
Chair of Software Engineering

Software Verification
Exercise class:
Model Checking

Carlo A. Furia

2

Recap of definitions and results

3

Finite State Automata: Syntax

Def. Nondeterministic Finite State Automaton (FSA):
 a tuple [Σ, S, I, ρ, F]:

– Σ: finite nonempty (input) alphabet
– S: finite nonempty set of states
– I S: set of ⊆ initial states
– F S: set of ⊆ accepting states

– ρ: S x Σ 2→
S: transition function

4

Finite State Automata: Semantics

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F]
 over input word w = w(1) w(2) ... w(n) ∈ Σ*
 is a sequence r = r(0) r(1) r(2) ... r(n) S*∈
 of states such that:

• it starts from an initial state: r(0)

 ∈ I

• it ends in an accepting state: r(n)

 ∈ F

• it respects the transition function:
 r(i+1)

 ∈ ρ(r(i), w(i)) for all 0 ≤ i < n

5

Finite State Automata: Semantics

Def. Any FSA A=[Σ, S, I, ρ, F] defines
 a set of input words A⟨ ⟩:
 A⟨ ⟩ { w ≜ ∈ Σ* | there is an
 accepting run of A
 over w }

 ⟨A is called the ⟩ language of A

6

Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae
are defined by the grammar:

F ::= p | ¬ F | F ∧ G | X F | F U G

with p ∈ P any atomic proposition from a fixed set P.

Propositional connectives:
• not: ¬ F
• and: F ∧ G
• or: F ∨ G

≜ ¬ (¬F ∧ ¬G)

• implies: F ⇒ G ≜ ¬F ∨ G
• iff: F ⇔ G ≜ (F ⇒ G) ∧ (G ⇒ F)

Temporal (modal) operators:
• next: X F
• until: F U G
• release: F R G ≜ ¬ (¬F U

¬G)
• eventually: ◊ F ≜ True U F
• always: □ F ≜ ¬ ◊ ¬F

7

Linear Temporal Logic: Semantics

Def. A word w = w(1) w(2) ... w(n) ∈ P*

 satisfies an LTL formula F at position 1 ≤ i ≤ n,
 denoted w, i F⊧ , under the following conditions:

•w, i p ⊧ iff p = w(i)
•w, i ⊧ ¬ F iff w, i ⊧ F does not hold
•w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i G⊧ hold
•w, i ⊧ X F iff i < n and w, i+1 ⊧ F
–i.e., F holds in the next step

•w, i F ⊧ U G iff for some i ≤ j ≤ n it is: w, j G⊧
 and for all i ≤ k < j it is w, k ⊧ F
–i.e., F holds until G will hold

8

Linear Temporal Logic: Semantics

For derived operators:

•w, i ⊧ ◊ F iff for some i ≤ j ≤ n it is: w, j F⊧

–i.e., F holds eventually (in the future)

•w, i ⊧ □ F iff for all i ≤ j ≤ n it is: w, j F⊧

–i.e., F holds always (in the future)

9

Linear Temporal Logic: Semantics

Def. Satisfaction:
 w F w, 1 F⊧ ≜ ⊧

i.e., word w satisfies formula F initially

Def. Any LTL formula F defines a set of words F⟨ ⟩:
 F⟨ ⟩ { w P* | ≜ ∈ w F }⊧

 ⟨F is called the ⟩ language of F

10

Automata-theoretic Model Checking

An semantic view of the Model Checking problem:

–Given: a finite-state automaton A
 and a temporal-logic formula F

– if A ⟨ ⟩ ∩ ⟨¬ F is ⟩ empty then any run of A
satisfies F

– if A ⟨ ⟩ ∩ ⟨¬ F is ⟩ not empty then some run of A
does not satisfy F

• any member of the nonempty intersection
A ⟨ ⟩ ∩ ⟨¬ F ⟩ is a counterexample

11

Automata-theoretic Model Checking

How to check ⟨A ⟩ ∩ ⟨¬ F ⟩ = ∅ algorithmically (given A, F)?

Combination of three different algorithms:

• LTL2FSA: given LTL formula F build automaton
a(F) such that ⟨F = ⟩ ⟨a(F)⟩

• FSA-Intersection: given automata A, B build
automaton C such that ⟨A ⟩ ∩ ⟨B = ⟩ ⟨C⟩

• FSA-Emptiness: given automaton A check whether
⟨A = ⟩ ∅ is the case

12

Exercises:
Semantics of derived operators

13

LTL derived operators: eventually
Prove that the satisfaction relation

w, i ⊧ ◊ F

for eventually, defined as:

◊ F ≜ True U F

is equivalent to:

 for some i ≤ j ≤ n it is: w, j F⊧

14

LTL derived operators: eventually

w, i ⊧ ◊ F

iff

w, i ⊧ True U F (definition of eventually)

iff

for some i ≤ j ≤ n it is: w, j F⊧

and for all i ≤ k < j it is w, k ⊧ True

(definition of until)
iff

for some i ≤ j ≤ n it is: w, j F⊧

(simplification of A and True)

15

LTL derived operators: always
Prove that the satisfaction relation

w, i ⊧ □ F

for always, defined as:

□ F ≜ ¬ ◊ ¬F

is equivalent to:

 for all i ≤ j ≤ n it is: w, j F⊧

16

LTL derived operators: always
w, i ⊧ □ F

iff

w, i ⊧ ¬ ◊ ¬F (definition of always)

iff

w, i ⊧ ◊ ¬F is not the case (definition of not)

iff
it is not the case that: for some i ≤ j ≤ n it is: w, j ⊧ ¬F

(semantics of eventually)
iff

for all i ≤ j ≤ n it is not the case that w, j ⊧ ¬F

(semantics of quantifiers: pushing negation inward)

iff
for all i ≤ j ≤ n: it is not the case that it is not the case that w, j F⊧

(semantics of negation)
iff

for all i ≤ j ≤ n it is: w, j F⊧

(simplification of double negation)

17

Exercises:
Evaluate LTL formulas on automata

18

Does the property hold?

□ (start ◊⇒ stop)

19

Does the property hold?

□ (start ◊⇒ stop)

Yes:
● whenever start occurs we

reach state closed-cooking
we must eventually exit

state closed-cooking to
reach the only accepting
state closed-off

state closed-cooking can be
exited only if stop occurs

20

Does the property hold?

□ ◊ turn_off

21

Does the property hold?

□ ◊ turn_off

No:
counterexample:

 pull push

22

Does the property hold?

□ ◊ (turn_off∨push)

23

Does the property hold?

□ ◊ (turn_off∨push)
Yes:
every accepting run

eventually goes back to state
closed-off

state closed-off can be
reached only if either
turn_off or push occurs

the empty word is also
compliant with the semantics
of the always operator

24

Does the property hold?

◊ (turn_off ∨ push)

25

Does the property hold?

◊ (turn_off ∨ push)

No:
counterexample:

the empty word
(compare the semantics of

existential quantification
against universal
quantification)

26

Does the property hold?

□ False
∨

◊ (turn_off ∨ push)

27

Does the property hold?

Yes:
“always False” means that False

holds at every step in the word:
it is satisfied precisely by the
empty word

if the word is not empty, then
it must end with turn_off or
push, thus it satisfies the other
disjunct

□ False
∨

◊ (turn_off ∨ push)

28

Does the property hold?

 turn_on U start
∨

 pull U push

29

Does the property hold?

No:
counterexample:

the empty word
counterexample:

turn_on turn_off
counterexample:

turn_on pull push turn_off

 turn_on U start
∨

 pull U push

30

Does the property hold?

 □ (start ⇒
(cook U ◊turn_off))

31

Does the property hold?

Yes:
once start occurs, turn_off

must occur eventually
hence “eventually turn_off”

is the case right after start
occurs

cook can occur right after
start occurs, one or more
times

 □ (start ⇒
(cook U ◊turn_off))

32

Exercises:
Equivalence of LTL formulas

33

Equivalence of formulas

Prove that ◊ is idempotent, that is:

◊◊ q

is equivalent to:

◊ q

34

Equivalence of formulas
w,i ⊧ ◊◊ q

iff

for some i ≤ j ≤ n it is: w, j ⊧ ◊ q
(semantics of eventually)

iff
 for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h q⊧

 (semantics of eventually)

iff

for some i ≤ j ≤ h ≤ n it is: w, h q⊧
(merging of intervals)

iff
for some i ≤ h ≤ n it is: w, h q⊧

(dropping j, a fortiori)

iff
 w, i ⊧ ◊ q
(semantics of eventually)

35

Equivalence of formulas

Prove that:

p U ◊ q

is equivalent to:

◊ q

36

Equivalence of formulas: ⇒ direction
w,i p ⊧ U ◊ q

iff

for some i ≤ j ≤ n it is: w, j ⊧ ◊ q

and for all i ≤ k < j it is w, k p⊧

(semantics of until)

implies
 for some i ≤ j ≤ n it is: w, j ⊧ ◊ q (a fortiori)

iff

for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h q⊧

(semantics of eventually)

iff
 for some i ≤ h ≤ n it is: w, h q⊧

(simplification of range of quantification)

iff
 w, i ⊧ ◊ q (semantics of eventually)

37

Equivalence of formulas: ⇐ direction
w,i ⊧ ◊ q

iff

for some i ≤ j ≤ i: w, j ⊧ ◊ q
 (singleton range of quantification)

iff

for some i ≤ j ≤ i: w, j ⊧ ◊ q and True
 (semantics of and)

iff

for some i ≤ j ≤ i: w, j ⊧ ◊ q

and for all i ≤ k < j=i it is w, k p⊧
(semantics of universally quantified empty range)

implies

for some i ≤ j ≤ n: w, j ⊧ ◊ q

and for all i ≤ k < j it is w, k p⊧ (a fortiori)

iff
w, i p ⊧ U ◊ q (semantics of until)

38

Exercises:
Automata-theoretic model-checking
(on paper)

39

Automata-based model checking

□ ◊ turn_off

Let us prove by
model checking that
it's not a property
of the automaton

40

LTL2FSA

Build an automaton with the same language as:

 ¬(□ ◊ turn_off)

Let us start from the unnegated formula:

 □ ◊ turn_off

and then complement the states of the automaton

41

LTL2FSA

□ ◊ turn_off

42

LTL2FSA

¬(□ ◊ turn_off)

43

FSA Intersection

x

