
Hoare Logic Recap

Software Verification 2010

13 October 2010

1 Factorial

• Write a routine that computes the factorial of its input argument n.

• Annotate the routine with pre and postcondition.

• Prove that your implementation is correct.

1 fact (n: INTEGER): INTEGER
2 require n ≥ 0
3 local i: INTEGER
4 do
5 from
6 i := 0
7 Result := 1
8 until i = n
9 loop

10 i := i + 1
11 Result := Result ∗ i
12 end
13 ensure Result = n! end

With standard notation, our goal is to prove that the following Hoare triple
is valid.

1 { n ≥ 0 }
2 from
3 i := 0
4 Result := 1
5 until i = n
6 loop
7 i := i + 1
8 Result := Result ∗ i
9 end

10 { Result = n! }

Let Inv denote the loop invariant. The following is a proof outline of a partial
correctness proof, based on the inference rule for loops.

1 { n ≥ 0 }
2 from

1



3 i := 0
4 Result := 1
5 { Inv }
6 until i = n
7 loop
8 { Inv ∧i 6=n }
9 i := i + 1

10 Result := Result ∗ i
11 { Inv }
12 end
13 { Inv ∧i = n }
14 { Result = n! }

Once we find a suitable invariant, we can verify each block separately, thanks
to the composition and the loop inference rules.

To determine the invariant, consider the values of i and Result over a few
iterations:

i Result
0 1
1 1
2 2
3 6
4 24

It should be clear that Result = i ! is an invariant characterizing the loop.
Finally, prove each block correct with backward substitution (the assignment

rule). The first block:

1 { n ≥ 0 }
2 { 1 = 0 !}
3 i := 0
4 { 1 = i !}
5 Result := 1
6 { Result = i !}

is correct because indeed 1 = 0!.
The second block:

1 { Result = i ! ∧i 6=n }
2 { Result ∗ (i + 1) = (i + 1)! }
3 i := i + 1
4 { Result ∗ i = i !}
5 Result := Result ∗ i
6 { Result = i !}

is correct because Result = i ! implies Result ∗ (i + 1)= (i !)∗ (i+1)= (i+1)!
by elementary arithmetic.

The third block is also correct, because Result = i ! ∧i = n implies Result
= n! by elementary arithmetic.

To prove termination, consider the variant n − i. It decreases at every iter-
ation because i increases but n does not change:

{n − i = x} i := i + 1 ; Result := Result ∗ i {n − i <x}

2



Also, i≤n is a loop invariant, which implies that n − i ≥ 0, hence the variant
has a lower bound. This concludes the termination proof.

2 Primality testing

The following piece of code sets pr to True iff x — assumed to be greater than
one — is a prime number. Prove correctness.

1 { x >1 }
2 from i := 2 ; pr := True
3 until i ≥ x
4 loop
5 if x mod i = 0 then
6 pr := False
7 end
8 i := i + 1
9 end

10 { (¬ pr ⇒∃ y (1 <y <x ∧x mod y = 0))
11 ∧(pr ⇒∀ y (1 <y <x ⇒x mod y 6=0)) }

The proof follows the usual proof outline, based on the inference rule for
loops, with Inv denoting the loop invariant.

1 { x >1 }
2 from i := 2 ; pr := True
3 { Inv }
4 until i ≥ x
5 loop
6 { Inv ∧i <x }
7 if x mod i = 0 then
8 pr := False
9 end

10 i := i + 1
11 { Inv }
12 end
13 { Inv ∧i ≥ x }
14 { (¬ pr ⇒∃ y (1 <y <x ∧x mod y = 0))
15 ∧(pr ⇒∀ y (1 <y <x ⇒x mod y 6=0)) }

The invariant must imply, together with i ≥ x, the postcondition, hence it
is probably very close to it syntactically. Indeed, since the loop proceeds by
increasing i from 2 up until x, a loop invariant is obtained by replacing x with i
in the postcondition. Another clause in the loop invariant specifies the obvious
bounds for i: 1 <i≤x.

Inv , 1 <i≤x ∧(¬ pr ⇒∃ y (1 <y <i ∧x mod y = 0))
∧(pr ⇒∀ y (1 <y <i ⇒x mod y 6=0))

2.1 Initialization

The first block (initialization) corresponds to the triple:

3



1 { x >1 }
2 from i := 2 ; pr := True
3 { Inv }

The backward substitution of Inv yields:

1 <2≤x ∧(¬ True ⇒∃ y (1 <y <2 ∧x mod y = 0))
∧(True ⇒∀ y (1 <y <2 ⇒x mod y 6=0))

Then:

• 2≤x is equivalent to the precondition x >1.

• The first implication holds trivially because its antecedent if False.

• The second implication holds trivially because the interval 1 < y < 2 is
empty for all integer values of y.

2.2 Loop iteration

The second block requires to prove:

1 { Inv ∧i <x }
2 if x mod i = 0 then pr := False end
3 i := i + 1
4 { Inv }

Using the inference rule for if, split the proof into two branches.

2.2.1 Then branch

1 { Inv ∧i <x ∧x mod i = 0 }
2 pr := False
3 i := i + 1
4 { 1 <i≤x ∧(¬ pr ⇒∃ y (1 <y <i ∧x mod y = 0))
5 ∧(pr ⇒∀ y (1 <y <i ⇒x mod y 6=0)) }

Backward substitution yields:

1 { 1 <i+1≤x ∧(¬ False ⇒∃ y (1 <y <i+1 ∧x mod y = 0))
2 ∧(False ⇒∀ y (1 <y <i+1 ⇒x mod y 6=0)) }

• The clauses 1 <i <x imply the clause 1 <i+1≤x, as we are dealing with
integer variables.

• The first implication requires to establish ∃ y (1 <y <i+1 ∧x mod y =
0), which is implied by x mod i = 0 in the precondition for y = i < i+ 1.

• The second implication is trivial as its antecedent is false.

2.2.2 Else branch

1 { Inv ∧i <x ∧x mod i 6=0 }
2 i := i + 1
3 { 1 <i≤x ∧(¬ pr ⇒∃ y (1 <y <i ∧x mod y = 0))
4 ∧(pr ⇒∀ y (1 <y <i ⇒x mod y 6=0)) }

4



Backward substitution yields:

1 { 1 <i+1≤x ∧(¬ pr ⇒∃ y (1 <y <i+1 ∧x mod y = 0))
2 ∧(pr ⇒∀ y (1 <y <i+1 ⇒x mod y 6=0)) }

First notice that The clauses 1 <i <x imply the clause 1 <i+1≤x, as we are
dealing with integer variables. Then, the proof follows a case discussion:

1. Case pr = False.
We have to establish only the first implication, as the second has false
antecedent. The precondition, for pr = False, says in particular that
∃ y (1 <y <i ∧x mod y = 0). The value y that satisfies the existential
quantification also satisfies the weaker quantification ∃ y (1 <y <i+1 ∧x
mod y = 0) over the larger interval (1, i + 1).

2. Case pr = True.
We have to establish only the second implication, as the first has false
antecedent. In the precondition with pr = True, we combine the facts
∀ y (1 <y <i ⇒x mod y 6=0) and x mod i 6=0 to get ∀ y (1 <y <i+1 ⇒x
mod y 6=0), the stronger quantification over the larger interval (1, i+ 1).

2.3 Conclusion

The loop invariant clause i≤x and i ≥ x imply i = x. Substituting x for i in the
other loop invariant clauses yields the postcondition of the program.

2.4 Termination

The variant x− i and the invariant clause 1 < i ≤ x can be combined to prove
termination.

3 Least common multiple

Consider a simple program computing the least common multiple (LCM) of two
integers x, y, with the following specification.

1 { x ≥ 1 ∧y ≥ 1 }
2 from z := 1
3 until z mod x = 0 ∧z mod y = 0
4 loop z := z + 1
5 end
6 { z mod x = 0 ∧z mod y = 0 ∧
7 ∀ w (1≤w <z ⇒(w mod x 6=0 ∨w mod y 6=0)) }

Prove its correctness.
The partial correctness proof follows the usual outline, for a suitable loop

invariant Inv.

1 { x ≥ 1 ∧y ≥ 1 }
2 from z := 1
3 { Inv }
4 until z mod x = 0 ∧z mod y = 0
5 loop

5



6 { Inv ∧(z mod x 6=0 ∨z mod y 6=0) }
7 z := z + 1
8 { Inv }
9 end

10 { Inv ∧z mod x = 0 ∧z mod y = 0 }
11 { z mod x = 0 ∧z mod y = 0 ∧
12 ∀ w (1≤w <z ⇒(w mod x 6=0 ∨w mod y 6=0)) }

The loop invariant should mirror the last conjunct of the postcondition,
hence:

Inv , ∀ w (1≤w <z ⇒(w mod x 6=0 ∨w mod y 6=0))

3.1 Initialization

Backward substitution of Inv through the from block yields:

∀ w (1≤w <1 ⇒(w mod x 6=0 ∨w mod y 6=0))

which holds trivially because the interval [1, 1) is empty.

3.2 Loop iteration

The loop body is very simple, hence just apply backward substitution of Inv
through z := z + 1 to get:

I ′ , ∀ w (1≤w <z+1 ⇒(w mod x 6=0 ∨w mod y 6=0))

Inv implies I ′ for values of w less than z; combined with the other conjunct
(z mod x 6=0 ∨z mod y 6=0), it is equivalent to I ′.

3.3 Conclusion

Inv and the exit condition z mod x = 0 ∧z mod y = 0 is exactly the postcon-
dition.

3.4 Termination

Use the variant x∗y − z and the invariant x∗y − z ≥ 0 to prove termination.
(Recall that x∗y mod x = x∗y mod y = 0).

6


	Factorial
	Primality testing
	Initialization
	Loop iteration
	Then branch
	Else branch

	Conclusion
	Termination

	Least common multiple
	Initialization
	Loop iteration
	Conclusion
	Termination


