ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

Mock Exam 1

ETH Zurich
November 8,9 2010

Name:

Group:

1 Terminology (10 points)
Goal

This task will test your understanding of the object-oriented programming concepts presented
so far in the lecture. This is a multiple-choice test.

Todo

Place a check-mark in the box if the statement is true. There may be multiple true statements
per question; 0.5 points are awarded for checking a true statement or leaving a false statement
un-checked, 0 points are awarded otherwise.

1. A command...

O a. call is an instruction.
O b. may modify an object.

[0 c. may appear in the precondition and the postcondition of another command but not
in the precondition or the postcondition of a query.

[0 d. may appear in the class invariant.

2. The syntax of a program...
[0 a. is the set of properties of its potential executions.
O b. can be derived from the set of its objects.

O c. is the structure and the form of its text.

[J d. may be violated at run-time.
3. A class...

[0 a. is the description of a set of possible run-time objects to which the same features are
applicable.

[0 b. can only exist at runtime.



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

[0 c. cannot be declared as expanded; only objects can be expanded.

O d. may have more than one creation procedure.

4. Immediately before a successful execution of a creation instruction with target z of type

0 a. x = Void must hold.
O b. z /= Void must hold.
[0 c. the postcondition of the creation procedure may not hold.

[0 d. the precondition of the creation procedure must hold.
5. Void references...

0 a. cannot be the target of a successful call.
O b. are not default values for any type.
[J c. indicate expanded objects.

O d. can be used to terminate linked structures (e.g. linked lists).

Solution
1. A command...

v’ a. call is an instruction.
v" b. may modify an object.

c. may appear in the precondition and the postcondition of another command but not
in the precondition or the postcondition of a query.

d. may appear in the class invariant.
2. The syntax of a program...

a. is the set of properties of its potential executions.
b. can be derived from the set of its objects.

v' c. is the structure and the form of its text.
d. may be violated at run-time.

3. A class...
v a. is the description of a set of possible run-time objects to which the same features are
applicable.

b. can only exist at runtime.
c. cannot be declared as expanded; only objects can be expanded.

v' d. may have more than one creation procedure.

4. Immediately before a successful execution of a creation instruction with target z of type
C...

x = Void must hold.

z /= Void must hold.

v c. the postcondition of the creation procedure may not hold.

IS

v' d. the precondition of the creation procedure must hold.



2

4

6

10

12

14

16

18

20

22

26

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

5.

2

Void references...

v' a. cannot be the target of a successful call.
b. are not default values for any type.

indicate expanded objects.

o

v d. can be used to terminate linked structures (e.g. linked lists).

Design by Contract (10 Points)

Class PERSON is part of a software system that models marriage relations between persons.

The

following rules do not necessarily have universal value but describe a particular set of rules

for marriage at a particular time and place in the past, e.g. Canton Ziirich 1900:

5.

1. Every person has a nonempty name.

2. A person cannot be married to himself/herself.
3.
4

. In order for a person X to be able to marry a person Y, neither X nor Y may be already

If a person X is married to a person Y, then Y is married to X.

married.

Divorces are not allowed.

Your task is to fill in the contracts of the class (preconditions, postconditions and class
invariant) according to the specification given. You are not allowed to change the class interfaces
or any of the already given implementations. Note that the number of dotted lines does not
indicate the number of necessary code lines that you have to provide.

class PERSON

create make

feature { NONE} —— Creation

make (n: STRING)
—— Create a person with a name ‘n’.
require

—— Create a copy of the argument and assign it to ‘name’
name := n.twin
ensure



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2010

32 feature —— Access

34 name: STRING

—— Person’s name.

36
spouse: PERSON
38 —— Spouse if a spouse exists, Void otherwise.
40
feature —— Status report
42
is-married: BOOLEAN
44 —— Is person married?
do
46 Result := (spouse /= Void)
ensure
48
50
52
54
56 end

58 feature { PERSON} —— Implementation

60 accept_marriage (p: PERSON)
—— Set ‘spouse’ to ‘p’, who is already married to you.
62 require

72 spouse := p
ensure
74

76

78



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Mock Exam
Fall 2010

84 feature —— Basic operations

86 marry (p: PERSON)
—— Marry ‘p’.
88 require

98 spouse := p
p.accept_marriage (Current)
100 ensure

102

106

108 end

Solution

class
2 PERSON



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2010

4 create
make
6
feature { NONE} —— Creation
8
make (n: STRING)
10 —— Create a person with a name ‘n’.
require
12 n_exists: n /= Void
n_nonempty: not n.is_empty
14 do
—— Create a copy of the argument and assign it to name
16 name := n.twin
ensure
18 name_set: n. is_equal (name)
not_married_yet: not is_-married
20 end
22 feature —— Access

24 name: STRING
—— Person’s name.
26
spouse: PERSON
28 —— Spouse if a spouse exists, Void otherwise.

30 feature —— Status report

32 isemarried: BOOLEAN

—— Is person married?
34 do

Result := (spouse /=Void)
36 end

38 feature { PERSON} —— Implementation

40 accept_marriage (p: PERSON)

—— Set ‘spouse’ to ‘p’, who is already married to you.
42 require

p-exists: p /= Void

44 p-not_current: p /= Current
current_not_married: not is_married
46 target_-maybe_married: p.spouse = Current
do
48 spouse := p
ensure
50 spouse_set: spouse = p
is.married: is_married
52 end
54 feature —— Basic operations



96

o8

60

62

64

66

68

70

72

74

76

1

3

5

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer Fall 2010
marry (p: PERSON)
—— Marry ‘p’.
require
p_exists: p /= Void
p_not_current: p /= Current
current_not-married: not is_married
target_not_married: not p.is_married
do
spouse 1= p
p.accept_marriage (Current)
ensure
current_spouse_is_p : spouse = p
end
invariant
name-exists: name /= Void
name_nonempty: not name.is_empty
is-married_if_spouse_exists : is-married = (spouse /= Void)
irreflexive_marriage : spouse /= Current
symmetric_marriage: is-married implies (spouse.spouse = Current)
end

3 Digital root (10 points)

The digital root (Quersumme) of a number is found by adding together the digits that make up
the number. If the resulting number has more than one digit, the process is repeated until a
single digit remains.

Example input and output

Input Digital root Example

123 6 =1+2+3
5720 5 =144+14=5+74+24+0
99999999 9
8 8

Your task in this problem is to implement a function that, given a non-negative number,
calculates the digital root and returns it as the result. Fill in the body of function digital root
below. Your implementation should work with INTEGER objects only. You might find the
following two operators of class INTEGER useful: \\ (modulo) and // (integer division).

There exists a closed-form solution to this problem: digital_root(n) = n—n|2]. You are not
allowed to use this to solve this programming exercise!

digital_root (a-number: INTEGER): INTEGER
—— Digital root (Quersumme) of ‘a_number’
require
a-number_positive: a_number >= 0
local



11

13

15

17

19

21

23

25

27

29

31

33

35

39

41

43

45

47

49

o1

93

95

o7

99

61

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

ensure
result_in_range : 0 <= Result and Result <=9



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2010

63 end

Solution

digital_root (a-number: INTEGER): INTEGER
—— Digital root (Quersumme) of ‘a_number’

require
a-number_within_range: a_number >= 0
local
number: INTEGER
do
from
Result := a_number
invariant
result_non_negative : Result >= 0
until
Result < 10
loop
from
number := Result
Result := 0
invariant
—— ‘Result’ is a sum of i lower digits of ‘old Result’
—— ‘number’ contains n — i upper digits of ‘old Result’
until
number = 0
loop

Result := Result + (number \\ 10)
number := number // 10
variant
number
end
variant
Result
end
end

4 Inversion of Linked List (10 Points)

The classes SINGLE_LINKED_LIST [G] and SINGLE_CELL [G] implement a single linked list.
The first cell of the list is stored in the attribute first of the class SINGLE_LINKED_LIST [G].
Attribute next of class SINGLE_CELL [G] delivers the next cell . Calling next on the last cell

will return a Void reference.

Implement the feature invert of class SINGLE_LINKED_LIST [G], so that it inverts the
order of the elements in the list. For example, inverting the list [6, 2, 8, 5] results in [5, 8, 2,
6]. Do not create new objects of type SINGLE_CELL [G] and also do not introduce any new

feature in class SINGLE_LINKED_LIST [G] and SINGLE_CELL [G].



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

class
2 SINGLE_LINKED_LIST [G]

4 feature —— Access

6 first: SINGLE_-CELL [G]

—— Head element of the list, ‘Void’ if the list is empty
8

feature —— Basic operations
10
nvert

12 —— Invert the order of the elements of the list .

—— E.g. the list [6, 2, 8, 5] should be become [5, 8, 2, 6].
14 local

. I
.- I
- |
2
2
20
1
B0

B

10



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Mock Exam
Fall 2010

class
2 SINGLE_-CELL |G)

4 feature —— Access

6 mnext: SINGLE_.CELL [G]

—— Reference to the next generic list cell of a list

8
10 feature —— Element change
12 set_next (an_element: SINGLE_-CELL [G])
—— Set ‘next’ to ‘an_element’.
14 ensure
next_set: mext = an_element
16
end
Solution
1 invert
—— Invert the order of the elements of the list .
3 —— E.g. the list [6, 2, 8, 5] should be become [5, 8, 2, 6]
local
5 actual: SINGLE_CELL [G]
next: SINGLE_CELL [G)
7 do
from
9 until
first = Void
11 loop
actual = first
13 first = first .next
actual. set_next (next)
15 next := actual
end
17 first := next
end

11



	Terminology (10 points)
	Design by Contract (10 Points)
	Digital root (10 points)
	Inversion of Linked List (10 Points)

