
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 7



2

News (Reminder)

Mock exam next week!

 Monday exercise groups: November 8

 Tuesday exercise groups: November 9

 You have to be present

 The week after we will discuss the results

 Assignment 7 due on November 16



3

Today

 Abstractions

 Uniform Access Principle

 Naming conventions

 Exporting features



4

Abstraction

To abstract is to capture the essence behind the details 
and the specifics.

The client is interested in:

 a set of services that a software module provides, 
not its internal representation

 what a service does, not how it does it

hence, the class abstraction

hence, the feature abstraction

 Object-oriented programming is all about finding right 
abstractions

 However, the abstractions we choose can sometimes 
fail, and we need to find new, more suitable ones.



5

Abstraction

”A simplification of something much more complicated 
that is going on under the covers. As it turns out, a lot of 
computer programming consists of building abstractions. 

What is a string library? It's a way to pretend that 
computers can manipulate strings just as easily as they 
can manipulate numbers. 

What is a file system? It's a way to pretend that a hard 
drive isn't really a bunch of spinning magnetic platters 
that can store bits at certain locations, but rather a 
hierarchical system of folders-within-folders containing 
individual files that in turn consist of one or more strings 
of bytes.“

(extract from http://www.joelonsoftware.com/articles/LeakyAbstractions.html )

http://www.joelonsoftware.com/articles/LeakyAbstractions.html


6

Discussing abstractions

What abstractions were used in the 
temperature converter from assignment 4?

 Why it is better to have a class for TEMPERATURE 
than to store the value in an INTEGER variable?

 How was the Celsius value obtained? What about the 
Kelvin value? Did you see that difference in the class 
TEMPERATURE_APPLICATION ?



7

Finding the right abstractions  (classes)

Suppose you want to model your room:

class ROOM

feature

-- to be determined

end

Your room probably has thousands of properties and
hundreds of things in it: 



8

Finding the right abstractions  (classes)

size

location

material

messy?

door

shape

computer bed

desk

furniture

etc
etc

etc

Therefore, we need a first abstraction: What do we
want to model?

In this case, we focus on the size, the door, the
computer and the bed.



9

Finding the right abstractions (classes)

To model the size, an attribute of type DOUBLE is
probably enough, since all we are interested in is it„s value:

class ROOM

feature

size: DOUBLE

-- Size of the room.

end



10

Finding the right abstractions (classes)

Now we want to model the door.

If we are only interested in the state of the door, i.e. if it
is open or closed, a simple attribute of type BOOLEAN
will do:

class ROOM

feature

size: DOUBLE

-- Size of the room.

is_door_open: BOOLEAN

-- Is the door open or closed?

...

end



11

Finding the right abstractions (classes)

But what if we are also interested in what our door looks
like, or if opening the door triggers some behavior?

 Is there a daring poster on the door?

 Does the door squeak while being opened or closed?

 Is it locked?

When the door is being opened, a  message will be sent
to my cell phone

In this case, it is better to model a door as a separate 
class!



12

Finding the right abstractions (classes)

class ROOM

feature

size: DOUBLE
-- Size of the room in square meters.

door: DOOR

-- The room‟s door.

end



13

Finding the right abstractions (classes)

class DOOR

feature

is_locked: BOOLEAN

-- Is the door locked?

is_open: BOOLEAN

-- Is the door open?

is_squeaking: BOOLEAN

-- Is the door squeaking?

has_daring_poster: BOOLEAN

-- Is there a daring poster on the door?

open

-- Opens the door

do

-- Implementation of open, including sending a message

end

-- more features… 

end



14

Finding the right abstractions (classes)

How would you model…

… the computer?

… the bed?

How would you model an elevator in a building?



15

Finding the right abstractions (features)

(BANK_ACCOUNT)

deposits

withdrawals

800

(BANK_ACCOUNT)

deposits

withdrawals

balance

1000 300

500

1000 300

500

invariant: balance = total (deposits) – total (withdrawals)

Which one would you choose and why?



16

Uniform access principle

The client is interested in what a service does, not how it 
does it.

It doesn‟t matter for the client, whether you store or 
compute, he just wants to obtain the balance.

Features should be accessible to clients the same way, no 
matter whether they are implemented by storage or 
computation

my_account.balance



17

Features: the full story (again…)

Command

Query

Feature
Function

No result

Feature

Memory

Computation

Client view
(specification)

Internal view 
(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

No result

Returns result



18

Two kinds of queries

Attribute

 from the client‟s viewpoint it is a query

 call is an expression

 from the implementation‟s viewpoint uses memory

Function

 from the client‟s viewpoint is a query

 call is an expression

 from the implementation‟s viewpoint uses computation



22

Exporting features

• a1.f, a1.g: valid in any client

• a1.h: invalid everywhere (including in A‟s text!)

• a1.j: valid in B, C and their descendants (invalid 
in A!)

• a1.m: valid in B, C and their descendants,
as well as in A and its descendants.

Status of calls in a client with a1 of type A:class
A

feature
f ...
g ...

feature {NONE}

h, i ...

feature {B, C}

j, k, l ...

feature {A, B, C}

m, n…
end



23

Compilation error?

class PERSON
feature

name: STRING
feature {BANK}

account: BANK_ACCOUNT
feature {NONE}

loved_one: PERSON
think

do
print (“Thinking of ” + loved_one.name)

end
lend_100_franks

do
loved_one.account.transfer (account, 100)

end
end

OK: unqualified call OK: exported to all

OK: unqualified callError: not exported 
to PERSON



24

The strange case of the stolen exam

class PROFESSOR

create
make

feature
make (an_exam_draft: STRING) 

do
exam_draft := an_exam_draft

end
feature

exam_draft: STRING
end



25

For your eyes only

class ASSISTANT

create
make

feature
make (a_prof: PROFESSOR) 

do
prof := a_prof

end
feature

prof: PROFESSOR
feature

review_draft
do

-- review  prof.exam_draft
end

end



26

Exploiting a hole in information hiding

class STUDENT

create
make

feature
make (a_prof: PROFESSOR; an_assi: ASSISTANT) 

do
prof := a_prof
assi := an_assi

end
feature 

prof: PROFESSOR
assi: ASSISTANT

feature
stolen_exam: STRING

do
Result := prof.exam_draft

end
end



27

Don’t try this at home!

you: STUDENT
your_prof: PROFESSOR
your_assi: ASSISTANT
stolen_exam: STRING

create your_prof.make ( “top secret exam!”)
create your_assi.make (your_prof)
create you.make (your_prof, your_assistant)

stolen_exam := you.stolen_exam



28

Fixing the issue

class PROFESSOR
create

make
feature

make (a_exam_draft: STRING) 
do

exam_draft := a_exam_draft
end

feature
exam_draft: STRING

end

{PROFESSOR, ASSISTANT}



29

The export status does matter!

class STUDENT
create

make
feature

make (a_prof: PROFESSOR; a_assi: ASSISTANT) 
do

prof := a_prof
assi := a_assi

end
feature 

prof: PROFESSOR
assi: ASSISTANT

feature
stolen_exam: STRING

do
Result := prof.exam_draft

end
end Invalid call!

Result := assi.prof.exam_draft

Invalid call!



30

Information hiding vs. creation routines

class PROFESSOR
create

make
feature {None}

make (an_exam_draft: STRING) 
do

...
end

end

Can I create an object of type PROFESSOR as a client?

After creation, can I invoke feature make as a client?



31

Controlling the export status of creation routines

class PROFESSOR
create {COLLEGE_MANAGER}

make
feature {None}

make (an_exam_draft: STRING) 
do

...
end

end

Can I create an object of type PROFESSOR as a client?
After creation, can I invoke feature make as a client?
What if I have create {NONE} make instead of 
create {COLLEGE_MANAGER} make ?



32

Exporting attributes

Exporting an attribute only means giving read access

x.f := 5

Attributes of other objects can be changed only through 
commands

 protecting the invariant

 no need for getter functions!



33

Example

class TEMPERATURE

feature
celsius_value: INTEGER

make_celsius (a_value: INTEGER)

require
above_absolute_zero: a_value >= - Celsius_zero

do
celsius_value := a_value

ensure
celsius_value_set := celsius_value = a_value

end

...

end



34

Assigners

If you like the syntax

x.f := 5

you can declare an assigner for f

 In class TEMPERATURE

celsius_value: INTEGER assign make_celsius

 In this case

t.celsius_value := 36

is a shortcut for

t.make_celsius (36)
 ... and it won‟t break the invariant!


