ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2010

Mock Exam 2

ETH Zurich
December 6,7 2010

Name:

Group:

Question Points
1
2
3
4
Total
Grade

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

1 Terminology (12 Points)
Goal

This task will test your understanding of the object-oriented programming concepts presented
so far in the lecture. This is a multiple-choice test.

Todo

Place a check-mark in the box if the statement is true. There may be multiple true statements
per question; 0.5 points are awarded for checking a true statement or leaving a false statement
un-checked, 0 points are awarded otherwise.

Example:

1. Which of the following statements are true?

a. Classes exist only in the software text; objects exist only X
during the execution of the software.

b. Each object is an instance of its generic class. O

c. An object is deferred if it has at least one deferred feature. O

1. Classes and objects.

a. A class is the description of a set of possible run-time objects [
to which the same features are applicable.

b. If an object x is an instance of class C, then C is the generating O
class of x and x is described by C.

c. A class represents a category of things. An object represents [
one of these things.

d. An object represents a category of things. A class represents [J
one of these things.

2. Procedures, functions and attributes.
a. A query needs to be a function.

b. A function cannot modify any objects.

An attribute is stored directly in memory.

o
Oo0ooao

d. A procedure can return values that are computed.

3. What are all the possible changes in a function redefinition?

O

a. To change the implementation and the name.

b. To change the list of argument types, the result type, the [
contract, and the implementation.

c. To change the list of argument types, the result type, the O
contract, the name, and the implementation.

d. To change the list of argument types, the result type, and the O
implementation.

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

4. Clients and suppliers.

a. A supplier of a software mechanism is a system that uses the [
mechanism.

b. A client of a software mechanism cannot be a human. O

c. A client of a software mechanism is a system of any kind, O
software or not, that uses the mechanism. For its clients, the
mechanism is a supplier.

d. A supplier of a set of software mechanisms provides an inter- [
face to its clients.

5. Information hiding...

a. ...is the technique of presenting client programmers with an [
interface that only contains the public features of a class.

b. ..is the technique of presenting client programmers with an O
interface that includes only features that have built-in security
controls.

c. ...is the technique of presenting client programmers with an [
interface that includes a superset of the properties of a software
element.

d. ...is the technique of presenting client programmers with an O

interface that includes only a subset of the properties of a soft-
ware element.

6. Polymorphism.
a. A data structure is polymorphic if it may contain references [
to objects of different types.
b. An assignment or argument passing is polymorphic if its target [
variable and source expression have different types.
c. Polymorphism is the capability of objects to change their [
types at run time.
d. An entity or expression is polymorphic if, as a result of poly- O

morphic attachments, it may at run time become attached to
objects of different types.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

2 Design by Contract (10 Points)
2.1 Task

Your task is to fill in the contracts (preconditions, postconditions, class invariants, loop variants
and invariants) of the class CAR according to the given specification. You are not allowed to
change the class interface or the given implementation. Note that the number of dotted lines
does not indicate the number of missing contracts.

2.2 Solution

class

CAR

create
make

feature { NONE} —— Creation
make
—— Creates a default car.
require

do
create { LINKED_LIST [CAR_DOOR]} doors.make

ensure

feature {ANY} —— Access

is_convertible : BOOLEAN
—— Is the car a convertible (cabriolet)? Default: no.

doors: LIST [CAR_DOOR)
—— The doors of the car. Number of doors must be 0, 2 or 4. Default: 0.

color: COLOR
—— The color of the car. ‘Void’ if not specified . Default: ‘Void’.

feature {ANY} —— Element change

42

44

46

48

50

92

54

56

98

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

set_convertible (a-is_convertible : BOOLEAN)

require

is_convertible := a_is_convertible
ensure

set_doors (a_doors: ARRAY [CAR_DOOR))
require

local
door_index: INTEGER
do
doors.wipe_out
if a_doors /= Void then
from
door_index := 1
invariant

until
door_index > a_doors.count
loop
doors.extend (a_doors [door_index])
door_index := door_index + 1
variant

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer Fall 2010

L
end
96 end
ensure

98
100
102
104 end

106 set_color (a-color: COLOR)
require
108

110

112

114 do
color := a_color
116 ensure

LL 8
2
12

124
invariant
126

128

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

3 Inheritance and polymorphism (14 Points)

Classes PRODUCT, COFFEE, ESPRESSO, CAPPUCCINO and CAKE given below are part
of the software system used by a coffee shop to keep track of the products it has.

1 deferred class PRODUCT
3 feature —— Main operations

5 set_price (r: REAL)
—— Set ‘price’ to ‘r’.

7 require

r_non_negative: r >= 0
9 do

price ;=1
11 ensure

price_set: price =1
13 end
15 feature —— Access

17 price: REAL

—— How much the product costs

19
description: STRING
21 —— Brief description
deferred
23 end

25 invariant
non_negative_price: price >= 0
27 walid_description : description /= Void and then not description.is_empty

29 end

31 deferred class COFFEE

33 inherit
PRODUCT
35
feature —— Main operations
37
make
39 —— Prepare the coffee.
do
41 print (I am making you a coffee.”)
end
43
end
45

class ESPRESSO

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Mock Exam
Fall 2010

47
inherit
49 COFFEE
51 create
set_price
53
feature —— Access
55
description: STRING
57 do

Result := ” A small strong coffee”
59 end

61 end
63 class CAPPUCCINO
65 inherit
COFFEE
67

create
69 set_price

71 feature —— Access

73 description: STRING
do

75 Result := ” A coffee with milk and milk foam”

end
77
end
79
class CAKE
81
inherit
83 PRODUCT
rename set_price as make

85 end
87 create

make
89

feature —— Access

91

description: STRING
93 do

Result := ” A sweet dessert”
95 end

97 end

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

Given the following variable declarations:

product: PRODUCT

coffee: COFFEE

espresso: ESPRESSO
cappuccino: CAPPUCCINO
cake: CAKE

specify, for each of the code fragments below, if it compiles. If it does not compile, explain
why this is the case. If it compiles, specify the text that is output to the screen when the code
fragment is executed.

1. create product
i0. put_string (product. description)

2. create { ESPRESSO} product.set_price (5.20)
i0. put_string (product. description)

3. create cappuccino.make
i0. put_string (cappuccino.description)

4. create {ESPRESSO} cappuccino.set_price (5.20)
i0. put_string (cappuccino.description)

5. create cake.make (6.50)
product := cake
i0. put_string (product. description)

ETHZ D-INFK

Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer

Fall 2010

6. create { ESPRESSO} product.set_price (5.20)
espresso = product

0. put_string (espresso. description)

7. create { CAPPUCCINO} coffee.set_price (5.50)
coffee . make

10

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

4 'Tree Iteration (12 Points)

The following class TREFE [G] represents n-ary trees. A tree consists of a root node, which can
have arbitrarily many children nodes. Each child node itself can have arbitrarily many children.
In fact each child node itself is a tree, with itself as a root node.

class TREE [G]

create
make

feature { NONE} —— Initialization

make (v: G)
—— Create new cell with value ‘v’.
require
v_not_void: v /= Void
do
value := v
create {LINKED_LIST [TREE |G|} children.make
ensure
value_set: value = v
end
feature —— Access
value: G

—— Value of node

children: LIST [TREFE [G]]
—— Child nodes of this node

feature —— Insertion
put (v: G)

—— Add child cell with value ‘v’ as last child.

require
v_not_void: v /= Void

local
c¢: TREE [G)]

do

create c.make (v)
children . extend (c)
ensure
one_mode: children.count = old children.count + 1
inserted: children. last . value = v
end

invariant

children_not_void: children /= Void
value_not_void: value /= Void

11

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

end

The following gives relevant aspects of the interface of class LIST [G]. Class LINKED_LIST
[G] is a descendant of class LIST [G].

deferred class interface LIST [G]
feature —— Access

index: INTEGER

—— Index of current position.

item: G
—— Item at current position.
require
not_off: not off

feature —— Measurement

count: INTEGER
—— Number of items.

feature —— Status report

after: BOOLEAN
—— Is there no valid cursor position to the right of cursor?

before: BOOLEAN
—— Is there no valid cursor position to the left of cursor?

off: BOOLEAN

—— Is there no current item?

is_empty: BOOLEAN
—— Is structure empty?

feature —— Cursor movement

back
—— Move to previous position.
require
not_before: not before
ensure
moved_back: indexr = old index — 1

finish
—— Move cursor to last position.
—— (No effect if empty)
ensure
not_before: not is_empty implies not before

forth
—— Move to next position.

12

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2010

require
not_after: not after
ensure
moved_forth: index = old index + 1

start
—— Move cursor to first position.
—— (No effect if empty)
ensure
not_after: not is_empty implies not after

feature —— Element change

extend (v: G)
—— Add a new occurrence of ‘v’.
ensure
one_more: count = old count + 1

invariant
before_definition : before = (index = 0)
after_definition : after = (index = count + 1)
non_negative_index: index >= 0
indez_small_enough: index <= count + 1
off-definition : off = ((index = 0) or (index = count + 1))
not_both: not (after and before)
before_constraint : before implies off
after_constraint : after implies off
empty_definition: is_empty = (count = 0)
non_negative_count: count >= 0

end

13

ETHZ D-INFK
Prof. Dr. B. Meyer

4.1 Traversing the tree

Class APPLICATION below first builds a tree and then prints the values of the tree in two
different ways: pre-order and post-order.

Fill in the missing source code of the features print_pre_order and print_post_order so they
will print the node values of an arbitrary tree. For example, a call of feature make in class

APPLICATION should print out the following;:

e
W WN ==
N =

[EEY

N

i i i
W WN ===

class APPLICATION

create
make

feature

make

—— Run program.

local
root: TREE [STRING]
cell: TREE [STRING]

do
create root.make (”1”)
root.put (?1.1”)
cell := root. children. last
cell .put (”1.1.17)
cell .put (71.1.2”)
root. put (?1.2”)
root.put (”1.3”)
cell := root. children. last
cell .put (”1.3.1”)

print_pre_order (root)

io. put_string (”——="")

10. put_new_line

print_post_order (root)
end

14

Introduction to Programming — Mock Exam

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Mock Exam
Fall 2010

print_pre_order (¢: TREE [STRING))
—— Print tree in pre—order.
require
t_notvoid: t /= Void
local

15

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Mock Exam
Fall 2010

print_post_order (t: TREE [STRING))
—— Print tree in post—order.
require
t_notvoid: t /= Void
local

end

16

	Terminology (12 Points)
	Design by Contract (10 Points)
	Task
	Solution

	Inheritance and polymorphism (14 Points)
	Tree Iteration (12 Points)
	Traversing the tree

