E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 11

News

> Mock exam in one week (December 6th, 7th)
> You have to be present

»> The week after (last exercise session) we will
discuss the results

Today

» Basic Data-structures
> Arrays
» Linked Lists
» Hashtables
> Tuples
> Agents
» Agents and Data-structures

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

»>Constant time for random reads
»>Constant time for random writes

»Costly to resize (including inserting elements in the
middle of the array)

»Must be indexed by an integer
»Generally very space efficient

In Eiffel the basic array class is generic, ARRAY [&]

0,

Using Arrays

Which of the following lines are valid?
Which can fail, and why?

> my_array : ARRAY [STRING] Valid, can't fail|
> my_array ["Fred"] := "Sam" Invalid |

» my_array [10] + “'s Hat" Valid, can fail
» my_array [5] := "Ed" Valid, can fail
> my_array.force ("Constantine”, 9) | Valid, can't fail

Which is not a constant-time array operation?

Linked Lists

> Linked lists are one of the simplest data-structures
> They consist of linkable cells

class LINKABLE [&]

create
setl _value

feature
set_value (v: 6)
do
value .= v
end

value : &

set_next(n: LINKABLE 6))
do
next .= n
end

next: LINKABLE [&]
end

Using Linked Lists

Supposing you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

»Insert at the beginning O (1))
»Insert in the middle O (n)
»Insert at the end O (nh)
»Find the length of the list O (n)

What simple optimization could be made to make end-
access faster?

Hashtables ©

Hashtables provide a way to use regular objects as keys
(sort of like how we use INTEGER "keys" in arrays). This is
essentially a trade-off:

>we have to provide a hashing function ®
»hashing function should be good (minimize collision) ®

»our hashtable will always take up more space than it
needs to ®

Good points about Hashtables ©

Hashtables aren't all that bad though, they provide us with
a great solution: they can store and retfrieve objects
quickly by key! This is a very common operation.

For each list define, what the key and values could be:

> A telephone book Name - Telephone Number
» The index of a book Concept - Page
»Google search Search String > Websites

Would you use a hashtable or an array for storing the
pages of a book?

Tuples

> A tuple of type TUPLE[A, B, C] is a sequence of at least
three values, first of type A, second of type B, third of

type C.

» In this case possible tuple values that conform are:
» [a b, c] [a b, c x]...
where a is of type A, b of type B, c of type C and x of
some type X

> Tuple types (for any types A4, B, C, ...)

TUPLE
TUPLE [A]
TUPLE[A, B]
TUPLE[A, B, (]

10

Labeled Tuples ©

> Tuples may be declared with labeled arguments:

tuple. TUPLE [food: STRING, guantity: INTEGER]

» Same as an unlabeled tuple:
TUPLE [STRING, INTEGER]
but provides easier (and safer!) access to its elements:

May use

i0.print (tuple.food)
instead of

10.print (tuple.item(1))

11

Tuple Inheritance

TUPLE [A,B]

12

Tuple conformance “

tuple_conformance

local
1+0: TUPLE
t2: TUPLE [INTEGER, INTEGER]

do [Not necessary in this
create 12 case
12 := [10, 20] % lici .
£0 = 12 'S Implicit creation l

print (t0.item (1).out + "%N")

print (t+0.item (3).out) Runtime error, but
end will compile

13

What are agents in Eiffel?

» Objects that represent operations
> Can be seen as operation wrappers

» Similar to
> delegates in CH#
> anonymous inner classes in Java < 7
> closures in Java 7
> function pointers in C
> functors in C++

14

Agent definition

> Every agent has an associated routine, which the agent
wraps and is able to invoke

» To get an agent, use the agent keyword
e.g. an_agent := agent my_routine

» This is called agent definition

» What's the type of an_agent?

15

EiffelBase classes representing agents

call

+
PROCEDURE

< PREDICATE >

/tem

16

Agent Type Declarations

p: PROCEDURE [ANY, TUPLE]

Agent representing a procedure belonging to a class
that conforms to ANY. At least O open arguments

g: PROCEDURE [C, TUPLE[X, Y, Z]]
Agent representing a procedure belonging to a
class that conforms to C. At least 3 open arguments

f: FUNCTION [ANY, TUPLE[X, Y], RES]

Agent representing a function belonging to a class that
conforms to ANY. At least 2 open arguments, result of
type RES

17

Open and closed agent arguments ©

»An agent can have both "closed” and "open” arguments:
> closed arguments are set at agent definition time
» open arguments are set at agent call time.

> To keep an argument open, replace it by a question mark

v:= agent a0.f (al, a2, a3) -- All closed
w = agent a0.f (al, a2, ?)

x:= agent a0.f (al,?, a3)

y:= agent a0.f (al, ?, ?)

z:= agent a0.f (?,?,?) -- All open

18

Agent Calls

An agent invokes its routine using the feature "call”

f(xl. TL x2. T2 x3:. T3)
-- defined in class C with
--a0:C;al: T1; a2: T2; a3: T3
v:= agent a0.f (al, a2, a3) PROCEDURE [C, TUPLE]
v:= agent aO_f(a], a’l, ?) PROCEDURE [C, TUP._E [T3]]
w = agent a0.f (al, ?, a3) PROCEDURE [C, TUPLE [TZ]]
x:= agent a0.f(al, ?,?) PROCEDURE [C, TUPLE [T2, T3]]

y:= agent a0.7(?, 2, ?) PROCEDURE [C, TUPLE [T1,72,T3]]

What are the types of the agents?

19

Doing something to a list

Given a simple ARRAY [G] class, with only the features

“count’ and " at’, implement a feature which will take an agent and
perform it on every element of the array.

do_all (do_this: PROCEDURE[ANY, TUPLE[G]])

local
7 INTEGER
do
from
/=1
until
/> count
loop

do_this.call ([at (i)])
=i+
end
end

20

For-all quantifiers over lists

for_all (pred: PREDICATE [ANY, TUPLE[G]])

local
7 INTEGER

do
Result := True

from
/=1

until
/> count or not Result

loop
Result := pred.item ([at (1)])
=i+ 1

end

end

21

Using inline agents

We can also define our agents as-we-go!

Applying this to the previous " for_all’ function we made,
we can do:

for_all_ex (int_array : ARRAY [INTEGER]): BOOLEAN

local
greater_five: PREDICATE [ANY, TUPLE [INTEGER]]
do
greater_five := agent (i : INTEGER) : BOOLEAN
do
Result:=i>5H
end

Result := int_array.for_all (greater_five)
end

22

Problems with Agents/Tuples

We have already seen that TUPLE [A,B] conforms to

TUPLE [A]. This raises a problem, consider the definition:

f (proc : PROCEDURE [ANY, TUPLE[INTEGER]))
do

proc.call ([5])
end

Are we allowed to call this on something of type
PROCEDURE [ANY, TUPLE[INTEGER INTEGER]] ?

Yes! Oh no... that procedure needs at least TWO
arguments!

23

