Hoare Logic Recap

Software Verification 2010

13 October 2010

1 Factorial

- Write a routine that computes the factorial of its input argument n.
- Annotate the routine with pre and postcondition.
- Prove that your implementation is correct.
fact (n: INTEGER): INTEGER
require $n \geq 0$
local i : INTEGER
do
from
$i:=0$
Result := 1
until $i=n$
loop
$i:=i+1$
Result := Result $* i$
end
ensure Result $=n!$ end
With standard notation, our goal is to prove that the following Hoare triple is valid.
$1\{n \geq 0\}$
2 from
$3 \quad i:=0$
4 Result :=1
5 until $i=n$
6 loop
$7 \quad i:=i+1$
8 Result := Result * i
9 end
$10\{$ Result $=n!\}$
Let Inv denote the loop invariant. The following is a proof outline of a partial correctness proof, based on the inference rule for loops.

```
1{n\geq0}
2 from
```

```
\(3 \quad i:=0\)
4 Result :=1
5 \{ Inv \}
6 until \(i=n\)
7 loop
\(8 \quad\{\operatorname{Inv} \wedge i \neq n\}\)
\(9 \quad i:=i+1\)
10 Result := Result * \(i\)
11 \{ Inv \}
12 end
\(13\{\operatorname{Inv} \wedge i=n\}\)
\(14\{\) Result \(=n!\}\)
```

Once we find a suitable invariant, we can verify each block separately, thanks to the composition and the loop inference rules.

To determine the invariant, consider the values of i and Result over a few iterations:

i	Result
0	1
1	1
2	2
3	6
4	24

It should be clear that Result $=i$! is an invariant characterizing the loop.
Finally, prove each block correct with backward substitution (the assignment rule). The first block:

```
1{n\geq0}
2{1=0!}
3i:=0
4{1= ! !}
5 Result := 1
6{ Result = i!}
```

 is correct because indeed \(1=0\) !.
 The second block:
 $1\{$ Result $=i!\wedge i \neq n\}$
$2\{$ Result $*(i+1)=(i+1)!\}$
$3 i:=i+1$
$4\{$ Result $* i=i!\}$
5 Result $:=$ Result $* i$
$6\{$ Result $=i!\}$
is correct because Result $=i$! implies Result $*(i+1)=(i!) *(i+1)=(i+1)!$ by elementary arithmetic.

The third block is also correct, because Result $=i!\wedge i=n$ implies Result $=n!$ by elementary arithmetic.

To prove termination, consider the variant $n-i$. It decreases at every iteration because i increases but n does not change:

$$
\{n-i=x\} \quad i:=i+1 ; \text { Result }:=\text { Result } * i\{n-i<x\}
$$

Also, $i \leq n$ is a loop invariant, which implies that $n-i \geq 0$, hence the variant has a lower bound. This concludes the termination proof.

2 Primality testing

The following piece of code sets $p r$ to True iff x - assumed to be greater than one - is a prime number. Prove correctness.
$1\{x>1\}$
from $i:=2 ; p r:=$ True
until $i \geq x$
loop
if $x \bmod i=0$ then $p r:=$ False
end
$i:=i+1$
end
$10\{(\neg p r \Rightarrow \exists y(1<y<x \wedge x \bmod y=0))$
$11 \wedge(p r \Rightarrow \forall y(1<y<x \Rightarrow x \bmod y \neq 0))\}$
The proof follows the usual proof outline, based on the inference rule for loops, with Inv denoting the loop invariant.

```
\(\{x>1\}\)
    from \(i:=2 ; p r:=\) True
    \{ Inv \}
    until \(i \geq x\)
    loop
        \(\{\) Inv \(\wedge i<x\}\)
        if \(x \bmod i=0\) then
            \(p r:=\) False
        end
        \(i:=i+1\)
        \{Inv \}
    end
\(\{\) Inv \(\wedge i \geq x\}\)
\(14\{(\neg p r \Rightarrow \exists y(1<y<x \wedge x \bmod y=0))\)
\(15 \wedge(p r \Rightarrow \forall y(1<y<x \Rightarrow x \bmod y \neq 0))\}\)
```

The invariant must imply, together with $i \geq x$, the postcondition, hence it is probably very close to it syntactically. Indeed, since the loop proceeds by increasing i from 2 up until x, a loop invariant is obtained by replacing x with i in the postcondition. Another clause in the loop invariant specifies the obvious bounds for $i: 1<i \leq x$.

$$
\begin{aligned}
I n v \triangleq 1<i \leq x & \wedge(\neg p r \Rightarrow \exists y(1<y<i \wedge x \bmod y=0)) \\
& \wedge(p r \Rightarrow \forall y(1<y<i \Rightarrow x \bmod y \neq 0))
\end{aligned}
$$

2.1 Initialization

The first block (initialization) corresponds to the triple:
$1\{x>1\}$
2 from $i:=2 ; p r:=$ True
$3\{\operatorname{Inv}\}$
The backward substitution of $I n v$ yields:

$$
\begin{aligned}
1<2 \leq x \wedge(\neg \text { True } \Rightarrow \exists y(1<y<2 \wedge x \bmod y=0)) \\
\wedge(\text { True } \Rightarrow \forall y(1<y<2 \Rightarrow x \bmod y \neq 0))
\end{aligned}
$$

Then:

- $2 \leq x$ is equivalent to the precondition $x>1$.
- The first implication holds trivially because its antecedent if False.
- The second implication holds trivially because the interval $1<y<2$ is empty for all integer values of y.

2.2 Loop iteration

The second block requires to prove:

```
\(1\{\operatorname{Inv} \wedge i<x\}\)
2 if \(x \bmod i=0\) then \(p r:=\) False end
\(3 \quad i:=i+1\)
\(4\{I n v\}\)
```

Using the inference rule for if, split the proof into two branches.

2.2.1 Then branch

$1\{\operatorname{Inv} \wedge i<x \wedge x \bmod i=0\}$
$2 p r:=$ False
$3 \quad i:=i+1$
$4\{1<i \leq x \wedge(\neg p r \Rightarrow \exists y(1<y<i \wedge x \bmod y=0))$
$5 \wedge(p r \Rightarrow \forall y(1<y<i \Rightarrow x \bmod y \neq 0))\}$
Backward substitution yields:
$1\{1<i+1 \leq x \wedge(\neg$ False $\Rightarrow \exists y(1<y<i+1 \wedge x \bmod y=0))$
$2 \wedge($ False $\Rightarrow \forall y(1<y<i+1 \Rightarrow x \bmod y \neq 0))\}$

- The clauses $1<i<x$ imply the clause $1<i+1 \leq x$, as we are dealing with integer variables.
- The first implication requires to establish $\exists y(1<y<i+1 \wedge x \bmod y=$ 0), which is implied by $x \bmod i=0$ in the precondition for $\bar{y}=i<i+1$.
- The second implication is trivial as its antecedent is false.

2.2.2 Else branch

```
1{Inv }\wedgei<x\wedgex\operatorname{mod}i\not=0
2 i:= i+1
3{1<i\leqx^(\negpr=>\existsy(1<y<i\wedgex mod y=0))
4 ^(pr=>\forally(1<y<i=>x\operatorname{mod}y\not=0))}
```

Backward substitution yields:

$$
\begin{aligned}
& 1\{1<i+1 \leq x \wedge(\neg p r \Rightarrow \exists y(1<y<i+1 \wedge x \bmod y=0)) \\
& 2 \\
& \wedge(p r \Rightarrow \forall y(1<y<i+1 \Rightarrow x \bmod y \neq 0))\}
\end{aligned}
$$

First notice that The clauses $1<i<x$ imply the clause $1<i+1 \leq x$, as we are dealing with integer variables. Then, the proof follows a case discussion:

1. Case $p r=$ False.

We have to establish only the first implication, as the second has false antecedent. The precondition, for $p r=$ False, says in particular that $\exists y(1<y<i \wedge x \bmod y=0)$. The value \bar{y} that satisfies the existential quantification also satisfies the weaker quantification $\exists y(1<y<i+1 \wedge x$ $\bmod y=0)$ over the larger interval $(1, i+1)$.
2. Case $p r=$ True.

We have to establish only the second implication, as the first has false antecedent. In the precondition with $p r=$ True, we combine the facts $\forall y(1<y<i \Rightarrow x \bmod y \neq 0)$ and $x \bmod i \neq 0$ to get $\forall y(1<y<i+1 \Rightarrow x$ $\bmod y \neq 0)$, the stronger quantification over the larger interval $(1, i+1)$.

2.3 Conclusion

The loop invariant clause $i \leq x$ and $i \geq x$ imply $i=x$. Substituting x for i in the other loop invariant clauses yields the postcondition of the program.

2.4 Termination

The variant $x-i$ and the invariant clause $1<i \leq x$ can be combined to prove termination.

3 Least common multiple

Consider a simple program computing the least common multiple (LCM) of two integers x, y, with the following specification.
$1\{x \geq 1 \wedge y \geq 1\}$
2 from $z:=1$
$3 \quad$ until $z \bmod x=0 \wedge z \bmod y=0$
4 loop $z:=z+1$
5 end
$6\{z \bmod x=0 \wedge z \bmod y=0 \wedge$
$7 \forall w(1 \leq w<z \Rightarrow(w \bmod x \neq 0 \vee w \bmod y \neq 0))\}$
Prove its correctness.
The partial correctness proof follows the usual outline, for a suitable loop invariant Inv.

```
\(1\{x \geq 1 \wedge y \geq 1\}\)
2 from \(z:=1\)
3 \{ Inv \}
\(4 \quad\) until \(z \bmod x=0 \wedge z \bmod y=0\)
5 loop
```

```
\(6\{\operatorname{Inv} \wedge(z \bmod x \neq 0 \vee z \bmod y \neq 0)\}\)
\(7 z:=z+1\)
8 \{Inv \}
9 end
\(10\{\operatorname{Inv} \wedge z \bmod x=0 \wedge z \bmod y=0\}\)
\(11\{z \bmod x=0 \wedge z \bmod y=0 \wedge\)
\(12 \forall w(1 \leq w<z \Rightarrow(w \bmod x \neq 0 \vee w \bmod y \neq 0))\}\)
```

The loop invariant should mirror the last conjunct of the postcondition, hence:

$$
\operatorname{Inv} \triangleq \forall w(1 \leq w<z \Rightarrow(w \bmod x \neq 0 \vee w \bmod y \neq 0))
$$

3.1 Initialization

Backward substitution of $I n v$ through the from block yields:
$\forall w(1 \leq w<1 \Rightarrow(w \bmod x \neq 0 \vee w \bmod y \neq 0))$
which holds trivially because the interval $[1,1)$ is empty.

3.2 Loop iteration

The loop body is very simple, hence just apply backward substitution of Inv through $z:=z+1$ to get:
$I^{\prime} \triangleq \forall w(1 \leq w<z+1 \Rightarrow(w \bmod x \neq 0 \vee w \bmod y \neq 0))$
Inv implies I^{\prime} for values of w less than z; combined with the other conjunct $(z \bmod x \neq 0 \vee z \bmod y \neq 0)$, it is equivalent to I^{\prime}.

3.3 Conclusion

Inv and the exit condition $z \bmod x=0 \wedge z \bmod y=0$ is exactly the postcondition.

3.4 Termination

Use the variant $x * y-z$ and the invariant $x * y-z \geq 0$ to prove termination. (Recall that $x * y \bmod x=x * y \bmod y=0$).

