 600
3 CHARACTER 8 20 0 , 255
4 INTEGER 16 20 -32768, 32767
5 INTEGER 32 20 -2147483648,

2147483647
6 INTEGER 64 20 -9223372036854775808,

9223372036854775807
7 INTEGER 8 20 -128, 127
8 NATURAL 16 20 0, 65535
9 NATURAL 32 20 0, 4294967295
10 NATURAL 64 20 0, 1.84E+019
11 NATURAL 8 20 0, 255
12 REAL 32 20 -1.0e30, 1.0e30
13 REAL 64 20 -1.0e30, 1.0e30
14 ROUTINE CALL 5000 0, 500
15 OBJECT POOL 500 0, 100

C. Ranking Testing Strategies

To guide the evolution, the genetic algorithm requires a
fitness function which decides how good a testing strategy
is. The fitness function is defined as:

θ = (10000 ∗ α) + (1000− (10 ∗ β) + λ) + ω (2)

This function consists of four components:
1) Unique number of faults: α is the number of unique

faults detected by a strategy.
2) Number of unique states: β is the number of unique

object states established by a strategy. For an object,
we abstract its state by a vector of its field values.

3) Number of untested routines: λ is the number of
routines without a valid test case during the execution
of a strategy.

4) Precondition score: ω is the measure of how close the
strategy was to successfully generate tests for untested
routines. These routines were not tested because their
preconditions are not satisfied. ω is the sum of the
number of precondition assertions that a strategy is
able to satisfy for the untested routines.

The number of unique faults detected is the most impor-
tant measurement of how good a testing strategy is, therefore
α has the highest factor (10000). When two strategies find

the same number of faults, the strategy that has tested
more routines and tested them in more diversified object
states is considered better. When two strategies have the
same score for α, β and λ, the strategy that was able
to satisfy more preconditions for the untested routines is
considered better. The precondition score is used because
a testing strategy may have difficulties to generate test data
for routines with strong preconditions. Thus the precondition
score favours strategies which satisfy more expressions in
those preconditions.

To calculate α, β, λ and ω for a testing strategy, the
ev-strategy executes the strategy for 1 minute and collects
the required data from the execution. A testing strategy is
considered as better if its θ value is larger.

D. Evolving the Best Strategy

The ev-strategy starts by initializing 16 individual testing
strategies as the first population. The ev-strategy uses a
random strategy combined with static-analysis to generate
this initial set of testing strategies. In our implementation,
a modified version of the rp-strategy is used. This modified
version first applies a simple static analysis over the classes
under test to extract literal primitive values, and then feeds
the extracted values to the random testing strategy. During
initialization, a probability of 0.8 is used to decide whether
to use a value from the extracted literal values, as opposed to
use a randomly generated value. The nature of the random
strategy ensures that the generated population consists of
individuals which are not too close to each other.

The ev-strategy uses the fitness function to evaluate and
rank these 16 testing strategies, and applies the stochastic
reminder [14] algorithm to select the best half (8 of them)
of the strategies based on their rankings to keep for the next
generation.

To introduce diversities in those kept strategies, the ev-
strategy applies the flip mutator algorithm on them: Except
for the best scoring strategy, the flip mutator algorithm
replaces the values of some genes in the chromosome by
random values.

To form a new generation of testing strategies, the ev-
strategy still needs to construct another 8 strategies. There
is 60% of chance that a new strategy will be generated
randomly and 40% of chance that a new strategy will be
produced from two strategies kept as parents (this 60/40 ratio
was decided using the result of preliminary experiments).
Generating a strategy randomly is straightforward: the ev-
strategy initializes a chromosome with all random values.
To produce a new strategy from two existing ones, the ev-
strategy uses the partial match crossover algorithm. The
partial match crossover algorithm combines two testing
strategies P1 and P2 to produce two new strategies C1 and
C2. It randomly selects a number of positions and swap the
genes between C1 and C2 at those positions.

This testing strategy evaluation, selection and mutation
process is repeated for each generation.

We use the GAlib [14] framework to implement the
genetic algorithm. GAlib accepts a set of chromosomes
(encoding testing strategies in our case), a fitness function
and some configuration parameters as inputs, and outputs a
chromosome considered as the best according to the fitness
function and time given for evolution. The configuration
parameters define the strength of mutation and the length
of the evolution. Table II summarizes the parameters.

The population size and number of generation were se-
lected based on the time allowed for evolution. Although
only one minute was used for testing, a portion of the time
was consumed processing the results of each execution run.

Table II
GENETIC ALGORITHM PARAMETERS

PARAMETER VALUE
Population size 16
Population replacement 8
Number of generations 4
Crossover probability 0.4
Mutation probability 0.4
Crossover algorithm Partial Matching
Selection algorithm Stochastic Remainder
Mutation algorithm Flip Mutator

E. Applying the Best Strategy

After the genetic algorithm reports a best testing strategy,
the ev-strategy applies it to perform the real testing on the
given classes. The application is straightforward: given a
time frame, the ev-strategy invokes routines with arguments
as specified in the best strategy in order. If all the indexes
in the section have all been used and there is still some time
left, it will loop and start reading the indexes from beginning.
Note that this repetition does not result in the same testing
effort because the states of the objects change during each
run and due the shifting of the indexes. After a loop the first
few indexes may be used as a routine call arguments instead
of a routine call, leading to a new sequence of routine calls.

IV. EXPERIMENTAL EVALUATION

This section presents our experimental evaluation for the
ev-strategy. The experiments applied the ev-strategy to 92
classes in a total of 1710 hours and the results are compared
with the outcome from both the ps-strategy and the rp-
strategy retrieved in the same experimental setting [10].

Classes under test. The classes under test are from
two Eiffel libraries EiffelBase [15] and Gobo [16]. Both
libraries have long development history and are widely used
in Eiffel community. These classes implement common data
structures such as lists, stacks, queues, tables, trees and a
lexer based on regular expressions. Left part of Table III
summaries categories of the chosen classes (CATEGORY),
the number of classes in each category (#C), the number

of routines (#R) and then number of pre and postcondition
assertions in those classes (#PRE and #POST).

Test runs. These 92 classes were arranged into 57 groups,
with strongly related classes put into the same group. For ex-
ample, DS ARRAYED LIST and DS ARRAYED LIST -
CURSOR were put into the same group because the former
represents an arrayed list and the latter represents an external
iterator of that list. According to our previous experience,
classes can be tested more thoroughly when their strongly
related classes are tested together.

Previous work [17] showed that random testing can find
different faults with different seeds to the pseudo random
number generator. The ev-strategy relies on random testing
to generate initial test suites, in order to achieve statistical
significant result, all 57 class groups were tested with the ev-
strategy in 30 runs, with each run initialized with a different
seed to the pseudo random number generator and lasts one
hour long, resulting in a total of 1710 testing hours.

In each test run, the ev-strategy uses 27 minutes to evolve
the best strategy, and use the left 33 minutes to perform
actual testing using the best strategy. Note that this time
arrangement is different from experiments for the rp-strategy
and the ps-strategy, in which all 60 minutes are used for
actual testing, because these two strategies do not need an
explicit preparation time.

Computation infrastructure. The experiments were con-
ducted in a grid of dedicated machines with an Intel Pentium
4 CPU at 3 GHz and 1 GB of RAM running Red Hat
Enterprise Linux 5.3.

A. Experimental Results

The experiments show that the ev-strategy detected more
faults than both the rp-strategy and the ps-strategy. The right
part of Table III lists the number of unique faults2 detected
by the ev-strategy (#Fev), by the ps-strategy (#Fps), and by
the rp-strategy (#Frp). In total the ev-strategy detected 18%
more faults than the ps-strategy and 29% more faults than
the rp-strategy. The following sections analyze the results
in detail.

B. Number of faults detected over time

Since the ev-strategy as well as the ps-strategy and the rp-
strategy are fully automated, the most important criterion to
compare them is to compare the number of detected faults.
Figure 3 plots the number of unique faults that each strategy
detected over time. In Figure 3, the x-axis is the testing time
in minutes, and the y-axis is the number of unique faults
detected.

Figure 3 shows that the ev-strategy outperforms the other
two strategies by a large portion, while the ps-strategy only
performs slightly better than the rp-strategy: in total, the
ev-strategy detected 641 faults, the ps-strategy detected 539

2During the testing period, a fault can be detected multiple times, we do
not count repeatedly detected faults.

Table III
METRICS FOR TESTED CLASSES AND EXPERIMENTAL RESULTS

CATEGORY #C LOC #R #PRE #POST VARIATIONS #Frp #Fps #Fev

Lexer 30 32,108 2,914 2,332 2,717 regular expression, NFA, DFA, lexer 100 145 100
List 24 15,482 2,237 1,707 2,025 array, single, double, bidirectional, sorted 169 169 266
Hashed 6 5,156 706 528 672 hash table 7 6 7
Queue 4 7,135 318 173 259 bounded, unbounded, priority 17 19 28
Set 7 15,471 791 655 713 binary tree based, array based, hashed, sorted 36 29 45
Stack 1 1,281 59 27 53 linked list based 4 4 4
String 1 4,815 222 161 236 array based 9 11 18
Tree 19 16,102 1,968 1,477 1,637 binary, n-nary, AVL, red black, search tree 153 156 173
Total 92 97,550 9,215 7,060 8,312 495 539 641

0 10 20 30 40 50 60
300

350

400

450

500

550

600

650

Testing time (minutes)

N
um

be
r o

f u
ni

qu
e

fa
ul

ts

ev−strategy
ps−strategy
or−strategy

33

Figure 3. Unique faults detected over time

faults and the rp-strategy detected 495 faults. In other words,
the ev-strategy detected 18% more faults than the ps-strategy
and 29% more faults than the rp-strategy.

Note that there is a plateau (starting from the 33th until
the 60th minutes) for the curve representing the ev-strategy
strategy. This plateau does not suggest that the ev-strategy
could not detect more faults after the first half an hour, it
is due to the fact that the actual testing time for the ev-
strategy is 33 minutes because the first 27 minutes are used
for evolving the best testing strategy for the classes under
test. We cut off the evolutionary testing after 33 minutes to
keep the comparison to other testing strategies fair (all the
strategies are strictly restricted to one hour).

Since throughout all the testing time, the number of faults
detected by the ev-strategy increases consistently, we think
that given more time, the ev-strategy can detect more faults,
hence outperforms the other strategies even more.

C. Kinds of faults detected by each strategy

Figure 3 shows that different strategies detected different
number of faults, but are they detecting different faults? In
the experiments, there are 736 unique faults detected in total,
440 of them are detected at least once by all three strategies.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Class groups

N
um

be
r

of
 f

au
lts

ev−strategy
ps−strategy
or−strategy

Figure 4. Faults detected by a single strategy

However, there are some faults which were only detected by
some strategy. Figure 4 shows the number of faults that are
only detected by a single strategy. In Figure 4, the x-axis
iterates over different class groups; and the y-axis represents
the relative number of faults detected by a strategy. There
are only 54 groups in Figure 4, instead of 57, because in
those missing 3 groups, all three strategies detected the same
faults.

Figure 4 shows that the ev-strategy detected more faults
that could not be detected by the other two strategies,
reflected by the fact that the area taken by the ev-strategy
bars is larger than the ones taken by the ps-strategy or the
rp-strategy bars. In total, the ev-strategy detected 169 faults
that are not detected by the other two strategies (for the
ps-strategy and the rp-strategy, the number is 95 and 12,
respectively).

Ideally, we would like the ev-strategy to be able to detect
all the faults that can be detected by other strategies, but
Figure 4 shows this is not the case: practically, this means
in order to detect as many faults as possible, all strategies
should be used.

Figure 4 reveals that certain strategies are more effective
at detecting faults for certain classes. Take the two highest

bars for instance, one is from the ps-strategy and the other
is from the ev-strategy. They reveal that 28 out of 56
faults exclusively found by the ps-strategy were found in
the LEX BUILDER class alone, and 48 of 169 exclusively
found faults by EV were found in the ARRAY class. This
shows that 50% of the improvement achieved by the ps-
strategy and 28% by the ev-strategy comes from a single
class.

We analyzed further the faults found exclusively by ps-
strategy and rp-strategy. With the exception of two faults
found by ps-strategy in respectively 46% and 86% of the
runs on given classes, none of the faults was found in more
than 2 of the 30 runs (6.6%) on classes in which they could
be found. This makes it very unlikely to discover them in a
single run of the tool. Comparatively, the faults found solely
by ev-strategy were found on average in 18% of the runs on
classes in which they could be detected. We believe that if
we were able to test longer during the discovery phase, we
would improve this number.

V. THREATS TO VALIDITY

The following threats may affect the generalization of
the experimental results to other programs: (1) even though
we tried to choose classes with different semantics and
complexity, they may not be representative of programs in
general, (2) due to time limit, the test runs in the experiments
may not be long enough, (3) the experiments may deliver
different results with different genetic algorithms or different
parameters.

VI. RELATED WORK

The full automation of unit testing has recently gained
momentum with the development of numerous completely
automated testing tools [8], [18]–[21]. Three main kinds of
tools currently exist based respectively on static analysis,
random techniques, and evolutionary strategies.

Java PathFinder [18] and Symstra [19] successfully ap-
ply symbolic execution techniques to optimize the branch-
coverage of test suites. Increasing the branch-coverage,
however, is not sufficient to increase the number of bugs
found in a program [22]. None of these approaches use
genetic algorithms.

Numerous tools such as DART [20], AutoTest [8], im-
plement random testing. Other tools such as DSD-Crasher
[21] use invariants derived with Daikon [23], whose quality
depends on the diversity of observed states during the
executions. None of these tools has integrated any aspects
of evolutionary strategies. In this paper we compare our
evolution strategy with two other random-based strategies
implemented in AutoTest and show that it outperforms them
both. It is likely that other testing tools would also benefit
from integrating some similar techniques to ours.

Genetic algorithm has also been used to automate unit
testing. Since the early 1990s, a number of studies have

been conducted on evolutionary testing, but the impact and
applicability of these studies to the software industry vary.
The type of the input data being generated is an important
attribute of an automated tester. There has been a number of
studies in evolutionary testing focused on how to generate
test cases for procedural programs [24]–[30], but none of
these approaches applied to object-oriented languages.

Some studies explored how to generate test cases for
object-oriented programs [5]–[7], [31]. These generally use
branch coverage as the optimization parameter. There is
however little evidence of a correlation between branch cov-
erage and the number of uncovered faults [22]. Past research
has shown that evolutionary testing is a good approach to
automate the generation of test cases for structured programs
[27], [32], [33] but to make this approach attractive today,
the system must be able to automatically generate test cases
for object-oriented programs and to use a good set of metrics
to measure the quality of the generated test cases. Our
approach uses the random generation of test cases of object-
oriented programs as a starting point and optimizes it further
by using genetic algorithms to increase the number of faults
found and established object states. It is unclear how other
techniques would fare in such a context.

VII. CONCLUSIONS

This paper presents a fully automated testing technique
which uses a genetic algorithm to optimize random testing
sessions for given programs. The resulting testing strategy is
optimized for detecting more faults, satisfying more routine
preconditions and establishing more object states.

Experiments applying this technique to 92 classes showed
an improvement of at least 18% on the number of detected
faults compared to original random testing. These results
suggest that adapting the testing strategy to the class under
test can considerably improve testing effectiveness.

We implemented the technique in the open-source Evotec
tool. Evotec is written in Eiffel and works on Eiffel classes.
The technique described in the paper is however applicable
to other object-oriented languages that support contracts,
such as JML for Java and Spec# for C#.

REFERENCES

[1] R. Hamlet, “Random testing,” in Encyclopedia of Software
Engineering. Wiley, 1994, pp. 970–978.

[2] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Experimental
assessment of random testing for object-oriented software,” in
ISSTA ’07: Proceedings of the 2007 international symposium
on Software testing and analysis. New York, NY, USA:
ACM, 2007, pp. 84–94.

[3] E. J. Weyuker and B. Jeng, “Analyzing partition testing
strategies,” IEEE Trans. Softw. Eng., vol. 17, no. 7, pp. 703–
711, 1991.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Professional, Jan-
uary 1989.

[5] P. Tonella, “Evolutionary testing of classes,” in ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international sym-
posium on Software testing and analysis. New York, NY,
USA: ACM, 2004, pp. 119–128.

[6] S. Wappler and F. Lammermann, “Using evolutionary algo-
rithms for the unit testing of object-oriented software,” in
GECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation. New York, NY, USA: ACM,
2005, pp. 1053–1060.

[7] S. Mairhofer, “Search-based software testing and complex
test data generation in a dynamic programming language,”
Master’s thesis, Blekinge Institute of Technology, 2008.

[8] B. Meyer, I. Ciupa, A. Leitner, and L. L. Liu, “Automatic
testing of object-oriented software,” in SOFSEM ’07: Pro-
ceedings of the 33rd conference on Current Trends in Theory
and Practice of Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 114–129.

[9] I. Ciupa, B. Meyer, M. Oriol, and A. Pretschner, “Finding
Faults: Manual Testing vs. Random+ Testing vs. User
Reports,” in 2008 19th International Symposium on Software
Reliability Engineering (ISSRE). Ieee, Nov. 2008, pp. 157–
166. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4700320

[10] Y. Wei, S. Gebhardt, B. Meyer, and M. Oriol, “Satisfying
test preconditions through guided object selection,” Software
Testing, Verification, and Validation, 2008 International Con-
ference on, vol. 0, pp. 303–312, 2010.

[11] B. Meyer, Object-Oriented Software Construction, 2nd ed.
Prentice Hall PTR, March 2000.

[12] ECMA, Eiffel: Analysis, Design and Programming Lan-
guage, 2nd ed., ECMA, http://www.ecma-international.org/
publications/standards/Ecma-367.htm, 2005.

[13] P. Chalin, “Are practitioners writing contracts?” in The
RODIN Book, ser. LNCS, vol. 4157, 2006, p. 100.

[14] M. Wall, GAlib: A C++ Library of Genetic Algorithm Com-
ponents., MIT, http://lancet.mit.edu/ga/, 1996.

[15] Eiffel Software, “Eiffelbase,” http://freeelks.svn.sourceforge.
net.

[16] Eric Bezault et al, “Gobo library and tools,” http://www.
gobosoft.com.

[17] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer,
“On the predictability of random tests for object-oriented
software,” in ICST ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 72–81.

[18] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input
generation with java pathfinder,” in ISSTA ’04: Proceedings
of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis. New York, NY, USA: ACM,
2004, pp. 97–107.

[19] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra:
A framework for generating object-oriented unit tests using
symbolic execution,” 2005.

[20] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed auto-
mated random testing,” in PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation. New York, NY, USA: ACM, 2005, pp.
213–223.

[21] C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crasher: A
hybrid analysis tool for bug finding,” ACM Trans. Softw. Eng.
Methodol., vol. 17, no. 2, pp. 1–37, 2008.

[22] Y. Wei, M. Oriol, and B. Meyer, “Is coverage a good measure
of testing effectiveness,” ETH Zurich, Tech. Rep. 674, 2010.

[23] M. D. Ernst, J. CockrelI, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” Software Engineering, International
Conference on, vol. 0, p. 213, 1999.

[24] J. Hunt, “Testing control software using a genetic algorithm,”
Engineering Applications of Artificial Intelligence, vol. 8,
no. 6, pp. 671–680, 1995.

[25] J. T. Alander, T. Mantere, and P. Turunen, “Genetic algorithm
based software testing,” 2007.

[26] B. F. Jones, H. H. Sthamer, and D. E. Eyres, “Automatic struc-
tural testing using genetic algorithms,” Software Engineering
Journal, vol. 11, no. 5, pp. 299–306, 1996.

[27] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating
software test data by evolution,” IEEE Trans. Softw. Eng.,
vol. 27, no. 12, pp. 1085–1110, 2001.

[28] E. Alba and J. Chicano, “Software testing with evolutionary
strategies,” Rapid Integration of Software Engineering Tech-
niques, pp. 50–65, 2006.

[29] P. McMinn and M. Holcombe, “Evolutionary testing of state-
based programs,” in GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation. New
York, NY, USA: ACM, 2005, pp. 1013–1020.

[30] N. Tracey, J. Clark, and K. Mander, “Automated program flaw
finding using simulated annealing,” SIGSOFT Softw. Eng.
Notes, vol. 23, no. 2, pp. 73–81, 1998.

[31] J. Wegener, “Evolutionary unit testing of object-oriented
software using a hybrid evolutionary algorithm,” 2010.

[32] M. Harman and P. McMinn, “A theoretical & empirical
analysis of evolutionary testing and hill climbing for structural
test data generation,” in ISSTA ’07: Proceedings of the 2007
international symposium on Software testing and analysis.
New York, NY, USA: ACM, 2007, pp. 73–83.

[33] H. Sthamer, “The automatic generation of software test data
using genetic algorithms,” PhD Thesis, University of Glam-
organ, Pontyprid, Wales, Great Britain, 1996.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4700320
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4700320
http://freeelks.svn.sourceforge.net
http://freeelks.svn.sourceforge.net
http://www.gobosoft.com
http://www.gobosoft.com

	Introduction
	Background
	Contract-Based Random Testing
	Genetic Algorithms

	Evolutionary testing
	Overview
	Encoding Testing Strategies
	Ranking Testing Strategies
	Evolving the Best Strategy
	Applying the Best Strategy

	Experimental Evaluation
	Experimental Results
	Number of faults detected over time
	Kinds of faults detected by each strategy

	Threats to Validity
	Related Work
	Conclusions
	References

