
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Assignment 3: Of objects and features

ETH Zurich

Hand-out: 1 October 2010
Due: 11 October 2010

Calvin and Hobbes c© Bill Watterson

Goals

• Understand the difference between a class and an object.

• Learn to read query call chains.

• Write more feature calls.

• Learn to read user input from the console.

• Add new features to a class.

1 Classes vs. objects

To do

1.1 Try to describe the difference between a class and an object (1-2 sentences).

1.2 Find an analogy (not an example!) that illustrates the relationship between objects and
classes in real life.

To hand in

Hand in your answers.

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

2 Query call chains

As you already know, queries (unlike commands) always return an object. The type of this
object can be determined from the signature of the query [Touch Of Class, page 220].

For example, Route1 is defined in the class TOUCH PARIS OBJECTS as Route1:
TRAFFIC ROUTE, which means that it always returns an object of type TRAFFIC ROUTE.
This, in turn, means that you can call features defined in class TRAFFIC ROUTE on Route1,
as in Route1.first, which returns an object of type TRAFFIC LEG.

You can form even longer chains of query calls in the same way, as in:

Route1︸ ︷︷ ︸
TRAFFIC ROUTE

.first

︸ ︷︷ ︸
TRAFFIC LEG

.destination

︸ ︷︷ ︸
TRAFFIC STATION

.stop(Line8︸ ︷︷ ︸
TRAFFIC LINE

)

︸ ︷︷ ︸
TRAFFIC STOP

.line

︸ ︷︷ ︸
TRAFFIC LINE

.south end

︸ ︷︷ ︸
TRAFFIC STATION

It is also possible to use query call chains as arguments, e.g.

Station balard.location.distance (Station concorde.location.zero)

To do

For each query call chain below, determine the type of the object it returns (following the
example given above). You will need to read class declarations, so start EiffelStudio and open
the project located under traffic/example/02 objects. The first query in each chain is defined
in the class TOUCH PARIS OBJECTS.

1. Route2.first.line

2. Route1.first.next.origin.location

3. Line2.i th (Line2.count).stop (Route3.first.line).station

Hint

To navigate between classes and features in EiffelStudio, you can use the ‘pick-and-drop’ tech-
nique. Just ‘pick’ a class (or a feature) by holding down the [SHIFT] key and right-clicking
on the class (feature) name. The cursor will change shape to an oval (or a thick cross in case
you picked a feature). You can then ‘drop’ it in another tools pane within EiffelStudio by
right-clicking again. When this is not possible, a thin red cross appears on the cursor.

To hand in

For the queries 1-3 hand in the type of object they return.

3 Writing more feature calls

Todo

1. Download se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/03/assignment 3.zip and
extract it into traffic/example. You should now have a new directory traffic/example/
assignment 3 with “assignment 3.ecf” directly in it.

2

http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/03/assignment_3.zip

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

2. Open and compile this new project.

3. Open the class text of PLANNER which you will change in this task. Change the original
metro system of Paris (Figure 1(a)) in the following way (Figure 1(b)): lines 1, 3, 8 and
7a all only consist of one connection going from the original starting terminal (terminal 1)
to Concorde (Station Concorde). Line 2 is a cyclic line containing its original starting
terminal and the starting terminals of lines 3, 7a, 1, and 8.

Browse the class TRAFFIC LINE to find the features you need. One of them is
remove all segments, which removes all stations from a line except the starting terminal.

To hand in

Hand in the class PLANNER.

4 In and out

In this task you will read some input data from the user and then output the processed data
back to the user. You will also have to add new features to a class.

Todo

1. Download se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/03/business card.zip and
extract it into some directory.

Open “business card.ecf” in EiffelStudio. This project consists of a single class
BUSINESS CARD; open it in the editor.

2. There is an attribute [Touch Of Class, page 238] age in BUSINESS CARD, which is meant
to store the age of the card’s owner. Add two new attributes of type STRING to store
his name and job title. Place your new attributes into the feature clause called “Access”.
Don’t forget to format your code properly and add comments.

3. Modify the feature fill in so that it prompts the user for his name (i.e. prints “Your name:”
or “Please enter your name:”), then reads the user input from the console and stores it in
the attribute you just declared for this purpose.

Like in the previous assignment, use the predefined object Io to perform input and output.
To read input data use the commands read line, read integer, read real, etc. To access the
data read by the last read xxx command, use the queries last string, last integer, last real,
etc., accordingly. For example, the sequence of instructions:

Io.read line
country := Io.last string.twin

reads a line from the console and stores the result in a string attribute called country. The
call to twin is needed because STRING is a reference type (you will learn more about that
later in the course); it is not needed when reading an integer.

4. Modify the feature fill in so that after asking the user for his name, it also asks for his job
title and his age. Store this information in the corresponding attributes.

5. In the feature clause “Output” declare a new function text: STRING [Touch Of Class, page
219]. This function should return a string representation of the business card, containing
all the data that it stores (name, job and age), each on a separate line.

3

http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/03/business_card.zip

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

To assemble a string out of several parts use the string concatenation operator +. For ex-
ample, an expression "Hello" + ", " + " world!" results in a string "Hello, world!".
You can put "%N" into a string at the position where you want a new line to be printed.

Use the function age info already defined in the class BUSINESS CARD to output infor-
mation about the age. You can also use age info as an example of a function that returns
a string, constructed using concatenation.

Now add the instruction Io.put string (text) at the end of the feature fill in to print the
string representation of the business card. After this step a run of your program should
look similar to this:

Your name: John Smith
Your job: Programmer
Your age: 20
John Smith
Programmer
20 years old

6. To make the output of your program look more like a business card let’s put a border
around it. After this step a run of your program should look like to this:

Your name: John Smith
Your job: Programmer
Your age: 20

|John Smith |
|Programmer |
20 years old

Modify the function text so that it also prints the border. For the top and the bottom
part use the function line (n: INTEGER): STRING already defined in BUSINESS CARD,
which returns a horizontal line of length n. Use the constant attribute Width [Touch Of
Class, page 250] every time you refer to the width of the card.

To output the right border you need print a correct number of spaces between it and the
text. For this define a new function spaces (n: INTEGER): STRING, which would return
a string consisting of n spaces. Use the function line as an example. To get the number
of characters in a string use the query count.

7. What is the benefit of using the constant attribute Width compared to just writing 50
every time?

What will happen with your program if the name entered by the user is longer than Width?
How could you solve this problem (describe the general idea)?

To hand in

Hand in the code of the class BUSINESS CARD and answers to the questions in point 7.

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

(a) original metro system

(b) new metro system

Figure 1: Changing the metro system

5

	Classes vs. objects
	Query call chains
	Writing more feature calls
	In and out

