
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 11

2

News

 Mock exam in one week (December 6th, 7th)

 You have to be present

 The week after (last exercise session) we will
discuss the results

3

Today

 Basic Data-structures

 Arrays

 Linked Lists

 Hashtables

 Tuples

 Agents

 Agents and Data-structures

4

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

Constant time for random reads

Constant time for random writes

Costly to resize (including inserting elements in the
middle of the array)

Must be indexed by an integer

Generally very space efficient

In Eiffel the basic array class is generic, ARRAY [G].

5

Using Arrays

Which of the following lines are valid?

Which can fail, and why?

 my_array : ARRAY [STRING]

 my_array [“Fred”] := “Sam”

 my_array [10] + “’s Hat”

 my_array [5] := “Ed”

 my_array.force (“Constantine”, 9)

Which is not a constant-time array operation?

Valid, can’t fail

Invalid

Valid, can fail

Valid, can fail

Valid, can’t fail

6

Linked Lists

 Linked lists are one of the simplest data-structures

 They consist of linkable cells

class LINKABLE [G]

create
set_value

feature
set_value (v : G)

do
value := v

end

value : G

set_next (n : LINKABLE[G])
do

next := n
end

next : LINKABLE [G]
end

7

Using Linked Lists

Supposing you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

Insert at the beginning

Insert in the middle

Insert at the end

Find the length of the list

What simple optimization could be made to make end-
access faster?

O (1)

O (n)

O (n)

O (n)

8

Hashtables

Hashtables provide a way to use regular objects as keys
(sort of like how we use INTEGER “keys” in arrays). This is
essentially a trade-off:

we have to provide a hashing function 

hashing function should be good (minimize collision) 

our hashtable will always take up more space than it
needs to 

9

Good points about Hashtables

Hashtables aren’t all that bad though, they provide us with
a great solution: they can store and retrieve objects
quickly by key! This is a very common operation.

For each list define, what the key and values could be:

A telephone book

The index of a book

Google search

Name  Telephone Number

Concept  Page

Search String Websites

Would you use a hashtable or an array for storing the
pages of a book?

10

Tuples

A tuple of type TUPLE [A, B, C] is a sequence of at least
three values, first of type A, second of type B, third of
type C.
 In this case possible tuple values that conform are:
 [a, b, c], [a, b, c, x],...
where a is of type A, b of type B, c of type C and x of
some type X

Tuple types (for any types A, B, C, ...):
TUPLE
TUPLE [A]
TUPLE [A, B]
TUPLE [A, B, C]
...

11

Labeled Tuples

Tuples may be declared with labeled arguments:

tuple: TUPLE [food: STRING; quantity: INTEGER]

 Same as an unlabeled tuple:
TUPLE [STRING, INTEGER]
but provides easier (and safer!) access to its elements:

May use

io.print (tuple.food)‏
instead of

io.print (tuple.item(1))‏

12

Tuple Inheritance

TUPLE [A,B]

TUPLE

TUPLE [A]

...

13

Tuple conformance

tuple_conformance
local

t0: TUPLE
t2: TUPLE [INTEGER, INTEGER]

do
create t2
t2 := [10, 20]
t0 := t2
print (t0.item (1).out + "%N")‏
print (t0.item (3).out)‏

end

Not necessary in this
case

Runtime error, but
will compile

Implicit creation

14

What are agents in Eiffel?

 Objects that represent operations

 Can be seen as operation wrappers

 Similar to

 delegates in C#

 anonymous inner classes in Java < 7

 closures in Java 7

 function pointers in C

 functors in C++

15

Agent definition

 Every agent has an associated routine, which the agent
wraps and is able to invoke

 To get an agent, use the agent keyword

e.g. an_agent := agent my_routine

 This is called agent definition

 What’s the type of an_agent?

16

EiffelBase classes representing agents

*
ROUTINE

+
PROCEDURE

+
FUNCTION

+
PREDICATE

call

item

17

Agent Type Declarations

p: PROCEDURE [ANY, TUPLE]
Agent representing a procedure belonging to a class
that conforms to ANY. At least 0 open arguments

q: PROCEDURE [C, TUPLE [X, Y, Z]]
Agent representing a procedure belonging to a
class that conforms to C. At least 3 open arguments

f: FUNCTION [ANY, TUPLE [X, Y], RES]
Agent representing a function belonging to a class that
conforms to ANY. At least 2 open arguments, result of
type RES

18

Open and closed agent arguments

An agent can have both “closed” and “open” arguments:

 closed arguments are set at agent definition time

 open arguments are set at agent call time.

To keep an argument open, replace it by a question mark

u := agent a0.f (a1, a2, a3) -- All closed
w := agent a0.f (a1, a2, ?)‏
x := agent a0.f (a1, ?, a3)
y := agent a0.f (a1, ?, ?)
z := agent a0.f (?, ?, ?) -- All open

19

Agent Calls

An agent invokes its routine using the feature “call”

f (x1: T1; x2: T2; x3: T3)
-- defined in class C with
-- a0: C; a1: T1; a2: T2; a3: T3

u := agent a0.f (a1, a2, a3)‏

v := agent a0.f (a1, a2, ?)

w := agent a0.f (a1, ?, a3)

x := agent a0.f (a1, ?, ?)

y := agent a0.f (?, ?, ?) y.call ([a1, a2, a3])

x.call ([a2, a3])

w.call ([a2])

v.call ([a3])

u.call ([])PROCEDURE [C, TUPLE]

PROCEDURE [C, TUPLE [T3]]

PROCEDURE [C, TUPLE [T2]]

PROCEDURE [C, TUPLE [T2, T3]]

PROCEDURE [C, TUPLE [T1,T2,T3]

What are the types of the agents?

20

Doing something to a list

do_all (do_this : PROCEDURE[ANY, TUPLE[G]])
local

i : INTEGER
do

from

until

loop

end

end

i := 1

i > count

Given a simple ARRAY [G] class, with only the features

`count’ and `at’, implement a feature which will take an agent and

perform it on every element of the array.

do_this.call ([at (i)])
i := i + 1

21

For-all quantifiers over lists

for_all (pred : PREDICATE [ANY, TUPLE[G]])
local

i : INTEGER
do

from

until

loop

end
end

i := 1

i > count or not Result

Result := True

Result := pred.item ([at (i)])
i := i + 1

22

Using inline agents

We can also define our agents as-we-go!

Applying this to the previous `for_all’ function we made,
we can do:

for_all_ex (int_array : ARRAY [INTEGER]): BOOLEAN

local

greater_five: PREDICATE [ANY, TUPLE [INTEGER]]

do

greater_five := agent (i : INTEGER) : BOOLEAN

do

Result := i > 5

end

Result := int_array.for_all (greater_five)

end

23

Problems with Agents/Tuples

We have already seen that TUPLE [A,B] conforms to
TUPLE [A]. This raises a problem, consider the definition:

f (proc : PROCEDURE [ANY, TUPLE[INTEGER]])

do

proc.call ([5])

end

Yes! Oh no… that procedure needs at least TWO
arguments!

Are we allowed to call this on something of type
PROCEDURE [ANY, TUPLE[INTEGER,INTEGER]] ?

