Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 4
Today

- A bit of logic
- Understanding contracts (preconditions, postconditions, and class invariants)
- Entities and objects
- Object creation
Propositional Logic

- **Constants:** True, False
- **Atomic formulae (propositional variables):** P, Q, ...
- **Logical connectives:** not, and, or, implies, =
- **Formulae:** φ, χ, ... are of the form
 - True
 - False
 - P
 - not φ
 - φ and χ
 - φ or χ
 - φ implies χ
 - φ = χ
Propositional Logic

Truth assignment and truth table
- Assigning a truth value to each propositional variable

Tautology
- **True** for all truth assignments
 - P or $(\neg P)$
 - $(P \text{ and } (\neg P))$
 - $(P \text{ and } Q) \text{ or } ((\neg P) \text{ or } (\neg Q))$

Contradiction
- **False** for all truth assignments
 - $P \text{ and } (\neg P)$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P implies Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Propositional Logic

Satisfiable

- **True** for at least one truth assignment

Equivalent

- ϕ and χ are equivalent if they are satisfied under exactly the same truth assignments, or if $\phi = \chi$ is a tautology
Tautology / contradiction / satisfiable?

- \(P \lor Q \) satisfiable
- \(P \land Q \) satisfiable
- \(P \lor (\neg P) \) tautology
- \(P \land (\neg P) \) contradiction
- \(Q \implies (P \land (\neg P)) \) satisfiable
Equivalence

Does the following equivalence hold? Prove.

\[(P \implies Q) = (\neg P \implies \neg Q)\]

Does the following equivalence hold? Prove.

\[(P \implies Q) = (\neg Q \implies \neg P)\]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \implies Q</th>
<th>\neg P \implies \neg Q</th>
<th>\neg Q \implies \neg P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
De Morgan laws

\[
\text{not } (P \text{ or } Q) = (\text{not } P) \text{ and } (\text{not } Q)
\]

\[
\text{not } (P \text{ and } Q) = (\text{not } P) \text{ or } (\text{not } Q)
\]

Implications

\[
P \text{ implies } Q = (\text{not } P) \text{ or } Q
\]

\[
P \text{ implies } Q = (\text{not } Q) \text{ implies } (\text{not } P)
\]

Equality on Boolean expressions

\[
(P = Q) = (P \text{ implies } Q) \text{ and } (Q \text{ implies } P)
\]
Predicate Logic

- Domain of discourse: \(D \)
- Variables: \(x: D \)
- Functions: \(f: D^n \rightarrow D \)
- Predicates: \(P: D^n \rightarrow \{True, False\} \)
- Logical connectives: not, and, or, implies, =
- Quantifiers: \(\forall, \exists \)
- Formulae: \(\phi, x, ... \) are of the form
 - \(P(x, ...) \)
 - \(\text{not} \ \phi \ | \ \phi \ \text{and} \ x \ | \ \phi \ \text{or} \ x \ | \ \phi \ \text{implies} \ x \ | \ \phi = x \)
 - \(\forall x \ \phi \)
 - \(\exists x \ \phi \)
Existential and universal quantification

There exists a human whose name is Bill Gates
\(\exists \ h: \text{Human} \mid h.name = \text{“Bill Gates”} \)

All persons have a name
\(\forall \ p: \text{Person} \mid p.name \neq \text{Void} \)

Some people are students
\(\exists \ p: \text{Person} \mid p.is_student \)

The age of any person is at least \(0 \)
\(\forall \ p: \text{Person} \mid p.age \geq 0 \)

Nobody likes Rivella
\(\forall \ p: \text{Person} \mid \text{not } p.likes(\text{Rivella}) \)

\(\text{not} \ (\exists \ p: \text{Person} \mid p.likes(\text{Rivella})) \)
Tautology / contradiction / satisfiable?

Let the domain of discourse be INTEGER

- $x < 0$ or $x \geq 0$
 - tautology
- $x > 0$ implies $x > 1$
 - satisfiable
- $\forall x \mid x > 0$ implies $x > 1$
 - contradiction
- $\forall x \mid x \cdot y = y$
 - satisfiable
- $\exists y \mid \forall x \mid x \cdot y = y$
 - tautology
Semi-strict operations

Semi-strict operators (and then, or else)

- **a and then b**
 has same value as *a and b* if *a* and *b* are defined, and has value **False** whenever *a* has value **False**.

 \[
 \text{text} /= \text{Void} \text{ and then } \text{text}.contains("Joe")
 \]

- **a or else b**
 has same value as *a or b* if *a* and *b* are defined, and has value **True** whenever *a* has value **True**.

 \[
 \text{list} = \text{Void} \text{ or else } \text{list}.is_empty
 \]
Strict or semi-strict?

- $a = 0 \text{ or } b = 0$
- $a \neq 0 \text{ and } b \neq 0$
- $a \neq \text{Void} \text{ and } b \neq \text{Void}$
- $a < 0 \text{ or } \sqrt{a} > 2$
- $(a = b \text{ and } b \neq \text{Void}) \text{ and } \text{not } a.name.is_equal("")$
Assertions

Assertion tag (not required, but recommended)

\texttt{balance_non_negative}: balance \geq 0

Condition (required)

Assertion clause
Property that a feature imposes on every client

\[\text{clap}(n: \text{INTEGER}) \]

-- Clap \(n \) times and update \(\text{count} \).

require
\[\begin{align*}
\text{not_too_tired} & : \text{count} \leq 10 \\
\text{n_positive} & : \, n > 0
\end{align*} \]

A feature with no \textbf{require} clause is always applicable, as if the precondition reads

require
\[\begin{align*}
\text{always_OK} & : \, \text{True}
\end{align*} \]
Postcondition

Property that a feature guarantees on termination

\[
\text{clap}(n: \text{INTEGER})
\]

\[
\text{-- Clap } n \text{ times and update } \text{count}.
\]

\[
\text{require}
\]

\[
\text{not_too_tired: count} \leq 10
\]

\[
\text{n_positive: } n > 0
\]

\[
\text{ensure}
\]

\[
\text{count_updated: count} = \text{old count} + n
\]

A feature with no \textit{ensure} clause always satisfies its postcondition, as if the postcondition reads

\[
\text{ensure}
\]

\[
\text{always_OK: True}
\]
Class Invariant

Property that is true of the current object at any observable point

class ACROBAT

...

invariant

count_non_negative: count >= 0

end

A class with no invariant clause has a trivial invariant

always_OK: True
Add pre- and postconditions to:

\[
\text{smallest_power} \ (n, \ text{bound}: \ \text{NATURAL}) : \ \text{NATURAL}
\]

\[\quad -- \text{Smallest x such that } `n`^\text{x} \text{ is greater or equal } `\text{bound}'.\]

require

 do
 ...

 ensure

end
One possible solution

```plaintext
smallest_power (n, bound: NATURAL): NATURAL
    -- Smallest x such that `n'^x is greater or equal `bound'.

require
    n_large_enough: n > 1
    bound_large_enough: bound > 1

ensure
    greater_equal_bound: n ^ Result >= bound
    smallest: n ^ (Result - 1) < bound

end
```
Add invariants to classes ACROBAT_WITH_BUDDY and CURMUDGEON.

Add preconditions and postconditions to feature make in ACROBAT_WITH_BUDDY.
Class **ACROBAT_WITH_BUDDY**

```plaintext
class ACROBAT_WITH_BUDDY
  inherit ACROBAT
  redefine twirl, clap, count
end

create
  make
end

feature
  make (p: ACROBAT)
  do
    -- Remember `p' being
    -- the buddy.
  end

  clap (n: INTEGER)
  do
    -- Clap `n' times and
    -- forward to buddy.
  end

  twirl (n: INTEGER)
  do
    -- Twirl `n' times and
    -- forward to buddy.
  end

  count: INTEGER
  do
    -- Ask buddy and return his
    -- answer.
  end

  buddy: ACROBAT
end
```
Class CURMUDGEON

class CURMUDGEON

inherit ACROBAT
 redefine clap, twirl end

feature
 clap (n: INTEGER)
 do
 -- Say “I refuse”.
 end

twirl (n: INTEGER)
 do
 -- Say “I refuse”.
 end
end
Entity vs. object

In the class text: an entity

\[\text{joe: STUDENT}\]

In memory, during execution: an object
class INTRODUCTION_TO_PROGRAMMING
inherit COURSE
feature execute
 -- Teach `joe' programming.
 do
 -- ???
 joe.solve_all_assignments
 end
end

joe: STUDENT
 -- A first year computer science student
end
In an instance of `INTRODUCTION_TO_PROGRAMMING`, may we assume that `joe` is attached to an instance of `STUDENT`?
By default

Initially, \textit{joe} is not attached to any object: its value is a \textbf{Void} reference.

\begin{tikzpicture}
 \node (joe) [draw] {joe};
 \node (void) [draw, right of=joe] {Void reference};
 \draw [->] (joe) -- (void);
\end{tikzpicture}
States of an entity

During execution, an entity can:

- Be attached to a certain object
- Have the value *Void*
States of an entity

- To denote a void reference: use `Void` keyword
- To create a new object in memory and attach x to it: use `create` keyword

\[
\text{create } x
\]

- To find out if x is void: use the expressions

\[
\begin{align*}
x &= \textbf{Void} \ (\text{true iff } x \text{ is void}) \\
x &\neq \textbf{Void} \ (\text{true iff } x \text{ is attached})
\end{align*}
\]
Those mean void references!

The basic mechanism of computation is feature call

\[x.f(a, ...) \]

Since references may be void, \(x \) might be attached to no object

The call is erroneous in such cases!
Why do we need to create objects?

Shouldn’t we assume that a declaration

\[j\text{oe}: \text{STUDENT} \]

creates an instance of \text{STUDENT} and attaches it to \text{joe}?
Those wonderful void references!

Married persons:

\[(\text{PERSON}) \rightarrow \text{spouse} \rightarrow (\text{PERSON})\]

Unmarried person:

\[(\text{PERSON}) \rightarrow \text{spouse} \rightarrow \text{spouse} \rightarrow (\text{PERSON})\]
Those wonderful void references!

Last *next* reference is void to terminate the list.
Creation procedures

- Instruction `create x` will initialize all the fields of the new object attached to `x` with default values.

- What if we want some specific initialization? E.g., to make object consistent with its class invariant?

```java
class STOP {
    ...  
    station: STATION
    invariant
        station /= Void
    ...
}
```

- Use creation procedure:

```java
create stop1.set_station(Central)
```
class STOP
create
 set_station
feature
 station: STATION
 -- Station which this stop represents
 next: SIMPLE_STOP
 -- Next stop on the same line
set_station(s: STATION)
 -- Associate this stop with s.
 require
 station_exists: s /= Void
 ensure
 station_set: station = s
link(s: SIMPLE_STOP)
 -- Make s the next stop on the line.
 ensure
 next_set: next = s
invariant
 station_exists: station /= Void
end
Object creation: summary

To create an object:

- If class has no `create` clause, use basic form:
 \[\text{create } x\]

- If the class has a `create` clause listing one or more procedures, use
 \[\text{create } x.\text{make}(\ldots)\]
 where `make` is one of the creation procedures, and \((\ldots)\) stands for arguments if any.
Some acrobatics

class DIRECTOR
create prepare_and_play
feature
 acrobat1, acrobat2, acrobat3: ACROBAT
 friend1, friend2: ACROBAT_WITH_BUDDY
 author1: AUTHOR
 curmudgeon1: CURMUDGEON
prepare_and_play
do
 author1.clap(4)
 friend1.twirl(2)
 curmudgeon1.clap(7)
 acrobat2.clap(curmudgeon1.count)
 acrobat3.twirl(friend2.count)
 friend1.buddy.clap(friend1.count)
 friend2.clap(2)
end
end
Some acrobatics

class DIRECTOR
create prepare_and_play
feature
 acrobat1, acrobat2, acrobat3: ACROBAT
 friend1, friend2: ACROBAT_WITH_BUDDY
 author1: AUTHOR
 curmudgeon1: CURMUDGEON

prepare_and_play
 do
1 create acrobat1
2 create acrobat2
3 create acrobat3
4 create friend1.make_with_buddy(acrobat1)
5 create friend2.make_with_buddy(friend1)
6 create author1
7 create curmudgeon1
 end
end

Which entities are still Void after execution of line 4?
Which of the classes mentioned here have creation procedures?
Why is the creation procedure necessary?