Mock Exam 2

ETH Zurich

December 6,7 2010

Name: .			
~			
Group:			

Question	Points
1	
2	
3	
4	
Total	
Grade	

1 Terminology (12 Points)

Goal

This task will test your understanding of the object-oriented programming concepts presented so far in the lecture. This is a multiple-choice test.

Todo

Place a check-mark in the box if the statement is true. There may be multiple true statements per question; 0.5 points are awarded for checking a true statement or leaving a false statement un-checked, 0 points are awarded otherwise.

Example:	
 Which of the following statements are true? a. Classes exist only in the software text; objects exist only during the execution of the software. 	
b. Each object is an instance of its generic class.	
c. An object is deferred if it has at least one deferred feature.	
1. Classes and objects.	
a. A class is the description of a set of possible run-time objects to which the same features are applicable.	
b. If an object x is an instance of class C , then C is the generating class of x and x is described by C .	
c. A class represents a category of things. An object represents one of these things.	
d. An object represents a category of things. A class represents one of these things.	
2. Procedures, functions and attributes.	
a. A query needs to be a function.	
b. A function cannot modify any objects.	
c. An attribute is stored directly in memory.	
d. A procedure can return values that are computed.	
3. What are <i>all</i> the possible changes in a function redefinition?	
a. To change the implementation and the name.	
b. To change the list of argument types, the result type, the contract, and the implementation.	
c. To change the list of argument types, the result type, the contract, the name, and the implementation.	
d. To change the list of argument types, the result type, and the implementation.	

4.	Clients and suppliers.	
	a. A supplier of a software mechanism is a system that uses the mechanism.	
	b. A client of a software mechanism cannot be a human.	
	c. A client of a software mechanism is a system of any kind, software or not, that uses the mechanism. For its clients, the mechanism is a supplier.	
	d. A supplier of a set of software mechanisms provides an interface to its clients.	
5.	Information hiding	
	ais the technique of presenting client programmers with an interface that only contains the public features of a class.	
	bis the technique of presenting client programmers with an interface that includes only features that have built-in security controls.	
	cis the technique of presenting client programmers with an interface that includes a superset of the properties of a software element.	
	dis the technique of presenting client programmers with an interface that includes only a subset of the properties of a software element.	
6.	Polymorphism.	
	a. A data structure is polymorphic if it may contain references to objects of different types.	
	b. An assignment or argument passing is polymorphic if its target variable and source expression have different types.	
	c. Polymorphism is the capability of objects to change their types at run time.	
	d. An entity or expression is polymorphic if, as a result of polymorphic attachments, it may at run time become attached to objects of different types.	

2 Design by Contract (10 Points)

2.1 Task

Your task is to fill in the contracts (preconditions, postconditions, class invariants, loop variants and invariants) of the class CAR according to the given specification. You are not allowed to change the class interface or the given implementation. Note that the number of dotted lines does not indicate the number of missing contracts.

2.2 Solution

```
class
    CAR
 4 create
    make
  feature {NONE} -- Creation
    make
10
          -- Creates a default car.
       require
12
14
16
                             ......
18
       do
          create \{LINKED\_LIST [CAR\_DOOR]\} doors.make
20
       ensure
22
24
26
       end
28
  feature \{ANY\} — Access
30
     is\_convertible: BOOLEAN
32
       -- Is the car a convertible (cabriolet)? Default: no.
    doors: LIST [CAR_DOOR]
34
       -- The doors of the car. Number of doors must be 0, 2 or 4. Default: 0.
36
     color:\ COLOR
38
       -- The color of the car. 'Void' if not specified. Default: 'Void'.
40 feature \{ANY\} — Element change
```

42	$set_convertible \ (\ a_is_convertible : BOOLEAN)$ $\mathbf{require}$
44	
46	
48	
50	do
52	$is_convertible := a_is_convertible$ <pre>ensure</pre>
54	
56	
58	end
60	set_doors (a_doors: $ARRAY[CAR_DOOR]$)
62	require
64	
66	
68	local
70	door_index: INTEGER do
72	$doors.wipe_out$
74	$egin{array}{ll} ext{if} & a_doors \ /= \ Void \ ext{then} \ & ext{from} \end{array}$
76	$door_index := 1$ invariant
78	
80	
82	until
84	$door_index > a_doors.count$
86	$egin{align*} egin{align*} $
88	$door_index := door_index + 1$ variant
90	
92	

94	end
96	end
98	ensure
100	
102	
104	end
106	set_color (a_color: COLOR) require
108	require
110	
112	
114	do
116	$color := a_color$ \mathbf{ensure}
118	
120	
122	
124	${f end}$
126	invariant
128	
130	
132	
	end

3 Inheritance and polymorphism (14 Points)

Classes *PRODUCT*, *COFFEE*, *ESPRESSO*, *CAPPUCCINO* and *CAKE* given below are part of the software system used by a coffee shop to keep track of the products it has.

```
1 deferred class PRODUCT
 3 feature -- Main operations
     set\_price (r: REAL)
        -- Set 'price' to 'r'.
 7
      require
        r\_non\_negative: r >= 0
 9
      do
        price := r
11
      ensure
        price\_set: price = r
13
      end
15 feature -- Access
    price: REAL
      -- How much the product costs
19
    description: STRING
21
      -- Brief description
      deferred
23
      end
25 invariant
    non\_negative\_price: price >= 0
     valid_description: description /= Void and then not description.is_empty
29\,\mathrm{end}
31 deferred class COFFEE
33 inherit
    PRODUCT
35
  feature — Main operations
37
    make
39
         -- Prepare the coffee.
41
        print ("I am making you a coffee.")
      end
43
  end
  class ESPRESSO
```

```
47
  inherit
49 COFFEE
51 create
     set\_price
  feature -- Access
55
    description: STRING
57
        Result := "A small strong coffee"
59
      end
61\,\mathrm{end}
63 class CAPPUCCINO
65 inherit
    COFFEE
67
  create
69 set_price
71 feature -- Access
   description: STRING
        Result := "A coffee with milk and milk foam"
75
77
  end
79
  class CAKE
81
  inherit
83 PRODUCT
      rename set\_price as make
85
87 create
    make
89
  feature -- Access
    description: STRING
93
        Result := "A sweet dessert"
95
      end
97 \, \mathbf{end}
```

Given the following variable declarations:

product: PRODUCT

coffee: COFFEE espresso: ESPRESSO cappuccino: CAPPUCCINO

 $cake \colon \mathit{CAKE}$

specify, for each of the code fragments below, if it compiles. If it does not compile, explain why this is the case. If it compiles, specify the text that is output to the screen when the code fragment is executed.

	create product io.put_string (product.description)
2.	<pre>create {ESPRESSO} product.set_price (5.20) io.put_string (product.description)</pre>
3.	create cappuccino.make io.put_string (cappuccino.description)
4.	<pre>create {ESPRESSO} cappuccino.set_price (5.20) io.put_string (cappuccino.description)</pre>
	io.put_string (product.description)

6.	create $\{ESPRESSO\}$ product.set_price (5.20) espresso := product
	io.put_string (espresso.description)
_	
7.	create $\{CAPPUCCINO\}$ coffee.set_price (5.50) coffee . make

4 Tree Iteration (12 Points)

The following class TREE[G] represents n-ary trees. A tree consists of a root node, which can have arbitrarily many children nodes. Each child node itself can have arbitrarily many children. In fact each child node itself is a tree, with itself as a root node.

```
class TREE[G]
create
    make
feature {NONE} — Initialization
    make (v: G)
            -- Create new cell with value 'v'.
        require
            v_not_void: v \neq Void
        do
            value := v
            create \{LINKED\_LIST [TREE [G]]\} children.make
        ensure
            value\_set: value = v
        end
feature -- Access
    value: G
            -- Value of node
    children: LIST [TREE [G]]
            -- Child nodes of this node
feature -- Insertion
    put (v: G)
            -- Add child cell with value 'v' as last child.
        require
            v_{-}not_{-}void: v /= Void
        local
            c: TREE [G]
        do
            create c.make(v)
            children.extend (c)
            one\_mode: children.count = old children.count + 1
            inserted: children. last. value = v
        end
invariant
    children_not_void: children /= Void
    value\_not\_void: value /= Void
```

end

The following gives relevant aspects of the interface of class LIST [G]. Class $LINKED_LIST$ [G] is a descendant of class LIST [G].

```
deferred class interface LIST [G]
feature -- Access
   index: INTEGER
           -- Index of current position.
   item: G
           — Item at current position.
       require
           not\_off: not off
feature -- Measurement
   count:\ INTEGER
           -- Number of items.
feature — Status report
    after: BOOLEAN
           — Is there no valid cursor position to the right of cursor?
    before: BOOLEAN
           -- Is there no valid cursor position to the left of cursor?
    off: BOOLEAN
           -- Is there no current item?
   is_empty: BOOLEAN
           -- Is structure empty?
feature — Cursor movement
   back
           — Move to previous position.
       require
           not_before: not before
       ensure
           moved\_back: index = old index - 1
    finish
           — Move cursor to last position.
           -- (No effect if empty)
       ensure
           not_before: not is_empty implies not before
   forth
           -- Move to next position.
```

```
require
            not\_after: not after
            moved\_forth: index = old index + 1
    start
            — Move cursor to first position.
            -- (No effect if empty)
        ensure
            not_after: not is_empty implies not after
feature — Element change
    extend (v: G)
            -- Add a new occurrence of 'v'.
            one\_more: count = old \ count + 1
invariant
     before\_definition: before = (index = 0)
     after\_definition: after = (index = count + 1)
    non\_negative\_index: index >= 0
    index\_small\_enough: index <= count + 1
     off_{-}definition: off = ((index = 0) \text{ or } (index = count + 1))
    not_both: not (after and before)
    before_constraint: before implies off
    after_constraint: after implies off
    empty\_definition: is\_empty = (count = 0)
    non\_negative\_count: count >= 0
end
```

4.1 Traversing the tree

 $io.put_new_line$

end

 $print_post_order$ (root)

Class *APPLICATION* below first builds a tree and then prints the values of the tree in two different ways: pre-order and post-order.

Fill in the missing source code of the features <code>print_pre_order</code> and <code>print_post_order</code> so they will print the node values of an arbitrary tree. For example, a call of feature <code>make</code> in class <code>APPLICATION</code> should print out the following:

```
1
1.1
1.1.1
1.1.2
1.2
1.3
1.3.1
1.1.1
1.1.2
1.1
1.2
1.3.1
1.3
class APPLICATION
create
    make
feature
    make
            -- Run program.
        local
            root: TREE [STRING]
            cell: TREE [STRING]
        do
            create root.make ("1")
            root.put ("1.1")
            cell \: := \: root.\: children\:.\: last
            cell.put ("1.1.1")
            cell.put ("1.1.2")
            root.put ("1.2")
            root.put ("1.3")
            cell := root. children. last
            cell.put ("1.3.1")
            print_pre_order (root)
            io. put_string ("---")
```

req	$egin{array}{ll} \mathbf{uire} \ t_not_void\colon \ t & /= \ Void \end{array}$
loc	al
do	

$print_p$	ost_order (t: $TREE$ [$STRING$]) — Print tree in post—order.
rec	quire
	t_not_void : t /= $Void$
loc	al
4.	
do	
enc	
enc	1
end	