

Chair of Software Engineering

Software Verification Exercise class: Model Checking

Carlo A. Furia

Recap of definitions and results

Def. Nondeterministic Finite State Automaton (FSA): a tuple [Σ, S, I, ρ, F]:

- $-\Sigma$: finite nonempty (input) alphabet
- S: finite nonempty set of states
- $I \subseteq S$: set of initial states
- $-F \subseteq S$: set of accepting states
- $^{-}$ ρ: S x Σ → 2^S: transition function

- Def. An accepting run of an FSA $A=[\Sigma, S, I, \rho, F]$ over input word $w = w(1) w(2) \dots w(n) \in \Sigma^*$ is a sequence $r = r(0) r(1) r(2) \dots r(n) \in S^*$ of states such that:
 - it starts from an initial state: $r(0) \in I$
 - it ends in an accepting state: $r(n) \in F$
 - it respects the transition function:
 r(i+1) ∈ ρ(r(i), w(i)) for all 0 ≤ i < n

Finite State Automata: Semantics

Def. Any FSA $A=[\Sigma, S, I, \rho, F]$ defines a set of input words (A): (A) $\triangleq \{ w \in \Sigma^* \mid \text{there is an} \\ accepting run of A \\ over w \}$ (A) is called the language of A

Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae are defined by the grammar: $F ::= p | \neg F | F \land G | X F | F \cup G$ with $p \in P$ any atomic proposition from a fixed set P.

Temporal (modal) operators: Propositional connectives:

- next: XF
- until: FUG
- release: $F R G \triangleq \neg (\neg F U$ **-**G)
- eventually: \diamond F \triangleq True U F
- always: ⊂ F ≜ ¬ ◊ ¬F

- not: ¬ F
- and: $F \wedge G$
- or: $F \vee G \triangleq \neg (\neg F \land \neg G)$
- implies: $F \Rightarrow G \triangleq \neg F \lor G$
- if $f: F \Leftrightarrow G \triangleq (F \Rightarrow G) \land (G \Rightarrow F)$

Linear Temporal Logic: Semantics

Def. A word $w = w(1) w(2) \dots w(n) \in P^*$ satisfies an LTL formula F at position $1 \le i \le n$, denoted w, i F, under the following conditions: iff p = w(i)•w,i⊧p iff w,i ⊨ F does not hold •w,i = ¬F • $w, i \models F \land G$ iff both $w, i \models F$ and $w, i \models G$ hold iff i < n and w, i+1 ⊨ F •w, i **×** F _i.e., F holds in the next step • w, $i \models F \cup G$ iff for some $i \le j \le n$ it is: w, $j \models G$ and for all $i \leq k < j$ it is w, $k \models F$ _i.e., F holds until G will hold

For derived operators:

- •w, i ⊨ ◊ F iff for some i ≤ j ≤ n it is: w, j ⊨ F
 _i.e., F holds eventually (in the future)
- •w, i ⊨ □ F iff for all i ≤ j ≤ n it is: w, j ⊨ F
 _i.e., F holds always (in the future)

Def. Satisfaction: w ⊨ F ≜ w, 1 ⊨ F i.e., word w satisfies formula F initially

Def. Any LTL formula F defines a set of words (F): (F) ≜ { w ∈ P* | w ⊧ F } (F) is called the language of F

Automata-theoretic Model Checking

An semantic view of the Model Checking problem:

- -Given: a finite-state automaton A and a temporal-logic formula F
- -if (A) n (¬ F) is empty then any run of A satisfies F
- -if (A) n (¬ F) is not empty then some run of A does not satisfy F
 - any member of the nonempty intersection $(A) \cap (\neg F)$ is a counterexample

How to check $(A) \cap (\neg F) = \emptyset$ algorithmically (given A, F)?

Combination of three different algorithms:

- LTL2FSA: given LTL formula F build automaton a(F) such that (F) = (a(F))
- FSA-Intersection: given automata A, B build automaton C such that $\langle A \rangle \cap \langle B \rangle = \langle C \rangle$
- FSA-Emptiness: given automaton A check whether
 (A) = Ø is the case

Exercises: Semantics of derived operators

LTL derived operators: eventually

Prove that the satisfaction relation

w, i ⊧ **◊** F

for eventually, defined as:

♦ F \triangleq True U F

is equivalent to:

for some $i \leq j \leq n$ it is: $w, j \models F$

LTL derived operators: eventually

```
w, i ⊧ ◊ F
```

iff

```
w, i = True U F (definition of eventually)
```

iff

```
for some i \le j \le n it is: w, j \models F
and for all i \le k < j it is w, k \models True
(definition of until)
```

iff

```
for some i ≤ j ≤ n it is: w, j ⊧ F
(simplification of A and True)
```

LTL derived operators: always

Prove that the satisfaction relation

w, i ⊨ 🗆 F

for always, defined as:

 \Box F \triangleq ¬ \diamondsuit ¬F

is equivalent to:

for all $i \leq j \leq n$ it is: $w, j \models F$

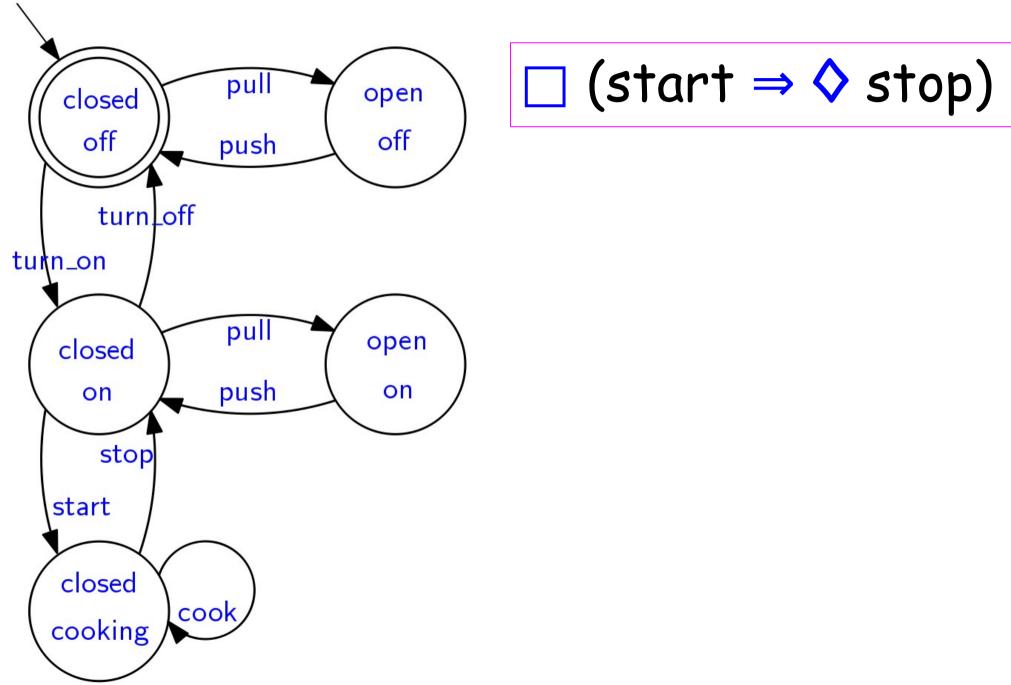
(。)

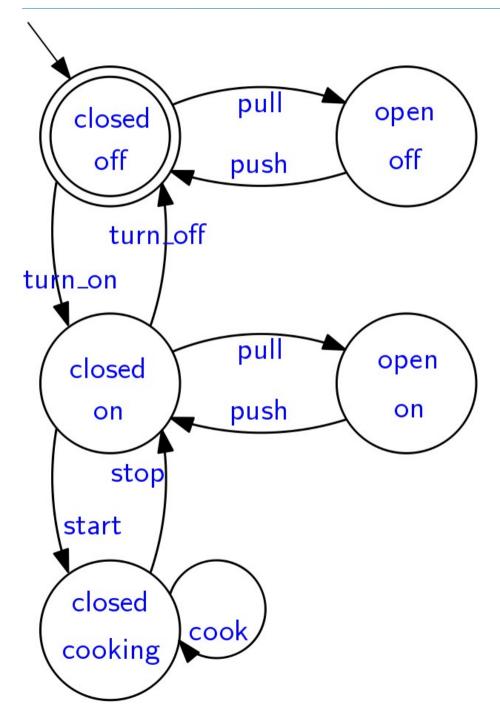
LTL derived operators: always

w,i⊧⊡F iff w, i = - 🔷 - F (definition of always) iff w, $i \models \diamondsuit \neg F$ is not the case (definition of not) iff it is not the case that: for some $i \le j \le n$ it is: w, $j \models \neg F$ (semantics of eventually) iff for all $i \leq j \leq n$ it is not the case that w, $j \models \neg F$ (semantics of quantifiers: pushing negation inward) iff for all $i \leq j \leq n$: it is not the case that it is not the case that w, $j \models F$ (semantics of negation) iff for all $i \leq j \leq n$ it is: w, $j \models F$ (simplification of double negation)

•

Exercises: Evaluate LTL formulas on automata

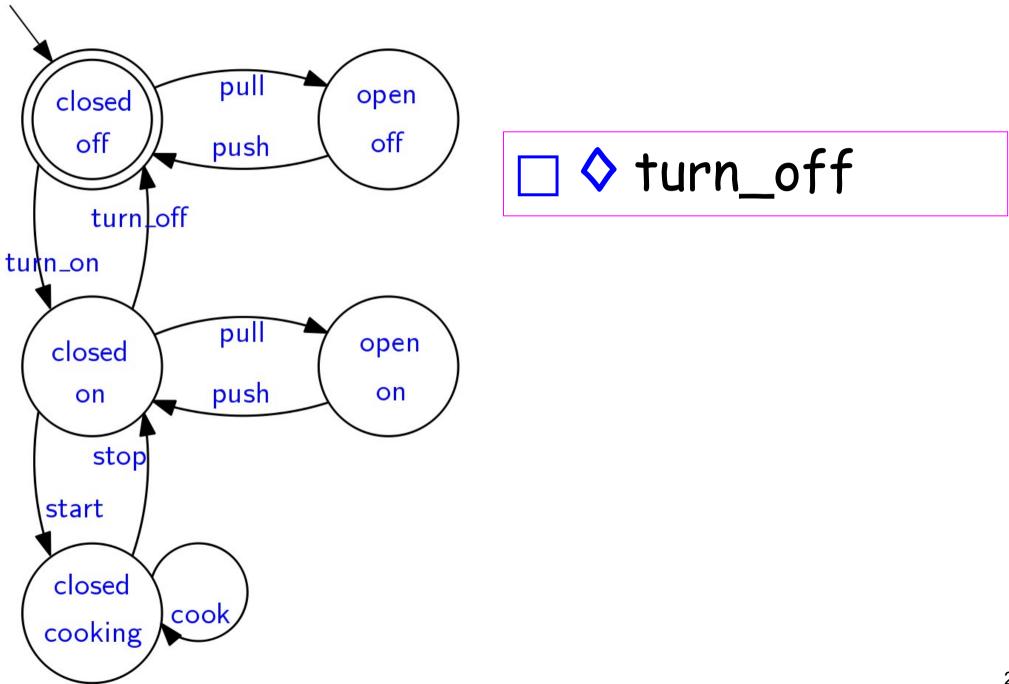


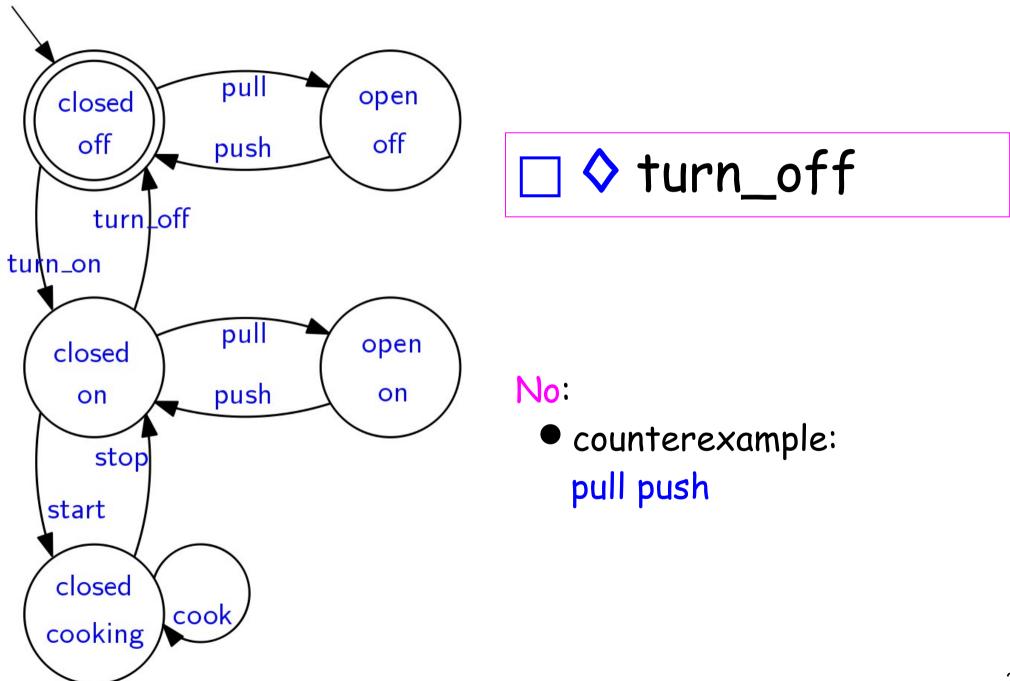


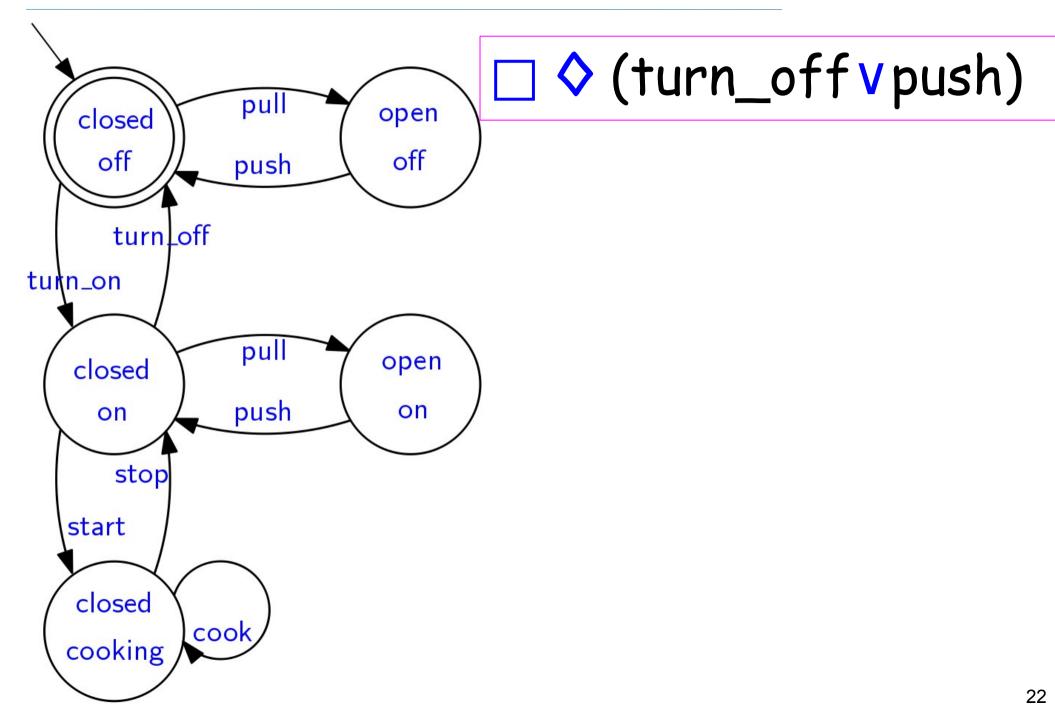
\Box (start \Rightarrow \diamondsuit stop)

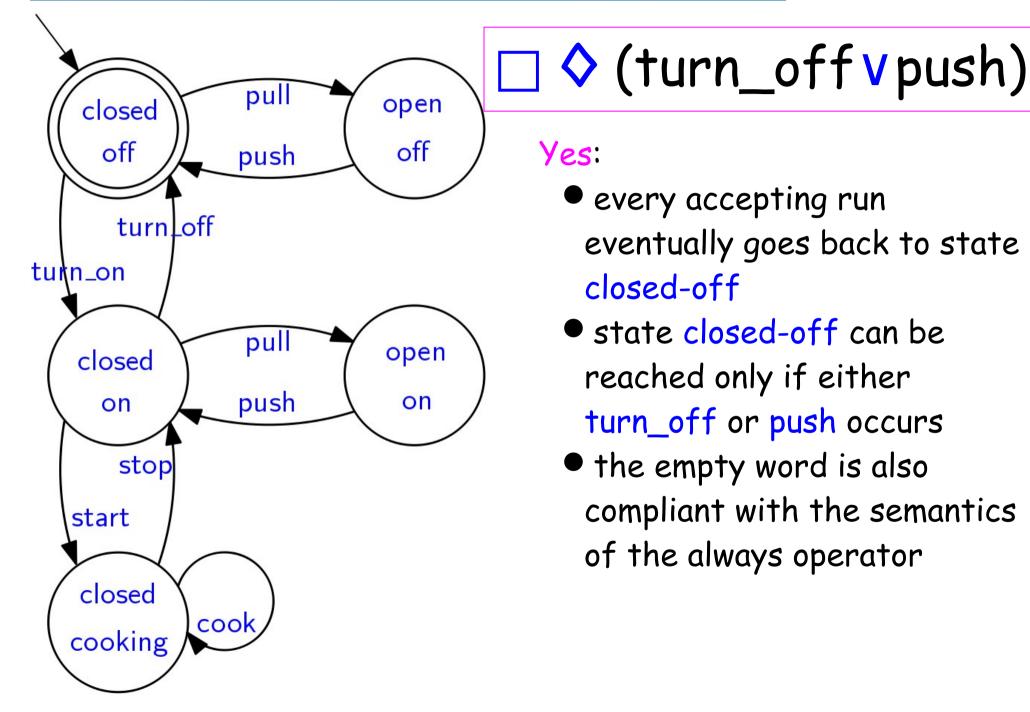
Yes:

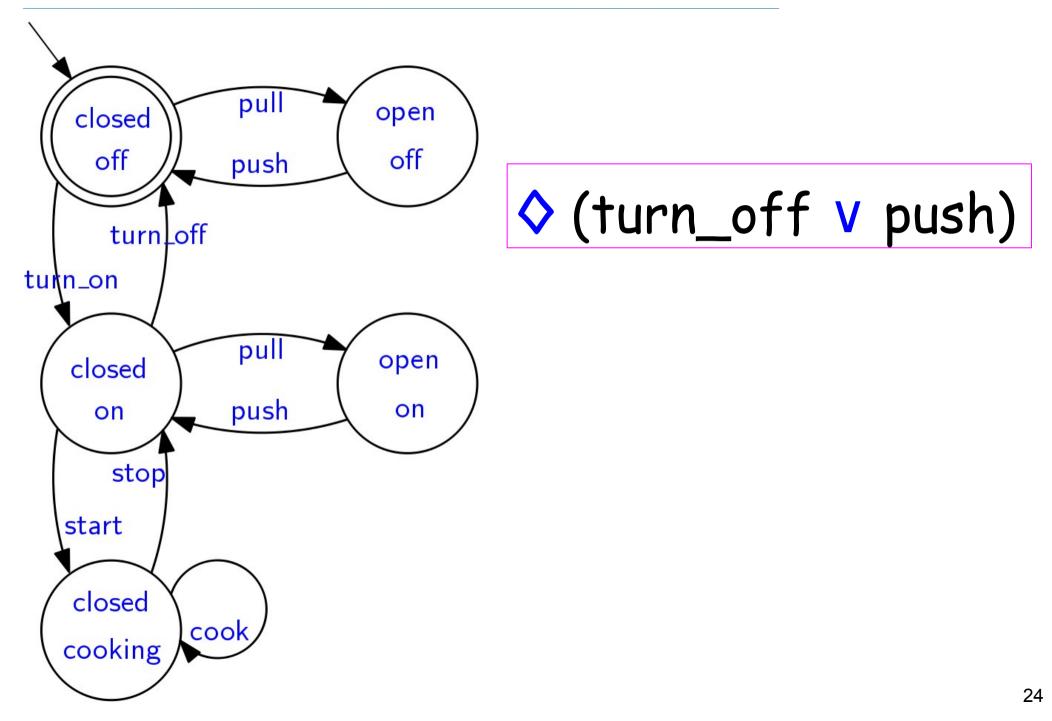
- whenever start occurs we reach state closed-cooking
- we must eventually exit state closed-cooking to reach the only accepting state closed-off
- state closed-cooking can be exited only if stop occurs

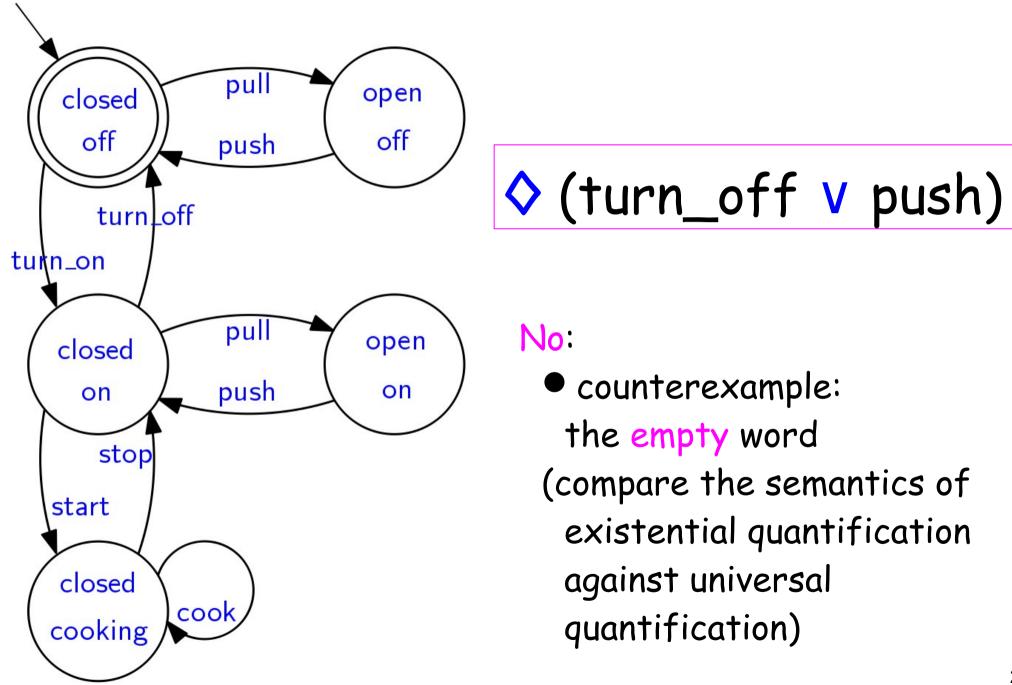


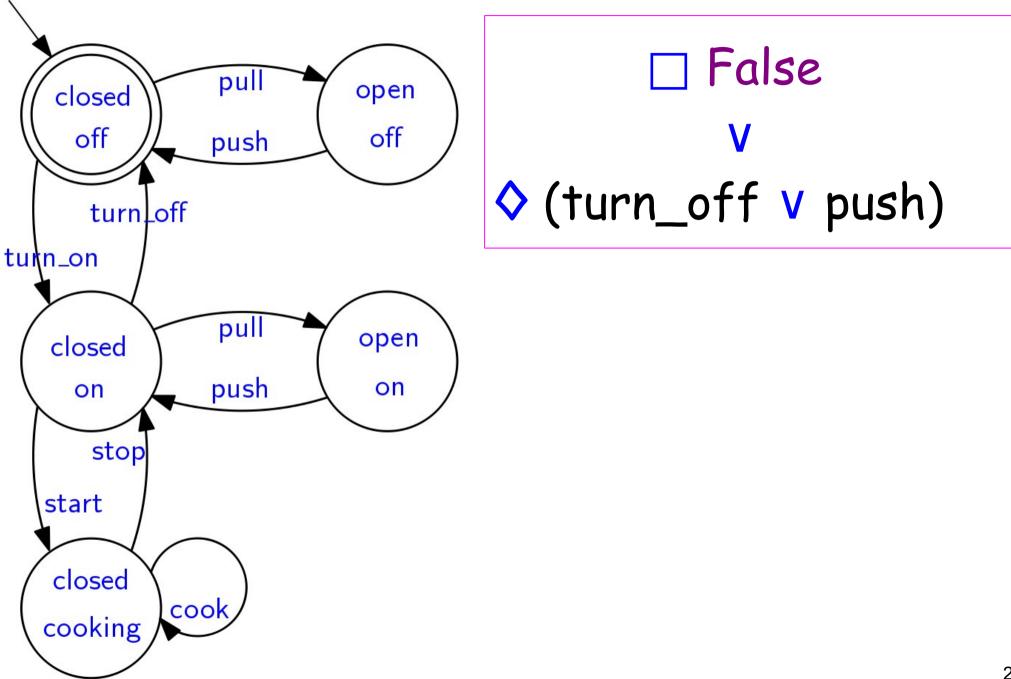


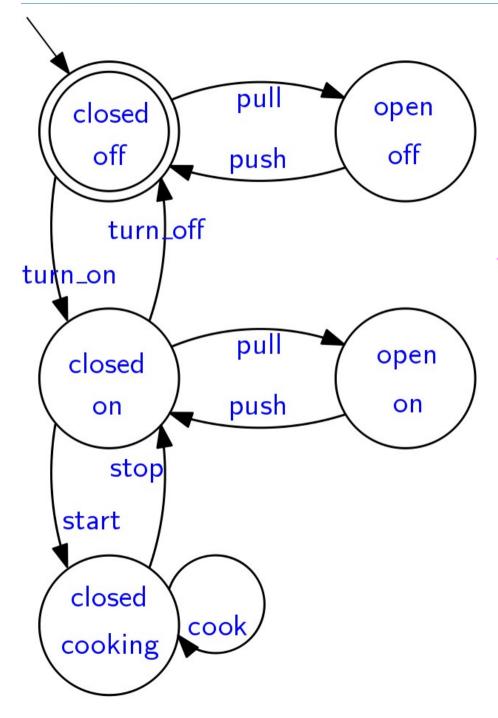








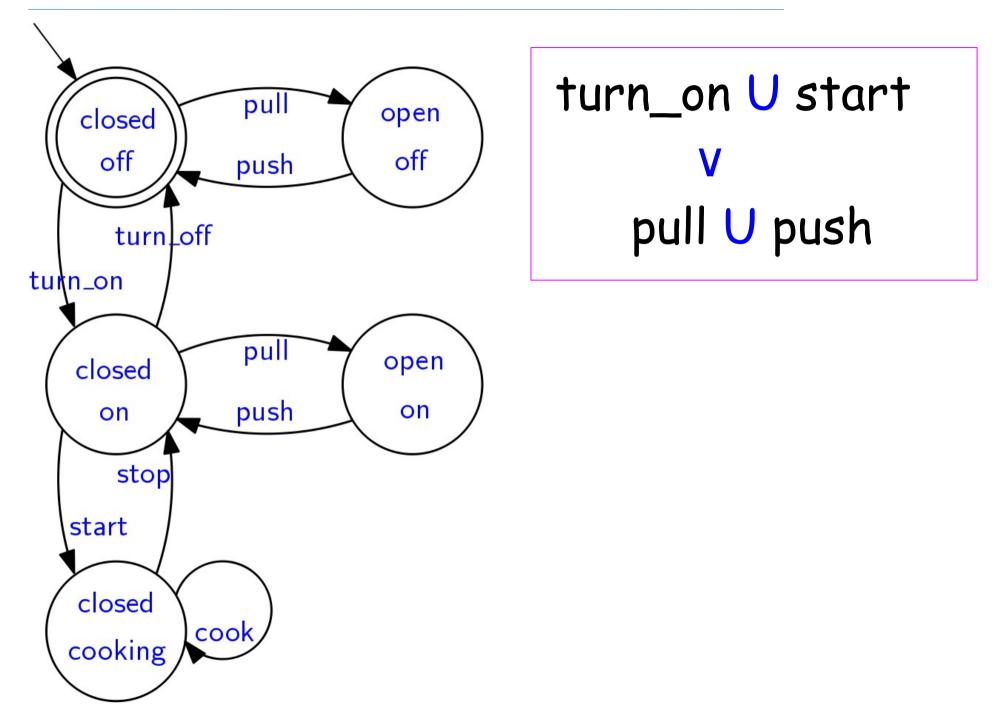


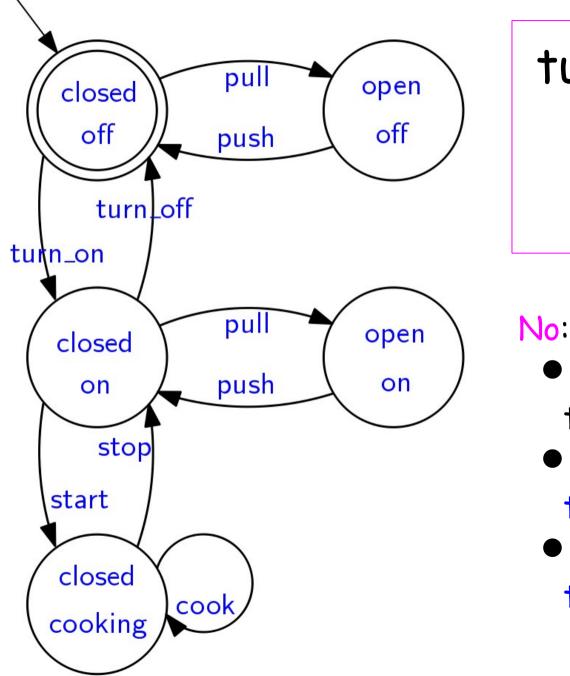


□ False v ◊ (turn_off v push)

Yes:

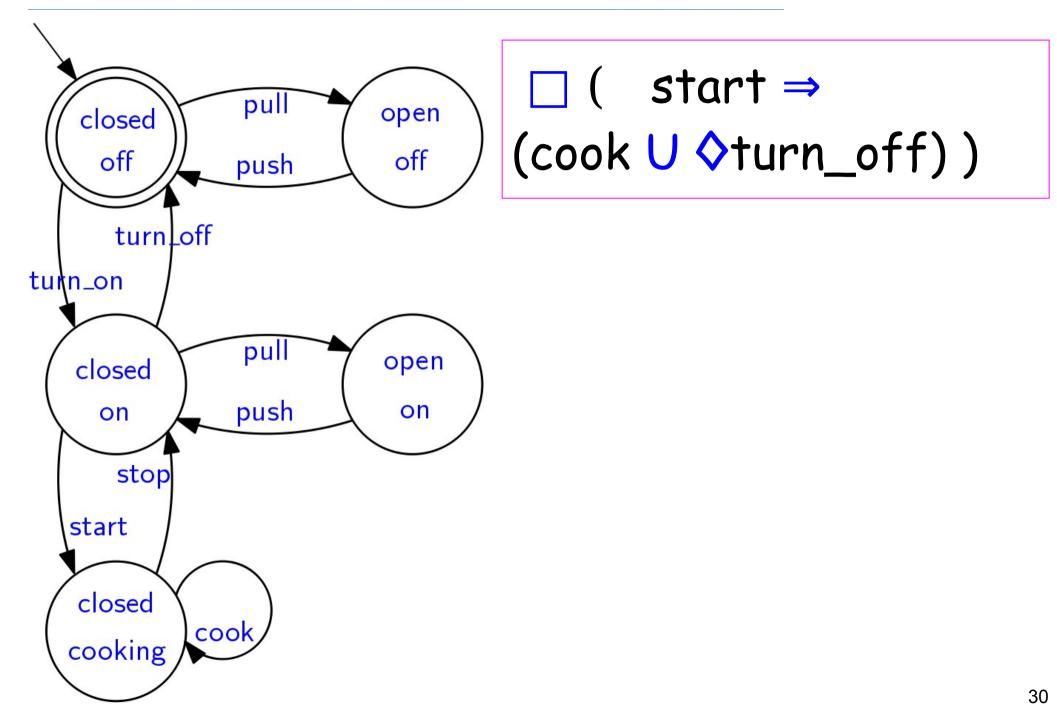
- "always False" means that False holds at every step in the word: it is satisfied precisely by the empty word
- if the word is not empty, then it must end with turn_off or push, thus it satisfies the other disjunct

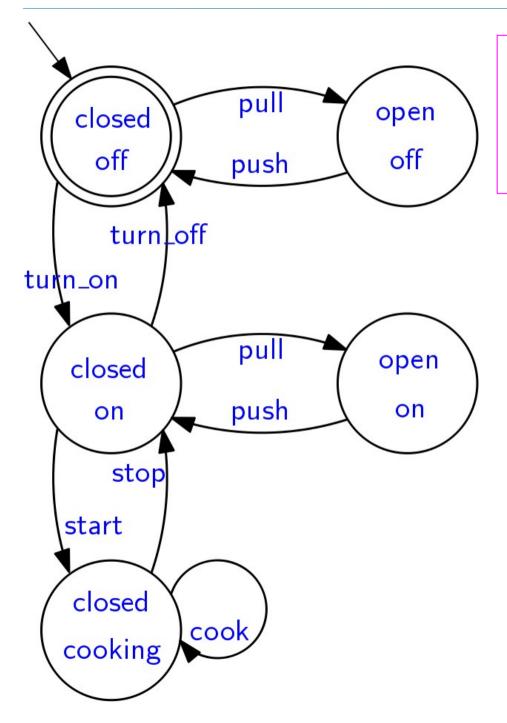




turn on U start pull U push

- counterexample: the empty word
- counterexample: turn_on turn_off
- counterexample: turn_on pull push turn_off





Yes:

- once start occurs, turn_off must occur eventually
- hence "eventually turn_off" is the case right after start occurs
- cook can occur right after start occurs, one or more times

Exercises: Equivalence of LTL formulas

()

Equivalence of formulas

Prove that \diamondsuit is idempotent, that is:

\$\$ q

is equivalent to:

◊ q

Equivalence of formulas

```
w,i \models \Diamond \Diamond q
iff
          for some i \leq j \leq n it is: w, j \models \Diamond q
                        (semantics of eventually)
iff
                for some i \leq j \leq n it is: for some j \leq h \leq n it is: w, h \models q
                        (semantics of eventually)
iff
                for some i \leq j \leq h \leq n it is: w, h \models q
                        (merging of intervals)
iff
                for some i \leq h \leq n it is: w, h \models q
                        (dropping j, a fortiori)
iff
                                 w, i \models \diamond q
                        (semantics of eventually)
```

Equivalence of formulas

Prove that:

p **U 🔷** q

is equivalent to:

◊ q

()

Equivalence of formulas: \Rightarrow **direction**

```
w,i ⊧ p U ◊ q
```

iff

```
for some i ≤ j ≤ n it is: w, j ⊨ ◊ q
and for all i ≤ k < j it is w, k ⊨ p
(semantics of until)
```

implies

```
for some i \le j \le n it is: w, j \models \Diamond q (a fortiori)
```

iff

```
for some i \le j \le n it is: for some j \le h \le n it is: w, h \models q
```

```
(semantics of eventually)
```

iff

```
for some i ≤ h ≤ n it is: w, h ⊨ q
(simplification of range of quantification)
```

iff

(。)

Equivalence of formulas: \leftarrow direction

```
w,i ⊧ ◊ q
```

iff

iff

iff

```
for some i \leq j \leq i: w, j \models \Diamond q
                (singleton range of quantification)
            for some i \leq j \leq i: w, j \models \Diamond q
                                                      and True
                (semantics of and)
            for some i \leq j \leq i: w, j \models \Diamond q
            and for all i \leq k < j=i it is w, k \models p
                (semantics of universally quantified empty range)
implies
```

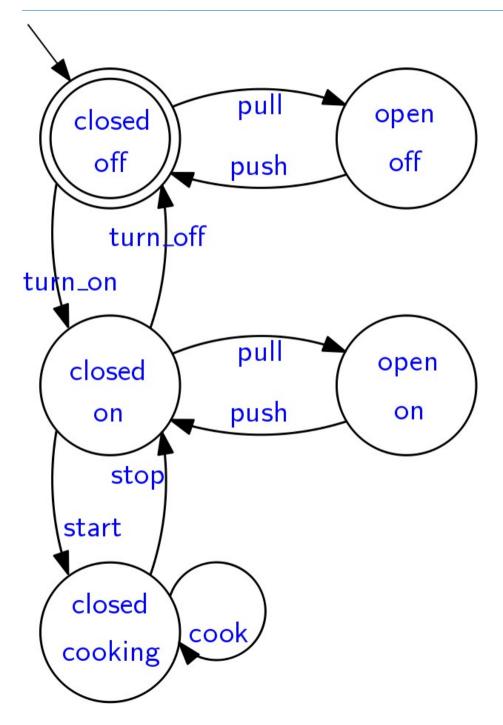
```
for some i \leq j \leq n: w, j \models \Diamond q
and for all i \leq k < j it is w, k \models p
```


iff

w, i ⊨ p U � q (semantics of until) (。)

Exercises: Automata-theoretic model-checking (on paper)

Automata-based model checking



🗆 🔷 turn_off

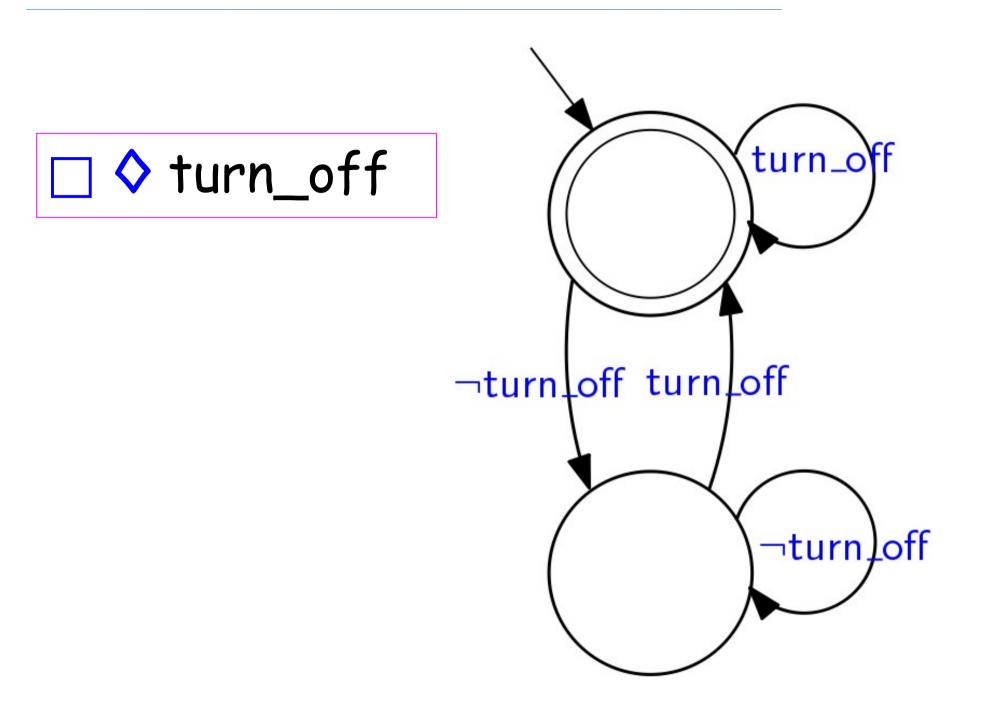
Let us prove by model checking that it's not a property of the automaton

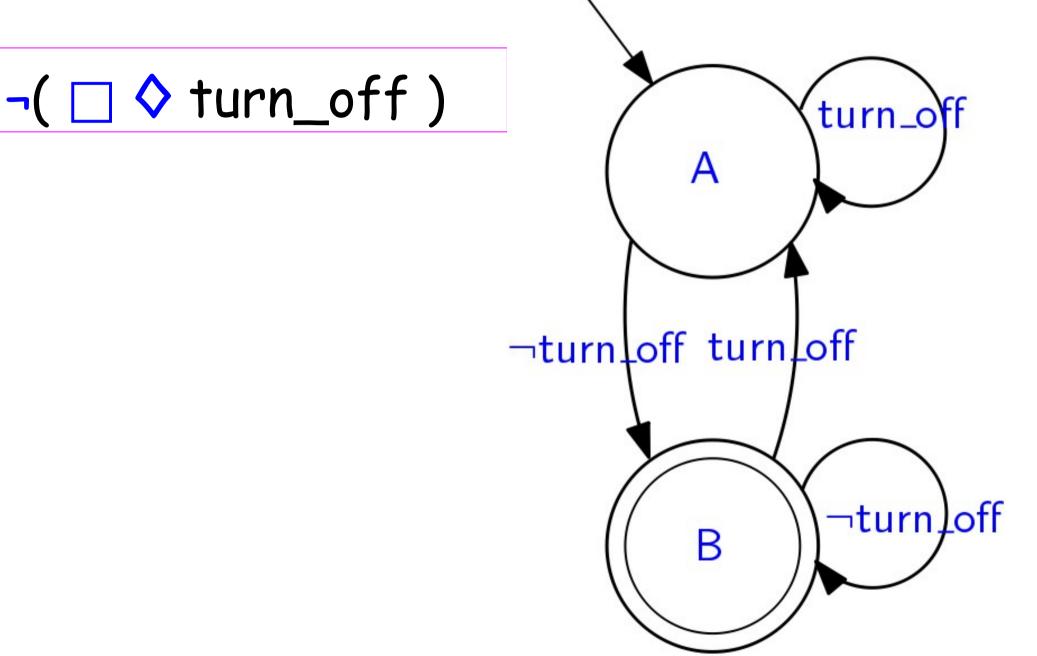
Build an automaton with the same language as:

-(□ ◊ turn_off)

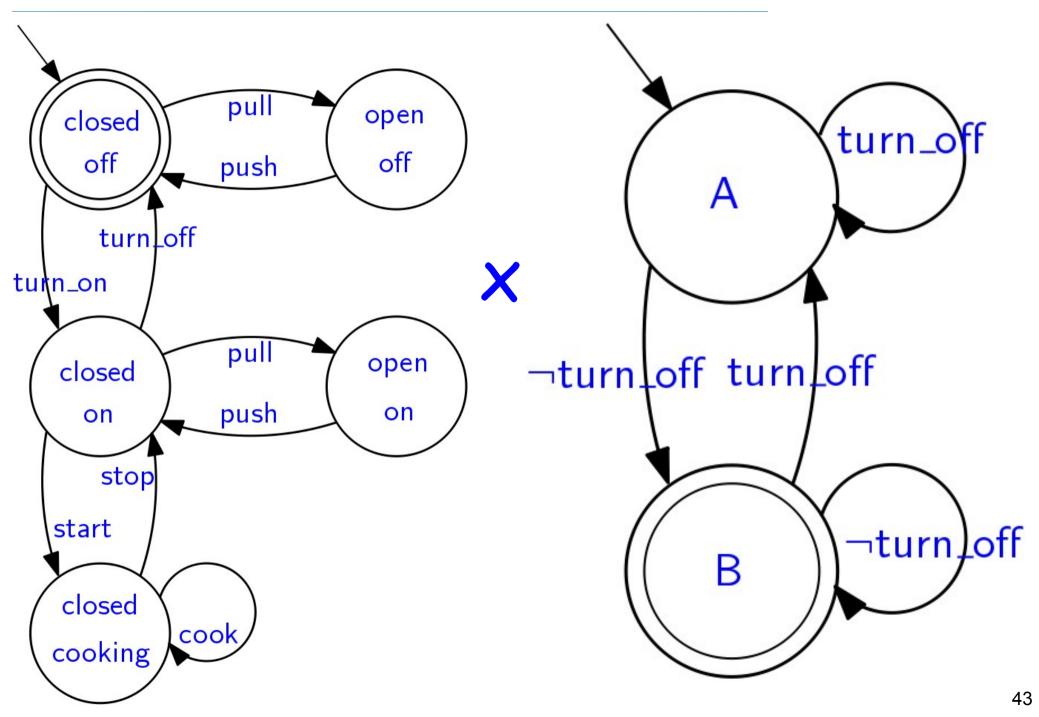
Let us start from the unnegated formula:

and then complement the states of the automaton

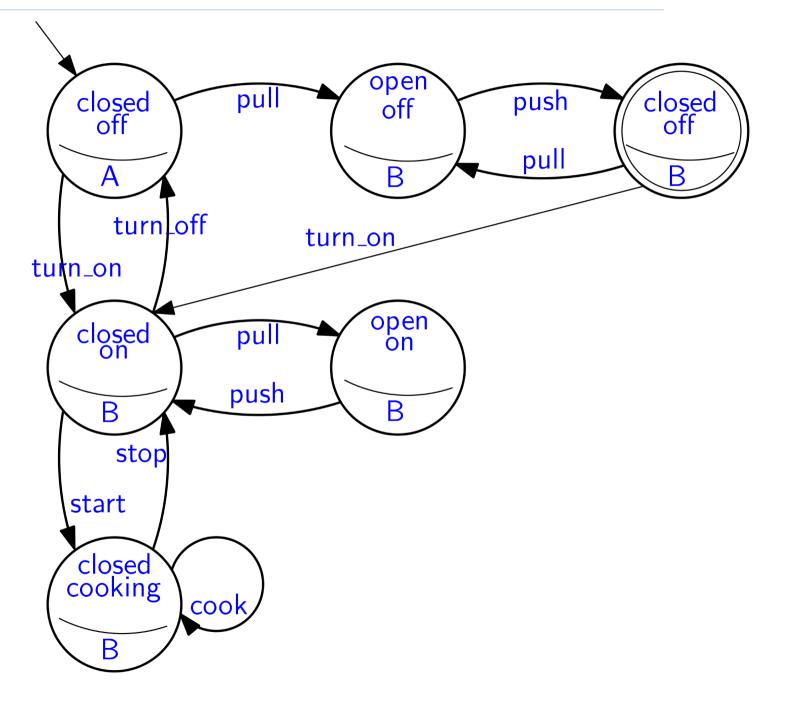




FSA Intersection



FSA Intersection



FSA-Emptiness: node reachability

Any accepting run on the intersection automaton is a counterexample to the LTL formula being a property of the automaton

