ETHZ D-INFK Introduction to programming — Assignments

Prof. Dr. B. Meyer

Fall 2010

Assignment 4: Object creation

ETH Zurich

Hand-out: 8 October 2010
Due: 19 October 2010

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GETBACK Y™
TOWORK!

Compiling © Randall Munroe (xkcd.com)

Goals

e Create new objects.
e Create new classes.

e Repeat the difference between strict and semi-strict boolean operators.

1 Creating objects in Traffic

Up to now you have always worked with existing, predefined objects on the Paris map. In
this assignment you will create new objects and add them to Paris. To add new items such as
passengers, trams, places, lines, or roads to a city in Traffic you can follow a general scheme:

1. Declare an attribute [Touch Of Class, page 238] or a local variable [Touch Of Class, page

233] of the required type. For example:

class
OBJECT_CREATION

feature —— Explore Paris

file:xkcd.com

ETHZ D-INFK Introduction to programming — Assignments
Prof. Dr. B. Meyer Fall 2010

station: TRAFFIC_.STATION
—— An example of an attribute.

explore is
—— Create new objects for Paris.
local
p: TRAFFIC_.PASSENGER —— An example of a local variable.
do
end
end

Prefer local variables over attributes unless the object is used by more than one
feature or you need to retain the object value between feature executions.

2. Create the object using one of the creation procedures [Touch Of Class, page 122] declared
in the corresponding class. For example:

class
TRAFFIC_.STATION

create
make, make_with_location

feature { NONE} —— Initialization
make (a-name: STRING)
—— Create station with name ‘a_name’.

end

make_with_location (a-name: STRING; a-z, a_-y: INTEGER)
—— Create station with name ‘a_name’ at location (‘ax’, ‘a_y’).

end
end

—— In your code:
create station.make_with_location (” Central”, 0, 100)

You don’t have to create the object if its type is “expanded”. In this case the object will be
automatically created for you. Examples of expanded types are INTEGER, BOOLEAN
and DOUBLE.

3. Add the object to the city by calling an appropriate command on the city. If you forget
this step, you won’t see the object on the displayed map. To make things easier, in Table
1 we list the commands for adding objects of the most widely used types to a city.

To do

1. Download http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/04 /assignment_4.zip
and extract it in traffic/example. You should now have a new directory traffic/
example/assignment 4 with assignment_4.ecf directly in it.

2. Open and compile this new project. Open class OBJECT_CREATION and solve the tasks
below.

3. Declare a command add_passenger in OBJECT_-CREATION, which adds a new passenger
(object of type TRAFFIC_-PASSENGER), walking along Route3, to Paris. To make the
passenger start moving, call feature go on it. If you want the passenger to walk back

http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/04/assignment_4.zip

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming — Assignments
Fall 2010

Table 1: Adding objects to a city

Object type

Command

TRAFFIC_VILLA
TRAFFIC_APARTMENT_BUILDING
TRAFFIC_.SKYSCRAPER
TRAFFIC_BUS
TRAFFIC_FREE_MOVING
TRAFFIC_LANDMARK
TRAFFIC_LINE
TRAFFIC_PASSENGER
TRAFFIC_ROAD
TRAFFIC_ROUTE
TRAFFIC_STATION
TRAFFIC_TAXI
TRAFFIC_TAXI_.OFFICE
TRAFFIC_.TRAM

put_building
put_building
put_building
put_bus
put_free_moving
put_landmark
put_line
put_passenger
put_road
put_route
put_station
put_taxi
put_taxi_office
put_tram

and forth on his route you can call set_reiterate (True) on it. Add a call to the feature
1

add_passenger in explore and run your program-.
4. Declare a command add_tram, which adds a new tram following Line! to Paris. To make
it start moving, call feature start on it.

5. Declare a command add_landmark, which adds a new landmark for the Gare de Lyon
railway station. The creation procedure expects the coordinate of the landmark center, a
name, and a path to an image file as arguments. Use the location of Station_Gare_de_Lyon
as the coordinate of the landmark center and ”train_station.png” as the image path
(the image file should be located in the directory traffic/example/assignment_4).

6. Declare a command add_free_moving, which adds a new free moving object to Paris.

To do this, you first need to create an object of type TRAFFIC_POINT_RANDOMIZER.
A point randomizer object can generate a list of points within city bounds; upon creation
you should give it the center point and the radius of Paris. You do not need to add the
point randomizer object to Paris, since it is only a temporary helper object. To generate
a new point list, use generate_point_array. The generated list is accessible through the
feature last_array.

After you have created the point randomizer and generated a new list of points, create a
free moving object that travels along this list of generated points. Again, you will need to
call feature start.

7. Declare a command add_line, which adds a new bus line called “Tourist line” to Paris.
Make sure to use the creation procedure make_with_terminal. The line should go from
Gare de Lyon to St Michel Notre Dame, then to Champs de Mars Tour Eiffel Bir-Hakeim,
then to Charles de Gaulle Etoile and end at Palais Royal Musee du Louvre. To make the
tourist line more eye-catching, change its color, e.g., to purple.

8. Declare a command add_bus, which adds a new bus driving back and forth along the tourist
line.

IRepeat this step for all the new features you declare later in this task.

ETHZ D-INFK Introduction to programming — Assignments
Prof. Dr. B. Meyer Fall 2010

To hand in
Hand in the code of the class OBJECT_-CREATION.

2 It’s Logic!

Review the section “Semistrict boolean operators” [Touch Of Class, page 89] and answer the
following questions.

To do

1. Describe the difference between semi-strict and strict boolean operators.

2. Explain when you would prefer semi-strict operators over strict operators and when you
would prefer strict operators over semi-strict operators.

3. In a boolean expression

z /=0 and then y\\ =0

it is essential to use and then because the integer remainder operation would fail if z =
0. Give other examples of boolean expressions using and, and then, or and or else and
explain why it is essential or optimal to use the chosen boolean operator in each example.

To hand in

Hand in your examples and explanations.

3 Temperature application

In this task you will write an application which converts temperatures between Celsius and
Kelvin scales using the following formula:

TCelsius - TKelvin — 273

The application should consist of two classes: TEMPERATURE and APPLICATION. Class
TEMPERATURE encapsulates the notion of temperature; it hides from its clients imple-
mentation details such as how temperatures are converted between different scales. Class
APPLICATION is a root class and a client of TEMPERATURE; it provides the user inter-
face to the application.

To do

1. Launch EiffelStudio. Create a new project of type “Basic application (no graphics library
included)”, using the settings shown in figure 1.

2. Download the skeleton classes for TEMPERATURE and APPLICATION from
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments /04 /temperature.e and
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/04 /application.e and put
them into your project directory.

3. Fill in the missing pieces of classes TEMPERATURE and APPLICATION according to the
comments. Feature ezxecute of class APPLICATION must use the class TEMPERATURE
to perform the conversion.

http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/04/temperature.e
http://se.inf.ethz.ch/teaching/2010-H/eprog-0001/assignments/04/application.e

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming — Assignments
Fall 2010

% Choose Your Project Name and Directory

— System properties

System name: Itempemture

Root cluster: Itempemture

Root class: |APPLICATION

Root feature: Ie:-;ecute

r Location:

The project location is the place where compilation
filez wil be generated by the compiler

IF:"-.E'rHeIProjects Browse... |

[+ Compile project

0K I Cancel

Figure 1: New project

4. Express the following properties using contracts:

o make_celcius sets the Celsius temperature to the provided value;
e make_kelvin sets the Kelvin temperature to the provided value;

e a temperature can never be below zero in the Kelvin scale.

A sample execution of your application could yield the following result:

Enter the first temperature in Celsius: 0O
The first temperature in Kelvin is: 273
Enter the second temperature in Kelvin: 283
The second temperature in Celsius is: 10

The average in Celsius is: 5
The average in Kelvin is: 278

To hand in

Hand in the code of TEMPERATURE and APPLICATION.

4 Ein ticket fur alles

Imagine that you work for ZVV. You are writing an application that collects and stores infor-
mation about customers and determines which customers can have discount on their seasonal
tickets. The rule is that a person is eligible for discount if he or she is under 25. However,
you don’t want to store the age of each customer explicitly (otherwise you will have to update
the data every time someone has a birthday). Instead, you want to store the birth date of a
customer and calculate his or her age based on the birth date and the current date.

Todo

1. Launch EiffelStudio. Create a new project of type “Basic application (no graphics library
included)”, with a name “ticket”, root class APPLICATION and root creation procedure

exrecute.

ETHZ D-INFK Introduction to programming — Assignments
Prof. Dr. B. Meyer Fall 2010

2. To store and manipulate dates use the class DATE, which is defined in a library called
“time”. Using the “Add a library” button at the top of the “Groups” panel, add the
“time” library to your project. Choose the file $ISE_LIBRARY\1library\time\time.ecf,
not the $ISE_LIBRARY\library\time\time-safe.ecf! Compile the project again.

3. Using the “Add a new class” button at the top of the “Groups” panel, create a new class
CUSTOMER, which would encapsulate information about customers. Add attributes to
store the customer’s first name, last name and birth date. Add a creation procedure that
accepts a first name, a last name and a birth date as arguments and stores them in the
corresponding attributes.

4. Declare a function age: INTEGFER, which returns customer’s age in years. Hint: to calcu-
late the age create another object of type DATE storing today’s date and then calculate
the difference between the two dates using features of class DATE.

5. Declare a function has_discount: BOOLEAN, which answers the question, whether the
customer is eligible for discount.

6. Declare a function info: STRING, which returns the information about the customer (first
name, last name, age, discount eligibility) as text.

7. In the feature execute of class APPLICATION ask the user to input customer’s first name,
last name and age. Store this information in a newly created object of type CUSTOMER.
Then output the information about the customer using the feature info.

Hint: probably the easiest way to create a DATE object to store the birth date is to
use the creation procedure make_from_string_default. This procedure converts strings in
the format “mm/dd/yyyy” into dates; ask the user to input the date in this format and
assume for simplicity that he always does it correctly.

8. Optional. Instead of asking the user to input the first name on one line and the
last name on another line, ask to input the whole full name at once (in the format
"Firstname Lastname"). Before creating the CUSTOMER object separate the result-
ing string into the first name and the last name. Hint: you can use features index_of
and substring of class STRING. You can assume for simplicity that the full name always
consists of two words with exactly one space in between.

A sample execution of your application could yield the following result:

Enter full name: John Smith
Enter birth date as mm/dd/yyyy: 06/15/1989

First name: John

Last name: Smith

21 years old

Eligible for discount: True

To hand in
Hand in the code of classes CUSTOMER and APPLICATION.

	Creating objects in Traffic
	It's Logic!
	Temperature application
	Ein ticket für alles

