Software Verification
 Exercise Session 1 Solution

We present proof in outline form - you can also use explicit lists of theorems or proof trees.

- 9.3

$$
\left.\begin{array}{l}
\{x=a \wedge y=b\} \\
\left\{\begin{array}{c}
x+y=a+b \wedge x=a\} \\
t:=x
\end{array}\right. \\
\{x+y=a+b \wedge t=a\} \\
x:=x+y \\
\{x=a+b \wedge t=a\} \\
y:=t
\end{array}\right\} \begin{aligned}
& \{x=a+b \wedge y=a\}
\end{aligned}
$$

- 9.6

1)

$\left\{z^{*} x^{y}=K\right\}$
$\left\{\left(\mathrm{z}^{*}\right)^{*} \mathrm{x}^{\mathrm{y}-1}=\mathrm{K}\right\}$
$\mathrm{z}:=\mathrm{z}^{*} \mathrm{x}$
$\left\{z^{*} x^{y-1}=K\right\}$
2)
$\left\{z^{*} x^{y}=K\right\}$
$\left\{\left(\mathrm{z}^{*} \mathrm{x}\right)^{*} \mathrm{x}^{\mathrm{y}-1}=\mathrm{K}\right\}$

$$
y:=y-1
$$

$\left\{\left(\mathrm{z}^{*} \mathrm{x}\right)^{*} \mathrm{x}^{\mathrm{y}}=\mathrm{K}\right\}$
$\mathrm{z}:=\mathrm{z}^{*} \mathrm{x}$
$\left\{z^{*} x^{y}=K\right\}$
3)
\{y even $\wedge z^{*} x^{y}=K$ \}
$\left\{\mathrm{z}^{*}\left(\mathrm{x}^{2}\right)^{\mathrm{y} / 2}=\mathrm{K}\right\}$
$y:=y / 2$
$\left\{z^{*}\left(x^{2}\right)^{y}=K\right\}$
$\mathrm{x}:=\mathrm{x}^{2}$
$\left\{z^{*} x^{y}=K\right\}$
4) Here is the inference rule for guarded commands of the form if... [] $g_{i}: c_{i}[] \ldots$ end: $P=>\left(V_{i=1 . . n} g_{i}\right) \quad \forall i \in 1 . . n .\left\{g_{i} \wedge P\right\} b_{i}\{Q\}$
$\{P\}$ if... []$g_{i}: c_{i}[] \ldots$ end $\{Q\}$
Notice that the following implications hold (i.e. they are valid/tautologies):
i) $\left(z^{*} x^{y}=K\right)=>(y$ odd $\vee y$ even $)$, and
ii) $\left(\mathrm{y}\right.$ odd $\left.\wedge \mathrm{z}^{*} \mathrm{x}^{\mathrm{y}}=\mathrm{K}\right)=>\left(\mathrm{z}^{*} \mathrm{x}^{\mathrm{y}}=\mathrm{K}\right)$,

Now we can apply the rule of Consequence with the triple from part 2 and the valid implication ii to obtain the triple:
$\left\{y\right.$ odd $\left.\wedge z^{*} x^{y}=K\right\} y:=y-1 ; z:=z^{*} x\left\{z^{*} x^{y}=K\right\}$
This triple, the triple from part 3 and the valid implication i fulfill all the premises of the rule. We can therefore infer the triple:
$\left\{z^{*} x^{y}=K\right\}$ if y odd $: y:=y-1 ; z:=z^{*} x[]$ y even $: y:=y / 2 ; x:=x^{2}$ end $\left\{z^{*} x^{y}=K\right\}$
In proof outline form:
$\left\{z^{*} x^{y}=K\right\} \quad / /$ Remember that here is an implicit implication of the V of the guards! if
y odd :
$\left\{y\right.$ odd $\left.\wedge z^{*} x^{y}=\mathrm{K}\right\}$
$\left\{z^{*} x^{y}=K\right\}$
$\left\{\left(\mathrm{z}^{*} \mathrm{x}\right)^{*} \mathrm{x}^{\mathrm{y}-1}=\mathrm{K}\right\}$
$y:=y-1$
$\left\{\left(z^{*} x\right)^{*} x^{y}=K\right\}$
$\mathrm{z}:=\mathrm{z}^{*} \mathrm{x}$
$\left\{z^{*} x^{y}=K\right\}$
[]
y even :
$\left\{y\right.$ even $\left.\wedge z^{*} x^{y}=K\right\}$
$\left\{z^{*}\left(x^{2}\right)^{y / 2}=K\right\}$
$y:=y / 2$
$\left\{z^{*}\left(x^{2}\right)^{y}=K\right\}$
$x:=x^{2}$
$\left\{z^{*} x^{y}=K\right\}$
end
$\left\{z^{*} x^{y}=K\right\}$

- 9.7

Recall the proof rule for from.. until commands, where I is the loop invariant:
$\left\{\mathrm{P}_{\mathrm{c}}^{1} \mathbf{1} \mathrm{II}\right\} \quad\{\mathrm{I} \wedge \neg \mathrm{b}\} \mathrm{c}_{2}\{\mathrm{I}\}$
$\{P\}$ from c_{1} until bloop c_{2} end $\{I \wedge b\}$
It should be clear that $\mathrm{z}^{*} \mathrm{x}^{\mathrm{y}}=\mathrm{K}$ is an invariant of the loop.

With the usual backward assertion propatation, we can easily prove the initialization triple $\left\{\mathrm{m}^{\mathrm{n}}=\mathrm{K}\right\} \mathrm{x}:=\mathrm{m} ; \mathrm{y}:=\mathrm{n} ; \mathrm{z}:=1\left\{\mathrm{z}^{*} \mathrm{x}^{\mathrm{y}}=\mathrm{K}\right\}$.
By the rule of Consequence and the triple from 9.6.4, we also know:
$\left\{\mathrm{z}^{*} \mathrm{x}^{\mathrm{y}}=\mathrm{K} \wedge \neg(\mathrm{y}=0)\right\}$ if y odd $: \mathrm{y}:=\mathrm{y}-1 ; \mathrm{z}:=\mathrm{z}^{*} \mathrm{x}[] \mathrm{y}$ even $: \mathrm{y}:=\mathrm{y} / 2 ; \mathrm{x}:=\mathrm{x}^{2}$ end $\left\{\mathrm{z}^{*} \mathrm{x}^{\mathrm{y}}\right.$
$=K\}$.
Hence $\left\{m^{n}=K\right\}$ from...end $\left\{z^{*} x^{y}=K \wedge y=0\right\}$ by the inference rule above, and with another application of Consequence, we know:
$\left\{m^{n}=K\right\}$ from...end $\{z=K\}$
Now since the from...end command did not modify m, n or K, we know that $m^{n}=K$ still holds afterwards. Formally, we can apply the rule of Constancy:
$\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}$
$\{\mathrm{P} \wedge \mathrm{R}\} \mathrm{c}\{\mathrm{Q} \wedge \mathrm{R}\}$
provided c does not modify (i.e. assign to) any of the free variables of R.
In this case, the R will be $m^{n}=K$, so we know:
$\left\{m^{n}=K \wedge m^{n}=K\right\}$ from...end $\left\{z=K \wedge m^{n}=K\right\}$
By the rule of Consequence, we again simplify and get:
$\left\{m^{n}=K\right\}$ from...end $\left\{z=m^{n}\right\}$
Next, we can apply the Auxiliary Variable Elimination rule to get rid of K. The rule is:

$$
\{\mathrm{P}\} c\{\mathrm{Q}\}
$$

$\{\exists \mathrm{v} . \mathrm{P}\} \mathrm{c}\{\exists \mathrm{v} . \mathrm{Q}\}$
provided v does not occur free in c .
So now we have $\left\{\exists \mathrm{K} . \mathrm{m}^{\mathrm{n}}=\mathrm{K}\right\}$ from...end $\left\{\exists \mathrm{K} . \mathrm{z}=\mathrm{m}^{\mathrm{n}}\right\}$, and we can simplify it with the rule of Consequence to get:
\{true\} from...end $\left\{\mathrm{z}=\mathrm{m}^{\mathrm{n}}\right\}$
We can now strengthen the precondition with the rule of Consequence to get: $\{\mathrm{m}>0 \wedge \mathrm{n} \geq 0\}$ from...end $\left\{\mathrm{z}=\mathrm{m}^{\mathrm{n}}\right\}$
Hence, we have proven that the program computes m^{n} and stores the result in the variable z. The $n \geq 0$ is important only for termination, which we have not proven.

Note: in a proof outline, an application of Constancy or Auxiliary Variable Elimination will be denoted by a level of indentation. For example, the application of Constancy above would be written:
$\left\{\mathrm{m}^{\mathrm{n}}=\mathrm{K} \wedge \mathrm{m}^{\mathrm{n}}=\mathrm{K}\right\}$
$\left\{\mathrm{m}^{\mathrm{n}}=\mathrm{K}\right\}$
from...end
$\{\mathrm{z}=\mathrm{K}\}$
$\left\{\mathrm{z}=\mathrm{K} \wedge \mathrm{m}^{\mathrm{n}}=\mathrm{K}\right\}$

- 9.9

One can imagine several sound axioms of various strength. However, the following one is known to be equivalent to the well-known backward rule $\{P[e / x]\} x:=e\{P\}$:
$\{P\} x:=e\left\{\exists x^{\prime} . P\left[x^{\prime} / x\right] \wedge x=e\left[x^{\prime} / x\right]\right\}$, where x^{\prime} is fresh, i.e. it does not occur free in P or e, and it is not the same variable as x.

In the postcondition, the variable x^{\prime} can be understood as recording what x used to be. So we can read the triple informally as: after executing $x:=e$, we remember that there used to be something (let's call it x^{\prime}) such that $\mathrm{P}\left[\mathrm{x}^{\prime} / \mathrm{x}\right]$ holds. Furthermore, the value of x is now updated to e where we are careful to replace occurrences of x in e by its old value x^{\prime}.

- 9.14
repeat s until $b=s$; while $\neg b$ do s end
So we can propose the rule:
$\{\mathrm{P}\} \mathrm{S}\{\mathrm{I}\} \quad\{\mathrm{I} \wedge \neg \mathrm{b}\} \mathrm{S}\{\mathrm{I}\}$
$\{\mathrm{P}\}$ repeat s until $\mathrm{b}\{\mathrm{I} \wedge \mathrm{b}\}$

To see that the rule is fine, notice that we can derive it as follows:

$$
\{\mathrm{I} \wedge \neg \mathrm{~b}\} \mathrm{s}\{\mathrm{I}\}
$$

$\{\mathrm{I}\}$ while \neg b do s end $\{\mathrm{I} \wedge \neg \neg \mathrm{b}\}$
--------------------------------------Consequence
$\{P\} s\{I\} \quad\{I\}$ while $\neg b$ do s end $\{I \wedge b\}$
---SequentialComposition

$$
\{P\} s ; \text { while } \neg b \text { do } s \text { end }\{I \wedge b\}
$$

