
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Solution 8: Inheritance and polymorphism

ETH Zurich

1 Dynamic binding and polymorphic attachment

1. The code does not compile. Feature make with device is unknown in CAR DRIVER (it is
renamed into make with car).

2. The code does not compile. Creation instruction applies to a deferred type
MOTORIZED PARTICIPANT.

3. The code compiles and prints “Julie walks 0.5 km”. Feature make is a valid creation
procedure of class PEDESTRIAN (note the clause create make). Feature move is known in
class TRAFFIC PARTICIPANT. The dynamic type of traffic participant is PEDESTRIAN; that
is why the implementation of move from PEDESTRIAN (where it’s renamed into walk) is
executed.

4. The code does not compile. First, creation instruction applies to a deferred type
MOTORIZED PARTICIPANT. Second, explicit creation type MOTORIZED PARTICIPANT

does not conform to the static type of the target CAR DRIVER.

5. The code does not compile. Static type of the assignment source TRAFFIC PARTICIPANT

does not conform to the static type of the target PEDESTRIAN.

6. The code does not compile. Feature drive is unknown in TRAFFIC PARTICIPANT.

7. The code compiles and prints “Megan drives Renault 17.8 km”. Feature make with car is a
valid creation procedure of the class CAR DRIVER. Static type of the assignment source
CAR DRIVER conforms to the static type of the target MOTORIZED PARTICIPANT. Fea-
ture ride is known in MOTORIZED PARTICIPANT. The dynamic type of motorized participant

is CAR DRIVER; that is why the implementation of ride from CAR DRIVER (where it’s
renamed into drive) is executed.

2 Ghosts in Paris

Listing 1: Class TRAFFIC GHOST

class
TRAFFIC GHOST

inherit
TRAFFIC FREE MOVING

redefine
move next

end

create

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

make

feature −− Initialization
make (a station: TRAFFIC STATION; a side: REAL 64)
−− Create a ghost that moves around ‘a station’
−− along a square with side ‘a side’.

require
a station exists: a station /= Void
a side positive: a side > 0.0

local
l: DS ARRAYED LIST [TRAFFIC POINT]
p: TRAFFIC POINT
x, y: REAL 64

do
create l.make (5)
x := a station.location.x
y := a station.location.y
create p.make (x − a side/2, y − a side/2)
l.put last (p)
create p.make (x + a side/2, y − a side/2)
l.put last (p)
create p.make (x + a side/2, y + a side/2)
l.put last (p)
create p.make (x − a side/2, y + a side/2)
l.put last (p)
create p.make (x − a side/2, y − a side/2)
l.put last (p)

make with points (l, 10.0)

set reiterate (True)
ensure

reiterating: is reiterating
end

feature {NONE} −−Implementation
move next
−− Move to the next point.

do
−− Set the locations to the corresponding ones of the line segment.
origin := poly cursor.item
location := poly cursor.item
if is reiterating then

poly cursor.forth
if poly cursor.after then

poly cursor.start
move next

else
destination := poly cursor.item

end
else

poly cursor.forth

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

if poly cursor.after then
has finished := True

else
destination := poly cursor.item

end
end

end
end

Listing 2: Class GHOST INVASION

class
GHOST INVASION

inherit
TOURISM

feature −− Explore Paris
invade
−− Invade Paris with 10 ghosts.

local
g: TRAFFIC GHOST
r: RANDOM
t: TIME
i: INTEGER
a: ARRAY [TRAFFIC STATION]

do
Paris.display
create t.make now
create r.set seed (t.milli second)
from

i := 1
r.start
a := Paris.stations.to array

until
i > 10

loop
create g.make (a [r.item \\ a.count + 1], 50.0)
g.start
Paris.put free moving (g)
r.forth
i := i + 1

end
end

end

3 Board game: Part 3

You can download a complete solution from
http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/board game solution.zip.

Below you will find listings of classes that changed since assignment 6.

3

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/board_game_solution.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Listing 3: Class SQUARE

class
SQUARE

feature −− Basic operations
affect (p: PLAYER)
−− Apply square’s special effect to ‘p’.

do
−− For a normal square do nothing.

end
end

Listing 4: Class BAD INVESTMENT SQUARE

class
BAD INVESTMENT SQUARE

inherit
SQUARE

redefine
affect

end

feature −− Basic operations
affect (p: PLAYER)
−− Apply square’s special effect to ‘p’.

do
p.transfer (−5)

end
end

Listing 5: Class LOTTERY WIN SQUARE

class
LOTTERY WIN SQUARE

inherit
SQUARE

redefine
affect

end

feature −− Basic operations
affect (p: PLAYER)
−− Apply square’s special effect to ‘p’.

do
p.transfer (10)

end
end

Listing 6: Class BOARD

class

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

BOARD

create
make

feature {NONE} −− Initialization
make
−− Initialize squares.

local
i: INTEGER

do
create squares.make (1, Square count)
from

i := 1
until

i > Square count
loop

if i \\ 10 = 5 then
squares [i] := create {BAD INVESTMENT SQUARE}

elseif i \\ 10 = 0 then
squares [i] := create {LOTTERY WIN SQUARE}

else
squares [i] := create {SQUARE}

end
i := i + 1

end
end

feature −− Access
squares: ARRAY [SQUARE]
−− Container for squares

feature −− Constants
Square count: INTEGER = 40
−− Number of squares.

invariant
squares exists: squares /= Void
squares count valid: squares.count = Square count

end

Listing 7: Class PLAYER

class
PLAYER

create
make

feature {NONE} −− Initialization
make (n: STRING; b: BOARD)
−− Create a player with name ‘n’ playing on board ‘b’.

require

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

name exists: n /= Void and then not n.is empty
board exists: b /= Void

do
name := n.twin
board := b
position := b.squares.lower

ensure
name set: name ˜ n
board set: board = b
at start: position = b.squares.lower

end

feature −− Access
name: STRING
−− Player name.

board: BOARD
−− Board on which the player in playing.

position: INTEGER
−− Current position on the board.

money: INTEGER
−− Amount of money.

feature −− Moving
move (n: INTEGER)
−− Advance ‘n’ positions on the board.

require
not beyond start: n >= board.squares.lower − position

do
position := position + n

ensure
position set: position = old position + n

end

feature −− Money
transfer (amount: INTEGER)
−− Add ‘amount’ to ‘money’.

do
money := (money + amount).max (0)

ensure
money set: money = (old money + amount).max (0)

end

feature −− Basic operations
play (d1, d2: DIE)
−− Play a turn with dice ‘d1’, ‘d2’.

require
dice exist: d1 /= Void and d2 /= Void

do
d1.roll

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

d2.roll
move (d1.face value + d2.face value)
if position <= board.squares.upper then

board.squares [position].affect (Current)
end
print (name + ” rolled ” + d1.face value.out + ” and ” + d2.face value.out +

”. Moves to ” + position.out +
”. Now has ” + money.out + ” CHF.%N”)

end

invariant
name exists: name /= Void and then not name.is empty
board exists: board /= Void
position valid: position >= board.squares.lower −− Token can go beyond the finish position,

but not the start
money non negative: money >= 0

end

Listing 8: Class GAME

class
GAME

create
make

feature {NONE} −− Initialization
make (n: INTEGER)
−− Create a game with ‘n’ players.

require
n in bounds: Min player count <= n and n <= Max player count

local
i: INTEGER
p: PLAYER

do
create board.make
create players.make (1, n)
from

i := 1
until

i > players.count
loop

create p.make (”Player” + i.out, board)
p.transfer (Initial money)
players [i] := p
i := i + 1

end
create die 1.roll
create die 2.roll

end

feature −− Basic operations
play

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

−− Start a game.
local

i: INTEGER
do

from
winners := Void

until
winners /= Void

loop
from

i := 1
until

winners /= Void or else i > players.count
loop

players [i].play (die 1, die 2)
if players [i].position > board.Square count then

select winners
end
i := i + 1

end
end

ensure
has winners: winners /= Void and then not winners.is empty

end

feature −− Constants
Min player count: INTEGER = 2
−− Minimum number of players.

Max player count: INTEGER = 6
−− Maximum number of players.

Initial money: INTEGER = 7
−− Initial amount of money of each player.

feature −− Access
board: BOARD
−− Board.

players: ARRAY [PLAYER]
−− Container for players.

die 1: DIE
−− The first die.

die 2: DIE
−− The second die.

winners: LIST [PLAYER]
−− Winners (Void if the game if not over yet).

feature {NONE} −− Implementation

8



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

select winners
−− Put players with most money into ‘winners’.

local
i, max: INTEGER

do
create {LINKED LIST [PLAYER]} winners.make
from

i := 1
until

i > players.count
loop

if players [i].money > max then
max := players [i].money
winners.wipe out
winners.extend (players [i])

elseif players [i].money = max then
winners.extend (players [i])

end
i := i + 1

end
ensure

has winners: winners /= Void and then not winners.is empty
end

invariant
board exists: board /= Void
players exist: players /= Void
number of players consistent: Min player count <= players.count and players.count <=

Max player count
dice exist: die 1 /= Void and die 2 /= Void

end

We introduced class BOARD because in the new version of the game the board has a more
complicated structure (arrangement of squares of different kinds).

We went for a flexible solution that introduces class SQUARE and lets squares affect
players that land on them in an arbitrary way. Classes BAD INVESTMENT SQUARE and
LOTTERY WIN SQUARE define specific effects. This design would be easily extensible if
other types of special squares are added, that affect not only the player’s amount of money, but
also other properties (e.g. position).

A simpler solution would be not to create class SQUARE; instead of array of squares in
class BOARD introduce an array of integers that represent how much money a square at certain
position gives to a player. This solution is not flexible with respect to adding other kinds of
special squares.

Another simpler solution would be to add a procedure affect (p: PLAYER) directly to class
BOARD (instead of creating a class SQUARE and an array of squares):

affect (p: PLAYER)
do

if p.position \\ 10 = 5 then
p.transfer (−5)

elseif p.position \\ 10 = 0 then
p.transfer (10)

end

9



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

end

The disadvantage of this approach is that the logic behind all different kinds of special squares
is concentrated in a single feature; it isn’t decomposed. Adding new kinds of special squares
will make this feature large and complicated.

10


	Dynamic binding and polymorphic attachment
	Ghosts in Paris
	Board game: Part 3

