
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Assignment 8: Inheritance and polymorphism

ETH Zurich

Hand-out: 12 November 2010
Due: 23 November 2010

Estimation c© Randall Munroe (xkcd.com)

Goals

• Understand polymorphic assignment, polymorphic creation and dynamic binding.

• Practice inheritance.

• Continue the design and implementation of the board game.

1 Dynamic binding and polymorphic attachment

Review polymorphic attachment and dynamic binding (Touch of Class, sections 16.2 and 16.3).
The following classes represent various kinds of traffic participants. Figure 1 shows the class

hierarchy. The listing below shows the source code of the classes.

1

file:xkcd.com


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Figure 1: Class diagram for TRAFFIC PARTICIPANT and its descendants.

Listing 1: Class TRAFFIC PARTICIPANT

deferred class
TRAFFIC PARTICIPANT

feature −− Access
name: STRING
−− Name.

feature {NONE} −− Initialization
make (a name: STRING)
−− Initialize with ‘a name’.

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name

ensure
name set: name = a name

end

feature −− Basic operations
move (distance: REAL)
−− Move ‘distance’ km.

require
distance geq zero: distance >= 0.0

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

deferred
end

invariant
name valid: name /= Void and then not name.is empty

end

Listing 2: Class MOTORIZED PARTICIPANT

deferred class
MOTORIZED PARTICIPANT

inherit
TRAFFIC PARTICIPANT

rename
move as ride

end

feature {NONE} −− Initialization
make with device (a name, a device: STRING)
−− Initialize with ‘a name’ and ‘a device’.

require
a device valid: a device /= Void and then not a device.is empty
a name valid: a name /= Void and then not a name.is empty

do
make (a name)
device := a device

ensure
device set: device = a device
name set: name = a name

end

feature −− Access
device: STRING
−− Device name.

feature −− Basic operations
ride (distance: REAL)
−− Ride ‘distance’ km.

do
io.put string (name + ” rides on a ” + device + ” ” + distance.out + ” km”)

end

invariant
device valid: device /= Void and then not device.is empty

end

Listing 3: Class CAR DRIVER

class
CAR DRIVER

inherit

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

MOTORIZED PARTICIPANT
rename

make with device as make with car,
ride as drive

redefine
drive

end

create
make with car

feature −− Basic operations
drive (distance: REAL)
−− Drive car for ‘distance’ km.

do
io.put string (name + ” drives ” + device + ” ” + distance.out + ” km”)

end
end

Listing 4: Class PEDESTRIAN

class
PEDESTRIAN

inherit
TRAFFIC PARTICIPANT

rename
move as walk

end

create make

feature −− Basic operations
walk (distance: REAL)
−− Walk ‘distance’ km.

do
io.put string (name + ” walks ” + distance.out + ” km”)

end
end

To do

Given the variable declarations

traffic participant: TRAFFIC PARTICIPANT
motorized participant: MOTORIZED PARTICIPANT
car driver: CAR DRIVER
pedestrian: PEDESTRIAN

for each of the code fragments below decide whether it compiles. If not, why? If yes, what does
it print? This is a pen-and-paper task; you are not supposed to use using EiffelStudio.

Example:

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

create {CAR DRIVER} traffic participant.make (”Bob”, ”Seat”)
traffic participant.drive (7.8)

The code does not compile, because the feature make is not a creation procedure of class
CAR DRIVER. Additionally, the static type of traffic participant offers no feature drive.

1. create {CAR DRIVER} motorized participant.make with device (”Louis”, ”BMW”)
motorized participant.ride (3.2)

2. create motorized participant.make with device (”Sue”, ”bus”)
motorized participant.ride (4.2)

3. create {PEDESTRIAN} traffic participant.make (”Julie”)
traffic participant.move (0.5)

4. create {MOTORIZED PARTICIPANT} car driver.make with car (”Ben”, ”Audi”)
car driver.drive (12.3)

5. create {PEDESTRIAN} traffic participant.make (”Jim”)
pedestrian := traffic participant
pedestrian.walk (1.9)

6. create {CAR DRIVER} traffic participant.make with car (”Anna”, ”Mercedes”)
traffic participant.drive (3.1)

7. create car driver.make with car (”Megan”, ”Renault”)
motorized participant := car driver
motorized participant.ride (17.8)

To hand in

Hand in your answers for the code fragments above.

2 Ghosts in Paris

Ghosts are taking over Paris! In this task you will implement a special kind of free moving
objects: a TRAFFIC GHOST. Ghosts in Traffic have the following behavior: they choose a
station of the city and then move on a square around this station.

To do

1. Download http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/assignment 8.zip
and extract it in traffic/example. You should now have a new directory traffic/
example/assignment 8 with assignment 8.ecf directly in it.

2. Open and compile this new project.

5

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/assignment_8.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

3. Create a class TRAFFIC GHOST inheriting from TRAFFIC FREE MOVING. Imple-
ment a creation procedure make with two arguments: a station around which the ghost is
flying and a side length for its square path.

Call the procedure make with points from make. First you will need to create a list of
points containing the edges of the square to pass into make. This list should be of type
DS ARRAYED LIST [TRAFFIC POINT]. Note that you will have to add the first point
twice: once at the beginning of the list and once at the end. For the speed argument of
make with points choose a value between 5.0 and 30.0. Make the ghost reiterate.

Test your implementation by creating an instance of TRAFFIC GHOST and adding it to
Paris using the feature put free moving. Don’t forget to call start on it.

4. The implementation of TRAFFIC FREE MOVING makes a reiterating object move back-
wards through the set of points once the last point is reached. Instead we want the ghosts
to move around the station always in the same direction.

When a free moving starts to move, the feature move next is called. It takes the first point
from the list (available through the list cursor poly cursor) as origin and the second as
destination. The feature advance then takes over and lets the object move stepwise from
origin to destination until the destination is reached. At this point the feature move next
is called again. It updates the origin to be the former destination and the next point in
the list becomes the new destination. When the end of the list is reached move next of
TRAFFIC FREE MOVING begins to iterate through the list in the reverse order.

Redefine feature move next in TRAFFIC GHOST in such a way that when the end of the
list is reached it will start at the beginning again.

5. Implement the feature invade of class GHOST INVASION. It should generate 10 ghosts
set to randomly selected stations of Paris. For this you will need to generate a random
number that is within the bounds of the indices of stations of Paris. To access stations by
index, convert the table of stations into an array using Paris.stations.to array.

To hand in

Hand in classes TRAFFIC GHOST and GHOST INVASION.

3 Board game: Part 3

In this task you will extend the implementation of the board game. You will find an updated
problem description below.

The board game comes with a board, divided into 40 squares, a pair of six-sided dice, and
can accommodate 2 to 6 players. It works as follows:

• All players start from the first square.

• One at a time, players take a turn: roll the dice and advance their respective tokens on
the board.

• A round consists of all players taking their turns once.

• Players have money. Each player starts with 7 CHF.

• The amount of money changes when a player lands on a special square:

– Squares 5, 15, 25, 35 are bad investment squares: a player has to pay 5 CHF. If the
player cannot afford it, he gives away all his money.

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

– Squares 10, 20, 30, 40 are lottery win squares: a player gets 10 CHF.

• The winner is the player with the most money after the first player advances beyond the
40th square. Ties (multiple winners) are possible.

To do

Modify the implementation of the board game in such a way that it accommodates the changes
in the problem description (money, special squares, new winning criterion). We recommend
that you start from the master solution to the assignment 6: http://se.ethz.ch/teaching/2010-
H/eprog-0001/assignments/08/board game.zip.

Hints

Are there entities in the problem domain that didn’t have enough properties and behavior to
deserve their own classes in the previous version of the game, but that gained some properties
or behavior in the current version? You might want to introduce new classes for such entities.

Bad investment and lottery win squares are special cases of squares, which differ in a way
they affect players. To model this you can introduce class SQUARE and then use inheritance
and feature redefinition to implement the behavior of special squares. You can store squares of
all kinds in a single polymorphic container (e.g. ARRAY [SQUARE]) and let dynamic binding
take care of which special behavior applies for each square.

To hand in

Hand in the code of your classes.

7

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/board_game.zip
http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/board_game.zip

	Dynamic binding and polymorphic attachment
	Ghosts in Paris
	Board game: Part 3

