
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Assignment 10: Agents and board games

ETH Zurich

Hand-out: 3 December 2010
Due: 19 December 2010

Donald Knuth c© Randall Munroe (xkcd.com)

Goals

• Test your understanding of agents and event driven programming.

• Test your debugging skills.

• Finish the design and implementation of the board game.

1 Air conditioning

You are implementing software for an air conditioning system. Assume that there is a hardware
component that measures the temperature and calls a predefined routine from your application
whenever the temperature changes.

Additionally, you are given two classes containing different reactions to changes of temper-
ature. Class DISPLAY represents a digital LED display with a feature show (a temperature:
DOUBLE) that displays a temperature. Class HEATING CONTROLLER provides a feature
adjust (a temperature: DOUBLE) that turns heating and cooling on or off depending on the
difference between the current and the goal temperature.

1

file:xkcd.com


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Your task is to implement a class TEMPERATURE SENSOR that receives the signal from
the hardware component and makes sure that all the required reactions to a temperature change
are performed.

To do

1. Create a new project in EiffelStudio with a root class APPLICATION. Download
classes DISPLAY and HEATING CONTROLLER from http://se.ethz.ch/teaching/2010-
H/eprog-0001/assignments/10/ac.zip and add them to your project.

2. Create a new class TEMPERATURE SENSOR with the following functionality:

• It should store the current temperature and allow to modify it through a feature
set temperature (a temperature: REAL) (this feature will be called by hardware when-
ever the temperature changes).

• It should allow to register agents as observers. All the observers should be called
every time the current temperature changes.

• It should be possible to register any number of observers.

• It should be possible to register features show and adjust discussed above without
changing the classes DISPLAY and HEATING CONTROLLER.

3. Test your implementation of TEMPERATURE SENSOR from within the class
APPLICATION. Create objects of types TEMPERATURE SENSOR, DISPLAY and
HEATING CONTROLLER; register features show and adjust as observers of the sensor.
Make several calls to set temperature on the sensor to emulate calls from the hardware
component (as a result of each call the temperature should be displayed and the heating
should be adjusted).

To hand in

Hand in the code of TEMPERATURE SENSOR and APPLICATION.

2 Debug me!

In this exercise you will be given a class that contains faults (bugs), as well as a test scenario
that reveals those faults. Your task is to fix the faults in such a way that the given test scenario
is executed without failures (contract violations or calls on void target).

To do

1. Download http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/10/debugging.zip,
extract it into a directory of your choice and open the project “debugging.ecf” in Eiffel-
Studio.

2. Class SORTED LINKED LIST represents a singly-linked list where elements are sorted.
Its implementation contains 10 faults1. The root class TESTER contains a testing routine
that exercises the behavior of SORTED LINKED LIST. Each of the 10 faults is revealed
by the testing routine through violating either the contracts of SORTED LINKED LIST
or checks in the routine itself, or causing a call on void target.

1The number of faults is approximate; the exact number depends on the definition of “fault”.

2

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/10/ac.zip
http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/10/ac.zip
http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/10/debugging.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

3. Run the program: it will result in a failure. Using the debugger (step-by-step execution,
“Objects” tool, “Watch” tool) try to figure out the reason of the failure and fix the
implementation of SORTED LINKED LIST so that it doesn’t occur. Note: modify only
feature bodies in SORTED LINKED LIST; you are not allowed to change contracts, add
or remove features, or modify class TESTER.

Repeat this until the program executes without failures.

To hand in

Hand in the modified class SORTED LINKED LIST and one-sentence descriptions of fixed
faults (these can be in a separate document or inserted as comments in the code).

3 The final project. Board game: part 4

For the final project you can do one of the following:

1. Finish the implementation of the board game following the specification given below.

2. Implement any game of your choice if your assistant agrees that the game proposed by
you is suitable for the project.

If you have chosen option 1 you have to implement a simplified version of Monopoly
(http://en.wikipedia.org/wiki/Monopoly (game)), played by the following rules.

The game comes with a board (figure 1), divided into 20 squares, a pair of four -sided dice,
and can accommodate 2 to 6 players.

It works as follows:

• Players have money and can own property. Each player starts with CHF 1500 and no
property.

• All players start from the first square (“Go”).

• One at a time, players take a turn: roll the dice and advance their respective tokens
clockwise on the board. After reaching square 20 a token moves to square 1 again.

• Certain squares take effect on the player (see below), when his token passes or lands on
the square. In particular it can change the player’s amount of money.

• If after taking a turn a player has negative amount of money he retires from the game.
All his property becomes unowned.

• A round consists of all players taking their turns once.

• The game ends either if there is only one player left or after 100 rounds. The winner is
the player with the most money after the end of the game. Ties (multiple winners) are
possible.

There are following kinds of squares on the board:

Property squares (marked by a colored stripe). They contain the name and the price of the
property and can be owned by players. If a player lands on an unowned property he can
choose to buy it for the written price or do nothing. If a player lands on a property owned
by another player he has to pay a rent (rent amounts are listed in table 1).

Go. Every time a player passes through (not necessarily lands on) this square he gets CHF
200 salary.

3

http://en.wikipedia.org/wiki/Monopoly_(game)


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

Figure 1: Monopoly board

Chance. If a player lands on one of these squares he either gains a random amount (multiple
of 10) up to CHF 200 or looses a random amount (multiple of 10) up to CHF 300.

Income tax. If a player lands on this square he pays 10% of his money (rounded down to a
multiple of 10) as tax.

Free parking. This square has no effect.

Go to Jail. If a player lands on this square he immediately goes to the “In Jail” part of the
“In Jail/Just Visiting” square.

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2010

In Jail/Just Visiting. If a player lands on this square he is “Just Visiting”: the square has
no effect. However, if the player got here by landing on “Go to Jail”, he is in Jail and
cannot make a move. A player gets out of Jail by either throwing doubles2 on any of his
next three turns (if he succeeds in doing this he immediately moves forward the number
of spaces shown by his doubles throw) or paying a fine of CHF 50 before he rolls the dice
on either of his next two turns. If the player does not throw doubles by his third turn he
must pay the CHF 50 fine. He then gets out of Jail and immediately moves forward the
number of spaces shown by his throw.

Table 1: Properties

Position Name Price Rent
2 Dübendorfstrasse 60 2
3 Winterthurerstrasse 60 4
5 Schwamendingerplatz 80 4
7 Josefwiese 100 6
8 Escher-Wyss-Platz 120 8
10 Langstrasse 160 12
12 Schaffhauserplatz 220 18
14 Universitätstrasse 260 22
15 Irchelpark 260 22
17 Bellevue 320 28
18 Niederdorf 350 35
20 Bahnhofstrasse 400 50

To do

Implement the game with command line user interface. Your program should ask for user input
every time a player can decide whether to buy a property or to pay the fine to get out of Jail.

We recommend that you start from the master solution to the assignment 8:
http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/board game solution.zip

Optionally you can implement any extensions to the game, such as:

• other standard rules of Monopoly: property groups, auctions, improving property, mort-
gaging, etc. (see for example http://richard wilding.tripod.com/monorules.htm);

• non-human players (your program will make decisions for some of the players instead of a
human);

• graphical user interface.

To hand in

Hand in the code of your classes.

2When both dice come out the same face up.

5

http://se.ethz.ch/teaching/2010-H/eprog-0001/assignments/08/board_game_solution.zip
http://richard_wilding.tripod.com/monorules.htm

	Air conditioning
	Debug me!
	The final project. Board game: part 4

