ETH ziricn

uric
Chair of Software Engineering

Software Verification

Bertrand Meyer
Carlo A. Furia
Sebastian Nanz

ETH Zurich, Fall 2010

Today

©

Aims of the course

Introduction to issues of software quality

Course organization

Lecturers: Bertrand Meyer, Carlo Furia, Sebastian Nanz
Assistant: Stephan van Staden

Monday lectures (9-11, RZ F21) + today:
Classical lecture

Wednesday lecture (16-17, RZ F21):

Variable slot: seminar by guest, or extra lecture,
or extra exercise class

Exercise session: Monday, 13-15, IFW A32.1

Purpose of this course

To present available techniques for ensuring better
software quality

Topics (see Web page for details)

Axiomatic semantics
Separation logic

Assertion inference
Proof-Carrying Code

Program proofs

Program analysis Program analysis
Abstract interpretation J Y
Model checking Model checking
Verifying real-time systems

Testing Testing

Grading

Project: 30%
Written exam (20 December): 70%

All material presented during regular slots is examinable

©

A fatal exception BE has occurred at 8828:CBB11E36 in UXD UMM(B1) +
ABB1BE36. The current application will be terminated.

» Press any key to terminate the current application.
% Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue _

Purpose of this course

To present available techniques for ensuring better
software quality

-1 -

Overview of

software
verification

: . O
The more general notion: software quality assurance

A set of policies and activities to:
» Define quality objectives

» Help ensure that software products and processes
meet these objectives

> Assess to what extent they do

» Improve them over time

10

Verification

The Quality Assurance activity devoted to enforcing
quality, in particular:

> Detecting deviations from quality
» Correcting them

Common distinction ("V & V"):

> Validation: assessment of any product relative to its
specification ("checking that it is doing the right things")

> Verification: assessment of internal quality ("checking
that it is doing things right")

In this course, "Verification" covers both .

The product side

Quality is the absence of "deficiencies” (or "bugs").

More precise terminology (LEEE):

causedby() Mistakes
result ﬂ*&) Faults

Failures

12

What is a failure?

For this discussion, a failure is any event of system
execution that violates a stated quality objective

13

Verification techniques

A priori techniques

» Build system for quality; e.g.: process approaches,
proof-guided construction, Design by Contract

A posteriori techniques
» Static: from software text only
= Program proofs
= Program analysis / abstract interpretation
= Model checking
» Dynamic: execute software
= Testing

14

Software quality: external vs internal

External factors: visible to customers

(not just end users but e.g. purchasers)

= Examples : ease of use, extendibility, timeliness

Internal factors: perceptible only to developers

= Examples : good programming style, information
hiding, documentation

Only external factors count in the end, but the internal
factors make it possible to obtain them.

15

Software quality: product vs process

Product: properties of the resulting software

For example: correctness, efficiency

Process: properties of the procedures used to produce
and "maintain” the software

16

Some external factors

Product quality (immediate):
> Reliability
> Efficiency

> Ease of use , Process quality:
» Ease of learning > Production speed

\) (tfimeliness)
» Cost-effectiveness

> Predictability
> Reproducibility

Product quality (long term): _ > Self-improvement ,
> Extendibility
> Reusability
> Portability
N ——————

17

Reliability

Correctness:

The systems’ ability to
perform according to
specification, in cases
covered by the specification

Robustness:

The systems’ ability to
perform reasonably in cases
not covered by the
specification

Security:

The systems’ ability to
protect itself against hostile
use

@ ERRORS

Correctness

Robustness
Security

18

NIST report on testing (May 2002)

©

Financial consequences, on
developers and users, of
“insufficient testing
infrastructure”

$ 59.5 B.

i \
Naﬁona\ {nstitute 0

grandards & Technolo®)
ta

Swrategic Pl
Econoimic Ana

Software projects according to Standish

A
O 49
50% - Challenged
4 Cd
40% - s e s ful b
uccessfu
31 N o
30% 33 28 28
O
. ~ .
>7 » Failed
20% - 23 19
16
10% -
1994 1996 1998 2000 2006

Some famous failures

Ariane 5

Therac

Patriot

London Ambulance System
Mars Orbiter Vehicle
Buffer overflows

21

Mars Climate Orbiter Vehicle

©

Mars Climate Orbiter
Mishap Investigation Board
Phase I Report

November 10, 1999

Mars Polar Lander

23

Cruise

RCS attitude control

Four trajectory correction maneuvers,

Site Adjustment maneuver 9/1/99,

Contingency maneuver up to Entry — 7 hr.

11 Month Cruise
Near-simultaneous
tracking w/ Mars Climate
Orbiter or MGS

during approach

Launch

* Delta 7425

* Launch 1/3/99

* 576 kg Launch Mass

Landed Operations
*+ 76° S Latitude, 195° W Longitude
* Ls 256 (Southern Spring)
* 60-90 Day Landed Mission
* MVACS, LIDAR Science
* Data relay via Mars Climate
Orbiter or MGS
* Commanding via Mars
Climate Orbiter or
direct-to-Earth high—gain antenna

Entry, Descent, and Landing

* Arrival 12/3/99

* Jettison Cruise Stage

* Microprobes sep. from Cruise Stage
* Hypersonic Entry (6.9 km/s)

* Parachute Descent

* Propulsive Landing

* Descent Imaging [MARDI]

The problem

24

On September 27, 1999, the operations navigation team consulted with the spacecraft
engineers to discuss navigation discrepancies regarding velocity change (AV) modeling
1ssues. On September 29, 1999. 1t was discovered that the small forces AV's reported by
the spacecraft engineers for use in orbit determination solutions was low by a factor of

4 .45 (1 pound force=4 45 Newtons) because the impulse bit data contained in the AMD
file was delivered in Ib-sec instead of the specified and expected units of Newton-sec.

Estimated trajectory

W. :‘ICN-G and AMDAV's

S—

.

T

Larger

AMD AV's

Diiving Trigectory dows relalive
w0 ecliptic plane

£

Ariane-5 maiden launch, 1996

37 seconds into flight, exception in Ada program not processed;
order given to abort mission. Loss estimated to $10 billion.

Exception was caused by an incorrect conversion: a 64-bit real
value was incorrectly translated into a 16-bit integer.

Systematic analysis had "proved” that the exception could not
occur - the 64-bit value (*horizontal bias" of the flight) was
proved to be always representable as a 16-bit integer |

It was a REUSE error:
> The analysis was correct - for Ariane 4 |
» The assumption was documented - in a design document |

See Jean-Marc Jézéquel & Bertrand Meyer, "Design by
Contract: The Lessons of Ariane, IEEE Computer, January 1997,
available at se.ethz.ch/~meyer/publications/computer/ariane.pdf

25

Security example: the buffer overflow

System expects some input from an external user:

First name:

Last name:

Address:

©

26

Getting the input

from /:= 1 until
/> input_size

loop
buffer [i]:= input [/]
(= 7+1

end

©

27

©
“"The stack”

Max

Data Routine 1 (activation records)
Routine 2 Return
address,
. My return address arguments,
Overflowing , ocals
a buffer! '

/

Routine n

The buffer array

(overflowing) My nasty code

P rograms Code of routine n-1

0

Memory

Getting the input

from /:= 1 until |
/> input_size lor' i > buffer_size l
loop
buffer [i]:= input [/]
fi=7+1

end

©

29

-2 -

Verification in the

software lifecycle

Quality assurance techniques

Process
Manual
Technology-generic

Phase-generic
Product-generic

Build (a priori)
Static
Informal
Complete

Product
Tool-supported
Technology-specific

Phase-specific
(analysis, design, implementation...)

Product-specific
VS (code, documentation...)

Assess (a posteriori)
Dynamic
Mathematical
Partial

31

Quality assurance throughout the process

"Software" is not just codel

Quality affects code, documentation, design, analysis,
management, the software process, and the software
quality policy itself.

Most of the techniques presented will, however, be for
code.

32

Process-based approaches to quality assurance

» Lifecycle models

» Process models: CMMI, ISO 9001:2000
» Inspections

» Open-source process

» eXtreme Programming (XP)

33

