
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 4

2

Today

 A bit of logic

 Understanding contracts (preconditions,
postconditions, and class invariants)

 Entities and objects

 Object creation

3

Propositional Logic

 Constants: True, False

 Atomic formulae (propositional variables): P, Q, ...

 Logical connectives: not, and, or, implies, =

 Formulae: φ, χ, ... are of the form

 True

 False

 P

 not φ

 φ and χ

 φ or χ

 φ implies χ

 φ = χ

4

Propositional Logic

Truth assignment and truth table

 Assigning a truth value to each propositional variable

Tautology
True for all truth assignments

 P or (not P)

 not (P and (not P))

 (P and Q) or ((not P) or (not Q))

Contradiction

False for all truth assignments

 P and (not P)

P Q P implies Q

T F F

T T T

F T T

F F T

5

Propositional Logic

Satisfiable

True for at least one truth assignment

Equivalent
φ and χ are equivalent if they are satisfied under

exactly the same truth assignments, or if φ = χ is a
tautology

6

Tautology / contradiction / satisfiable?

P or Q

satisfiable

P and Q

satisfiable

P or (not P)

tautology

P and (not P)

contradiction

Q implies (P and (not P))

satisfiable

7

Equivalence

Does the following equivalence hold? Prove.

(P implies Q) = (not P implies not Q)

Does the following equivalence hold? Prove.

(P implies Q) = (not Q implies not P)

P Q P implies Q not P implies not Q not Q implies not P

T T T T T

T F F T F

F T T F T

F F T T T

F

T

8

Useful stuff

De Morgan laws

not (P or Q) = (not P) and (not Q)

not (P and Q) = (not P) or (not Q)

Implications

P implies Q = (not P) or Q

P implies Q = (not Q) implies (not P)

Equality on Boolean expressions

(P = Q) = (P implies Q) and (Q implies P)

9

Predicate Logic

 Domain of discourse: D

 Variables: x: D

 Functions: f: Dn -> D

 Predicates: P: Dn -> {True, False}

 Logical connectives: not, and, or, implies, =

 Quantifiers: , 

 Formulae: φ, χ, ... are of the form

 P (x, ...)

 not φ | φ and χ | φ or χ | φ implies χ | φ = χ

 x φ

 x φ

10

Existential and universal quantification

There exists a human whose name is Bill Gates

 h: Human | h.name = “Bill Gates”

All persons have a name

 p: Person | p.name /= Void

Some people are students

 p: Person | p.is_student

The age of any person is at least 0

 p: Person | p.age >= 0

Nobody likes Rivella

 p: Person | not p.likes (Rivella)

not ( p: Person | p.likes (Rivella))

11

Tautology / contradiction / satisfiable?

Let the domain of discourse be INTEGER

x < 0 or x >= 0

tautology

x > 0 implies x > 1

satisfiable

x | x > 0 implies x > 1

contradiction

x | x*y = y

satisfiable

y | x | x*y = y

tautology

12

Semi-strict operations

Semi-strict operators (and then, or else)

a and then b

has same value as a and b if a and b are defined, and
has value False whenever a has value False.

text /= Void and then text.contains (“Joe”)

a or else b
has same value as a or b if a and b are defined, and
has value True whenever a has value True.

list = Void or else list.is_empty

13

Strict or semi-strict?

 a = 0 or b = 0

 a /= 0 and then b // a /= 0

 a /= Void and b /= Void

 a < 0 or else sqrt (a) > 2

 (a = b and b /= Void) and then not

a.name .is_equal (“”)

14

Assertions

balance_non_negative: balance >= 0

Assertion clause

Assertion tag (not
required, but

recommended)
Condition
(required)

15

clap (n: INTEGER)
-- Clap n times and update count.

require
not_too_tired: count <= 10
n_positive: n > 0

Property that a feature imposes on every client

A feature with no require clause is always applicable,
as if the precondition reads

require

always_OK: True

Precondition

16

clap (n: INTEGER)
-- Clap n times and update count.

require
not_too_tired: count <= 10
n_positive: n > 0

ensure
count_updated: count = old count + n

Property that a feature guarantees on termination

A feature with no ensure clause always satisfies its
postcondition, as if the postcondition reads

ensure

always_OK: True

Postcondition

17

Property that is true of the current object at
any observable point

A class with no invariant clause has a trivial
invariant

always_OK: True

class ACROBAT
…

invariant

count_non_negative: count >= 0
end

Class Invariant

18

Pre- and postcondition example

Add pre- and postconditions to:

smallest_power (n, bound: NATURAL): NATURAL
-- Smallest x such that `n'^x is greater or equal `bound'.

require
???

do
...

ensure
???

end

19

One possible solution

smallest_power (n, bound: NATURAL): NATURAL
-- Smallest x such that `n'^x is greater or equal `bound'.

require
n_large_enough: n > 1
bound_large_enough: bound > 1

do
...

ensure
greater_equal_bound: n ^ Result >= bound
smallest: n ^ (Result - 1) < bound

end

20

Hands-on exercise

Add invariants to classes ACROBAT_WITH_BUDDY and
CURMUDGEON.

Add preconditions and postconditions to feature make in
ACROBAT_WITH_BUDDY.

21

Class ACROBAT_WITH_BUDDY

class
ACROBAT_WITH_BUDDY

inherit
ACROBAT

redefine
twirl, clap, count

end

create
make

feature
make (p: ACROBAT)

do
-- Remember `p’ being
-- the buddy.

end

clap (n: INTEGER)
do

-- Clap `n’ times and
-- forward to buddy.

end

twirl (n: INTEGER)
do

-- Twirl `n’ times and
-- forward to buddy.

end

count: INTEGER
do

-- Ask buddy and return his
-- answer.

end

buddy: ACROBAT
end

22

Class CURMUDGEON

class
CURMUDGEON

inherit
ACROBAT

redefine clap, twirl end

feature
clap (n: INTEGER)

do
-- Say “I refuse”.

end

twirl (n: INTEGER)
do

-- Say “I refuse”.
end

end

23

In the class text: an entity

joe: STUDENT

In memory, during execution: an object

Entity vs. object

(COURSE)

MEMORY

(ASSISTANT)

(STUDENT)(MARK)

(PROFESSOR)

Fields

Generating class

24

class
INTRODUCTION_TO_PROGRAMMING

inherit
COURSE

feature
execute

-- Teach `joe’ programming.
do

-- ???
joe.solve_all_assignments

end

joe: STUDENT
-- A first year computer science student

end

INTRODUCTION_TO_PROGRAMMING

25

Initial state of a reference

In an instance of INTRODUCTION_TO_PROGRAMMING,
may we assume that joe is attached to an instance of
STUDENT?

joe

(STUDENT)

reference

(INTRODUCTION_
TO_PROGRAMMING)

MEMORY

Where does this one
come from?

…

This object has been created
(by someone else)

26

By default

Initially, joe is not attached to any object:

its value is a Void reference.

joe
Void

reference
(INTRODUCTION_

TO_PROGRAMMING)

27

States of an entity

During execution, an entity can:

 Be attached to a certain object

 Have the value Void

28

 To denote a void reference: use Void keyword

 To create a new object in memory and attach x to
it: use create keyword

create x

 To find out if x is void: use the expressions

x = Void (true iff x is void)

x /= Void (true iff x is attached)

States of an entity

29

Those mean void references!

The basic mechanism of computation is feature call

x.f (a, …)

Since references may be void, x might be attached to no
object

The call is erroneous in such cases!

Apply feature f

To object to which x is
attached

Possibly with
arguments

30

Shouldn’t we assume that a declaration

joe: STUDENT

creates an instance of STUDENT and attaches it to joe?

Why do we need to create objects?

31

Those wonderful void references!

(PERSON) (PERSON)

spouse spouse

Married persons:

(PERSON)

spouse

Unmarried person:

32

Those wonderful void references!

Last next reference is void to terminate the list.

(STOP)

next next next

(STOP) (STOP)

33

Creation procedures

 Instruction create x will initialize all the fields of the
new object attached to x with default values

 What if we want some specific initialization? E.g., to
make object consistent with its class invariant?

class STOP
…

station: STATION
invariant

station /= Void

station

 Use creation procedure:

create stop1.set_station (Central)

34

STOP

List one or more creation
procedures

May be used as a
regular command and as

a creation procedure

Is established by
set_station

class STOP
create

set_station
feature

station: STATION
-- Station which this stop represents

next: SIMPLE_STOP
-- Next stop on the same line

set_station (s: STATION)
-- Associate this stop with s.
require

station_exists: s /= Void
ensure

station_set: station = s
link (s: SIMPLE_STOP)

-- Make s the next stop on the line.
ensure

next_set: next = s
invariant

station_exists: station /= Void
end

35

Object creation: summary

To create an object:

 If class has no create clause, use basic form:

create x

 If the class has a create clause listing one or
more procedures, use

create x.make (…)

where make is one of the creation procedures,
and (…) stands for arguments if any.

36

Some acrobatics

class DIRECTOR
create prepare_and_play
feature

acrobat1, acrobat2, acrobat3: ACROBAT
friend1, friend2: ACROBAT_WITH_BUDDY
author1: AUTHOR
curmudgeon1: CURMUDGEON

prepare_and_play
do

author1.clap (4)
friend1.twirl (2)
curmudgeon1.clap (7)
acrobat2.clap (curmudgeon1.count)
acrobat3.twirl (friend2.count)
friend1.buddy.clap (friend1.count)
friend2.clap (2)

end
end

What entities are used
in this class?

What’s wrong with the
feature

prepare_and_play?

37

Some acrobatics

class DIRECTOR

create prepare_and_play

feature

acrobat1, acrobat2, acrobat3: ACROBAT

friend1, friend2: ACROBAT_WITH_BUDDY

author1: AUTHOR

curmudgeon1: CURMUDGEON

prepare_and_play

do

1 create acrobat1

2 create acrobat2

3 create acrobat3

4 create friend1.make_with_buddy (acrobat1)

5 create friend2.make_with_buddy (friend1)

6 create author1

7 create curmudgeon1

end

end

Which entities are still Void
after execution of line 4?

Which of the classes
mentioned here have
creation procedures?

Why is the creation
procedure necessary?

