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Recap of definitions and results
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Finite State Automata: Syntax

Def. Nondeterministic Finite State Automaton (FSA):
 a tuple [Σ, S, I, ρ, F]:

– Σ: finite nonempty (input) alphabet
– S: finite nonempty set of states
– I  S: set of ⊆ initial states
– F  S: set of ⊆ accepting states

– ρ: S x Σ  2→
S: transition function
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Finite State Automata: Semantics

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F]
    over input word w = w(1) w(2) ... w(n)  ∈ Σ*
 is a sequence r = r(0) r(1) r(2) ... r(n)  S*∈
 of states such that:

• it starts from an initial state:     r(0)
 

 ∈ I

• it ends in an accepting state:      r(n)
 

 ∈ F

• it respects the transition function:
 r(i+1)

 
 ∈ ρ(r(i), w(i)) for all 0 ≤ i < n
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Finite State Automata: Semantics

Def. Any FSA A=[Σ, S, I, ρ, F] defines
   a set of input words A⟨ ⟩:
  A⟨ ⟩  { w ≜  ∈ Σ*  | there is an
                          accepting run of A
                             over w }

      ⟨A  is called the ⟩ language of A
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Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae
are defined by the grammar:

F  ::=  p  |  ¬ F  |  F ∧ G  |  X F  |  F U G

with p  ∈ P any atomic proposition from a fixed set P.

Propositional connectives:
• not:  ¬ F
• and:  F ∧ G
• or:  F ∨ G

  
≜ ¬ (¬F ∧ ¬G)

• implies: F ⇒ G ≜ ¬F ∨ G
• iff:   F ⇔ G ≜ (F ⇒ G)  ∧ (G ⇒ F)

Temporal (modal) operators:
• next:   X F
• until:  F U G
• release:  F R G ≜ ¬ (¬F U 

¬G)
• eventually: ◊ F ≜ True U F
• always:  □ F ≜ ¬ ◊ ¬F
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Linear Temporal Logic: Semantics

Def. A word w = w(1) w(2) ... w(n)  ∈ P*

  satisfies an LTL formula F at position 1 ≤ i ≤ n,
  denoted w, i  F⊧ , under the following conditions:

•w, i  p      ⊧     iff    p = w(i)
•w, i  ⊧ ¬ F         iff    w, i ⊧ F does not hold
•w, i  ⊧ F ∧ G       iff    both w, i  ⊧ F  and w, i  G⊧  hold
•w, i  ⊧ X F        iff    i < n and w, i+1  ⊧ F
–i.e., F holds in the next step

•w, i  F ⊧ U G       iff    for some i ≤ j ≤ n it is: w, j  G⊧
                                and for all i ≤ k < j it is w, k  ⊧ F
–i.e., F holds until G will hold
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Linear Temporal Logic: Semantics

For derived operators:

•w, i  ⊧ ◊ F              iff    for some i ≤ j ≤ n it is: w, j  F⊧

–i.e., F holds eventually (in the future)

•w, i  ⊧ □ F              iff    for all i ≤ j ≤ n it is: w, j  F⊧

–i.e., F holds always (in the future)
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Linear Temporal Logic: Semantics

Def. Satisfaction:
        w  F       w, 1   F⊧ ≜ ⊧

i.e., word w satisfies formula F initially

Def. Any LTL formula F defines a set of words F⟨ ⟩:
  F⟨ ⟩  { w  P*  | ≜ ∈ w  F }⊧

      ⟨F  is called the ⟩ language of F
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Automata-theoretic Model Checking

An semantic view of the Model Checking problem:

–Given: a finite-state automaton A
   and a temporal-logic formula F

– if A  ⟨ ⟩ ∩ ⟨¬ F  is ⟩ empty then any run of A
satisfies F

– if A  ⟨ ⟩ ∩ ⟨¬ F  is ⟩ not empty then some run of A
does not satisfy F

• any member of the nonempty intersection
A  ⟨ ⟩ ∩ ⟨¬ F  ⟩ is a counterexample
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Automata-theoretic Model Checking

How to check ⟨A  ⟩ ∩ ⟨¬ F  ⟩ = ∅ algorithmically (given A, F)?

Combination of three different algorithms:

• LTL2FSA: given LTL formula F build automaton
a(F) such that ⟨F  = ⟩ ⟨a(F)⟩

• FSA-Intersection: given automata A, B build
automaton C such that ⟨A  ⟩ ∩ ⟨B  = ⟩ ⟨C⟩

• FSA-Emptiness: given automaton A check whether
⟨A  = ⟩ ∅ is the case



12

Exercises:
Semantics of derived operators
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LTL derived operators: eventually
Prove that the satisfaction relation

w, i  ⊧ ◊ F

for eventually, defined as:

◊ F  ≜ True U F

is equivalent to:

             for some i ≤ j ≤ n it is: w, j  F⊧
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LTL derived operators: eventually

w, i  ⊧ ◊ F

iff

w, i  ⊧ True U F (definition of eventually)

iff

for some i ≤ j ≤ n it is: w, j  F⊧

and for all i ≤ k < j it is w, k  ⊧ True

(definition of until)
iff

for some i ≤ j ≤ n it is: w, j  F⊧

(simplification of A and True)
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LTL derived operators: always
Prove that the satisfaction relation

w, i  ⊧ □ F

for always, defined as:

□ F  ≜ ¬ ◊ ¬F

is equivalent to:

               for all i ≤ j ≤ n it is: w, j  F⊧
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LTL derived operators: always
w, i  ⊧ □ F

iff

w, i  ⊧ ¬ ◊ ¬F (definition of always)

iff

w, i  ⊧ ◊ ¬F   is not the case (definition of not)

iff
it is not the case that:  for some i ≤ j ≤ n it is: w, j  ⊧ ¬F

(semantics of eventually)
iff

for all i ≤ j ≤ n it is not the case that w, j  ⊧ ¬F

(semantics of quantifiers: pushing negation inward)

iff
for all i ≤ j ≤ n: it is not the case that it is not the case that w, j  F⊧

(semantics of negation)
iff

for all i ≤ j ≤ n it is: w, j  F⊧

(simplification of double negation)



17

Exercises:
Evaluate LTL formulas on automata
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Does the property hold?

□ (start  ◊⇒  stop)
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Does the property hold?

□ (start  ◊⇒  stop)

Yes:
● whenever start occurs we 

reach state closed-cooking
we must eventually exit 

state closed-cooking to 
reach the only accepting 
state closed-off

state closed-cooking can be 
exited only if stop occurs
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Does the property hold?

□ ◊ turn_off
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Does the property hold?

□ ◊ turn_off

No:
counterexample:

 pull push
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Does the property hold?

□ ◊ (turn_off∨push)
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Does the property hold?

□ ◊ (turn_off∨push)
Yes:
every accepting run 

eventually goes back to state 
closed-off

state closed-off can be 
reached only if either 
turn_off or push occurs

the empty word is also 
compliant with the semantics 
of the always operator
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Does the property hold?

◊ (turn_off  ∨ push)
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Does the property hold?

◊ (turn_off  ∨ push)

No:
counterexample:

the empty word
(compare the semantics of 

existential quantification 
against universal 
quantification)
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Does the property hold?

□ False
∨

◊ (turn_off  ∨ push)
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Does the property hold?

Yes:
“always False” means that False 

holds at every step in the word: 
it is satisfied precisely by the 
empty word

if the word is not empty, then 
it must end with turn_off or 
push, thus it satisfies the other 
disjunct

□ False
∨

◊ (turn_off  ∨ push)
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Does the property hold?

 turn_on U start
∨

  pull U push
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Does the property hold?

No:
counterexample:

the empty word
counterexample:

turn_on turn_off
counterexample:

turn_on pull push turn_off

 turn_on U start
∨

  pull U push
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Does the property hold?

 □ (   start ⇒
(cook U ◊turn_off) )
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Does the property hold?

Yes:
once start occurs, turn_off 

must occur eventually
hence “eventually turn_off” 

is the case right after start 
occurs

cook can occur right after 
start occurs, one or more 
times

 □ (   start ⇒
(cook U ◊turn_off) )
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Exercises:
Equivalence of LTL formulas
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Equivalence of formulas

Prove that ◊ is idempotent, that is:

◊◊ q

is equivalent to:

◊ q
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Equivalence of formulas
w,i   ⊧ ◊◊ q

iff

for some i ≤ j ≤ n it is: w, j  ⊧ ◊ q
(semantics of eventually)

iff
 for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h  q⊧

 (semantics of eventually)

iff

for some i ≤ j ≤ h ≤ n it is: w, h  q⊧
(merging of intervals)

iff
for some i ≤ h ≤ n it is: w, h  q⊧  

(dropping j, a fortiori)

iff
 w, i  ⊧ ◊ q    
(semantics of eventually)



35

Equivalence of formulas

Prove that:

p U ◊ q

is equivalent to:

◊ q
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Equivalence of formulas: ⇒ direction
w,i  p ⊧ U ◊ q

iff

for some i ≤ j ≤ n it is: w, j  ⊧ ◊ q

and for all i ≤ k < j it is w, k  p⊧

(semantics of until)

implies
   for some i ≤ j ≤ n it is: w, j  ⊧ ◊ q (a fortiori)

iff

for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h  q⊧
     

(semantics of eventually)

iff
   for some i ≤ h ≤ n it is: w, h  q⊧

(simplification of range of quantification)

iff
 w, i  ⊧ ◊ q (semantics of eventually)



37

Equivalence of formulas: ⇐ direction
w,i  ⊧ ◊ q

iff

for some i ≤ j ≤ i: w, j  ⊧ ◊ q     
 (singleton range of quantification)

iff

for some i ≤ j ≤ i: w, j  ⊧ ◊ q        and True
 (semantics of and)

iff

for some i ≤ j ≤ i: w, j  ⊧ ◊ q

and for all i ≤ k < j=i it is w, k  p⊧
(semantics of universally quantified empty range)

implies

for some i ≤ j ≤ n: w, j  ⊧ ◊ q

and for all i ≤ k < j it is w, k  p⊧   (a fortiori)

iff
w, i  p ⊧ U ◊ q   (semantics of until)
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Exercises:
Automata-theoretic model-checking
(on paper)
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Automata-based model checking

□ ◊ turn_off

Let us prove by 
model checking that 
it's not a property 
of the automaton
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LTL2FSA

Build an automaton with the same language as:
      

 ¬( □ ◊ turn_off )

Let us start from the unnegated formula:

 □ ◊ turn_off

and then complement the states of the automaton



41

LTL2FSA

□ ◊ turn_off
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LTL2FSA

¬( □ ◊ turn_off )
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FSA Intersection

x






