
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Solution 9: Recursion

ETH Zurich

1 An infectious task

1. Correct. This version works and uses tail recursion. It will always give flu to p first, and
then call infect on his/her coworker. The recursion ends when either there is no coworker,
or the coworker is already infected. Without the second condition the recursion is endless
if the coworker structure is cyclic.

2. Incorrect. This version results in endless recursion if the coworker structure is cyclic. The
main cause is that the coworker does not get infected before the recursive call is made, so
with a cyclic structure nobody will be ever infected to terminate the recursion.

3. Incorrect. This version results in an endless loop if the structure is cyclic. The main
problem is with the loop’s exit condition that does not include the case when q is already
infected.

4. Correct. However, this version will call set flu twice on all reachable persons except the
initial one. On the initial person set flu will be called once in case of non-circular structure
and three times in case of circular structure.

Multiple coworkers

class
PERSON

create
make

feature −− Initialization
make (a name: STRING)
−− Create a person named ‘a name’.

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name
create coworkers.make

ensure
name set: name = a name
coworkers exists: coworkers /= Void

end

feature −− Access
name: STRING

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

coworkers: LINKED LIST [PERSON]

has flu: BOOLEAN

feature −− Element change
add coworker (p: PERSON)
−− Add ‘p’ to ‘coworkers’.

require
p exists: p /= Void
p different: p /= Current
not has p: not coworkers.has (p)

do
coworkers.extend (p)

ensure
coworker set: coworkers.has (p)

end

set flu
−− Set ‘has flu’ to True.

do
has flu := True

ensure
has flu: has flu

end

invariant
name valid: name /= Void and then not name.is empty
coworkers exists: coworkers /= Void

end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
p.set flu
from

p.coworkers.start
until

p.coworkers.off
loop

if not p.coworkers.item.has flu then
infect (p.coworkers.item)

end
p.coworkers.forth

end
end

The coworkers structure is a directed graph. The master solution traverses this graph using
depth-first search.

2 Reachable stations

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Listing 1: Class RECURSIVE HIGHLIGHTING

note
description: ”Recursive highlighting class (Assignment 9)”
date: ”$Date$”
revision: ”$Revision$”

class
RECURSIVE HIGHLIGHTING

inherit
TOURISM

feature −− Explore Paris
show
−− Highlight stations that are reachable within a certain time limit.

do
Paris.display
highlight reachable stations (Station chatelet, 10.0)

end

highlight reachable stations (s: TRAFFIC STATION; t: REAL 64)
−− Highlight all stations that are reachable from ‘s’ within travel time ‘t’.

require
s exists: s /= Void
t positive: t > 0.0

local
stop: TRAFFIC STOP
i: INTEGER

do
s.highlight
from

i := 1
until

i > s.stops.count
loop

stop := s.stops.i th (i)
if stop.right /= Void and then (t − stop.time to next) >= 0.0 then

highlight reachable stations (stop.right.station, t − stop.time to next)
end
i := i + 1

end
end

end

3 Get me out of this maze!

Listing 2: Class MAZE READER

class
MAZE READER

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

feature −− Basic operations.
read maze (f: STRING)
−− Read a maze from file with filename ‘f’.

local
file: PLAIN TEXT FILE
n, m, i: INTEGER

do
has error := False
error message := ””
create file.make (f)
if not file.exists then

has error := True
error message := ”File ” + f.out + ” does not exist.%N”

else
file.open read
if not file.is open read then

has error := True
error message := ”File ” + f.out + ” could not be opened.%N”

else
file.start
file.read integer
n := file.last integer
file.read integer
m := file.last integer
if n <= 0 or m <= 0 then

has error := True
error message := ”Maze dimensions not valid.%N”

else
from

i := 0
create last maze.make (m, n)

until
file.off or has error or i >= n∗m

loop
file.read character
inspect file.last character
when {MAZE}.empty char then

last maze.set empty ((i // n) + 1, (i \\ n) + 1)
when {MAZE}.wall char then

last maze.set wall ((i // n) + 1, (i \\ n) + 1)
when {MAZE}.exit char then

last maze.set exit ((i // n) + 1, (i \\ n) + 1)
else

if file.last character.is space then
−− Ignore it
i := i − 1

else
has error := True
error message := ”Wrong character ” + file.last character.out + ”%N”

end
end
i := i + 1

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

end
if i < n ∗ m then

has error := True
error message := ”Maze not filled%N”

end
end

end
end

end

feature −− Access
has error: BOOLEAN
−− Has there been an error when reading?

error message: STRING
−− Error message.

last maze: MAZE
−− Maze that was read last.

end

Listing 3: Class MAZE

class
MAZE

inherit
ARRAY2 [CHARACTER]

redefine
out

end

create
make

feature −− Constants
Empty char: CHARACTER = ’.’
−− Character for empty fields.

Exit char: CHARACTER = ’∗’
−− Character for an exit field.

Wall char: CHARACTER = ’#’
−− Character for a wall field.

Visited char: CHARACTER = ’x’
−− Character for a field that has been visited by ‘find path’.

feature −− Element change
set empty (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to empty.

require
r valid: r >= 1 and r <= height

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

c valid: c >= 1 and c <= width
do

put (Empty char, r, c)
ensure

field set: item (r, c) = Empty char
end

set exit (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to exit.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Exit char, r, c)

ensure
field set: item (r, c) = Exit char

end

set wall (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to wall.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Wall char, r, c)

ensure
field set: item (r, c) = Wall char

end

set visited (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to visited.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Visited char, r, c)

ensure
field set: item (r, c) = Visited char

end

feature −− Status report
is valid (c: CHARACTER): BOOLEAN
−− Is ‘c’ a valid character?

do
Result := c = Empty char or c = Wall char or c = Exit char

end

feature −− Path finding
path: STRING
−− Sequence of instructions to find out of the maze.

path exists: BOOLEAN

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

−− Does a path exist?

find path (r, c: INTEGER)
−− Find the path starting at row ‘r’ and column ‘c’.

require
row valid: 1 <= r and r <= height
column valid: 1 <= c and c <= width

do
if item (r, c) = Exit char then

path exists := True
path := ””

elseif item (r, c) = Empty char then
set visited (r, c)
if (c − 1) > 0 and not path exists then

find path (r, c − 1)
if path exists then

path := ”W > ” + path
end

end
if (r − 1) > 0 and not path exists then

find path (r − 1, c)
if path exists then

path := ”N > ” + path
end

end
if (c + 1) <= width and not path exists then

find path (r, c + 1)
if path exists then

path := ”E > ” + path
end

end
if (r + 1) <= height and not path exists then

find path (r + 1, c)
if path exists then

path := ”S > ” + path
end

end
set empty (r, c)

end
ensure

path exists consistent: path exists = (path /= Void)
end

feature −− Output
out: STRING
−− Output

local
i, j: INTEGER

do
from

i := 1
j := 1

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Result := ””
until

i > height
loop

from
j := 1

until
j > width

loop
Result.append character (item (i, j))
j := j + 1

end
i := i + 1
Result := Result + ”%N”

end
end

end

Listing 4: Class APPLICATION

class
MAZE APPLICATION

create
make

feature −− Initialization
make
−− Run application.

local
mr: MAZE READER
maze: MAZE
start row, start column: INTEGER

do
create mr
Io.put string (”Please enter the name of a maze file: ”)
Io.read line
mr.read maze (Io.last string)
if mr.has error then

Io.put string (mr.error message)
else

maze := mr.last maze
Io.put string (”%N” + maze.out + ”%N”)

Io.put string (”Please enter a starting field for finding a path.%N”)
from
until

start row /= 0
loop

Io.put string (”Row: ”)
Io.read integer
if Io.last integer > 0 and Io.last integer <= maze.height then

8



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

start row := Io.last integer
else

Io.put string (”Invalid row. Please try again%N”)
end

end
from
until

start column /= 0
loop

Io.put string (”Column: ”)
Io.read integer
if Io.last integer > 0 and Io.last integer <= maze.width then

start column := Io.last integer
else

Io.put string (”Invalid column. Please try again%N”)
end

end
maze.find path (start row, start column)
if maze.path exists then

Io.put string (”There’s a way out! Go ” + maze.path.out + ”You’re free!%N”
)

else
Io.put string (”Oops, no way out! You’re trapped!%N”)

end
end

end

end −− class APPLICATION

9


	An infectious task
	Reachable stations
	Get me out of this maze!

