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Axiomatic semantics 

Floyd (1967), Hoare (1969), Dijkstra (1978) 

Purpose: 
 Describe the effect of programs through a theory of 

the underlying programming language, allowing proofs 



What is a theory? 

(Think of any mathematical example, e.g. elementary arithmetic) 

A theory is a mathematical framework for proving 
properties about a certain object domain 

Such properties are called theorems 

Components of a theory: 
 Grammar (e.g. BNF), defines well-formed formulae 

      (WFF) 
 Axioms: formulae asserted to be theorems 
  Inference rules: ways to prove new theorems from 

previously obtained theorems 



Notation 

Let f be a well-formed formula 

Then 

 ⊢  f 

expresses that f is a theorem 



Inference rule 

An inference rule is written 

 f1,    f2, …,  fn   ___________ 
         f0 

It expresses that if f1,    f2, …  fn are theorems, we may 
infer f0 as another theorem 



Example inference rule 

“Modus Ponens” (common to many theories): 

 p,    p ⇒  q  
 ________ 
         q 



How to obtain theorems 

Theorems are obtained from the axioms by zero or more* 
applications of the inference rules. 

*Finite of course 



Example: a simple theory of integers 

Grammar: Well-Formed Formulae are boolean expressions 
  i1 = i2 
  i1 < i2 
  ¬ b1 
  b1 ⇒ b2 

where b1 and b2 are boolean expressions, i1 and i2 
integer expressions 

An integer expression is one of 
  0 
 A variable n 
  f’ where f is an integer expression 

   (represents “successor”) 



An axiom and axiom schema 

⊢ 0 < 0’ 

⊢ f < g ⇒ f’ < g’ 



An inference rule 

 P (0),    P (f) ⇒ P (f’)  
 ________________ 
         P (f) 



The theories of interest 

Grammar: a well-formed formula is a “Hoare triple” 

   
  {P}    A    {Q} 

Assertions 

Instructions 

Informal meaning: A, 
started in any state 
satisfying P, will satisfy Q 
on termination 



Software correctness (a quiz) 

Consider  

{P }   A    {Q }      

Take this as a job ad in the classifieds 

Should a lazy employment candidate hope for a weak or 
strong P ? What about Q ?  

Two “special offers”: 

  1.      {False}  A    {...} 
  2.      {...}  A    {True} 



Application to a programming language: Eiffel 

 extend (new : G ; key : H )  
   -- Assuming there is no item of key key, 
   -- insert new with key ; set inserted. 
  require 
   key_not_present: not has (key) 
  ensure 
   insertion_done: item (key) = new 
   key_present: has (key) 
   inserted: inserted 
   one_more: count = old count + 1 



Partial vs total correctness 

    {P}    A    {Q} 

Total correctness: 
   A, started in any state satisfying P, will 

terminate in a state satisfying Q 

Partial correctness: 
   A, started in any state satisfying P, will, if it 

terminates, yield a state satisfying Q 



Axiomatic semantics   

“Hoare semantics” or “Hoare logic”: a theory describing 
the partial correctness of programs, plus termination 
rules 



What is an assertion? 
Predicate (boolean-valued function) on the set of 
computation states 

True: Function that yields True for all states 
False:  Function that yields False for all states 

P implies Q:  means ∀ s : State, P (s ) ⇒ Q (s ) 
and so on for other boolean operators 

State 

True 

False 

s 



Another view of assertions 
We may equivalently view an assertion P as a subset of the 
set of states (the subset where the assertion yields True): 

True: Full State set  
False:  Empty subset 
implies: subset (inclusion) relation 
and: intersection         or: union 

State 

True 

P 



The case of postconditions 

Postconditions are often predicates on two states 

Example (Eiffel, in  a class COUNTER): 

 increment 
  require 
   count >= 0 
  … 
  ensure 
   count   =   old count + 1 



Elementary mathematics 

Assume we want to prove, on integers 

 {x > 0}  A  {y ≥ 0}    [1] 

but have actually proved 

 {x > 0}  A  {y = z ^ 2}   [2] 

We need properties from other theories, e.g. arithmetic 



“EM”: Elementary Mathematics 

The mark [EM] will denote results from other theories, 
taken (in this discussion) without proof 

Example: 

  y = z ^ 2    implies    y ≥ 0   [EM] 



Rule of consequence 

 {P} A {Q},    P’ implies P,    Q implies Q’  
 _____________________________ 
           {P’}   A   {Q’} 



Rule of conjunction 

 {P} A {Q},    {P} A {R}  
 ________________ 
    {P}   A   {Q and R} 



Axiomatic semantics for a programming language 

Example language: Graal (from Introduction to the theory 
of Programming Languages) 

Scheme: give an axiom or inference rule for every 
language construct 



Skip 

   {P}   skip   {P} 



Abort 

   {False}   abort   {P} 



Sequential composition 

{P} A {Q},     {Q} B {R} 
__________________ 

{P}   A ; B  {R} 



Assignment axiom (schema) 

{P [e / x]}       x := e     {P} 

P [e/x] is the expression obtained from P by replacing 
(substituting) every occurrence of x by e. 



Substitution 

x [x/x]   = 
x [y/x]   = 
x [x/y]   = 
x [z/y]   = 
3 * x + 1 [y/x]  = 



Applying the assignment axiom 

 {y > z – 2} x := x + 1 {y > z – 2} 

{2 + 2 = 5} x := x + 1 {2 + 2 = 5} 

{y > 0} x := y {x > 0} 

{x + 1 > 0} x := x + 1 {x > 0} 



Limits to the assignment axiom 

No side effects in expressions! 
 asking_for_trouble (x: in out INTEGER): INTEGER 
  do 
   x := x + 1; 
   global := global + 1; 
   Result := 0 
  end 

Dothe following hold? 

 {global = 0}  u := asking_for_trouble (a)      {global = 0} 
 {a = 0}          u := asking_for_trouble (a)      {a = 0} 



Conditional rule 

{P and c} A {Q},     {P and not c} B {Q} 
______________________________ 

{P}   if c then A else  B  end {Q} 



Conditional rule: example proof 

Prove: 

 {m, n, x, y > 0 and x ≠ y and gcd (x , y ) = gcd (m, n )} 

 if x > y then 
  x := x – y 
 else 
  y := y – x 
 end 

 {m, n, x, y > 0 and gcd (x , y ) = gcd (m, n )} 



Loop rule (partial correctness) 

{P} A {I},      {I and not c} B {I},      
______________________________ 

{P}   from A until c loop B  end {I and c} 



Loop rule (partial correctness, variant) 

{P} A {I},  {I and not c} B {I},   {(I and c) implies Q} 
_____________________________________ 

{P}   from A until c loop B  end   {Q} 



Loop termination 

Must show there is a variant: 

Expression v of type INTEGER such that 
(for a loop from A until c loop B  end with precondition P): 

 1. {P}  A  {v ≥ 0} 

 2.  ∀ v0 > 0: 
  {v = v0  and not c}  B   {v < v0  and  v ≥ 0} 
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from 
  i := 0 ; Result  := a [1] 

until 

  i = a.upper  
loop 

  i := i  + 1 

  Result := max (Result , a [i ])   
end 

Computing the maximum of an array 
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Levenshtein distance 
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Levenshtein distance algorithm 

distance (source, target: STRING): INTEGER 
  -- Minimum number of operations to turn source into 

target 
 local 
  dist : ARRAY_2 [INTEGER] 
  i, j, del, ins, subst : INTEGER 
 do 
  create dist.make (source.count, target.count) 
  from i := 0 until i > source.count loop 
   dist [i, 0] := i  ; i := i + 1 
  end 

   from j := 0 until j > target.count loop 
   dist [0, j ] := j  ; j := j + 1 
  end 
  -- (Continued) 
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Levenshtein distance algorithm 

 from i := 1 until i > source.count  loop 
   from j := 1 until j > target.count invariant 
    

  loop 
    if source [i ] = target [ j ] then 
      dist [i, j ] := dist [ i -1, j -1]      

 else 
     deletion := dist [i -1, j ] 

  insertion := dist [i , j - 1] 
  substitution := dist [i - 1, j - 1] 

     dist [i, j ] := minimum (deletion, insertion, substitution) + 1 
   end 
   j := j + 1 

   end 
   i := i + 1 
  end 
 Result := dist (source.count, target.count) 
end 

??? 
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Reversing a list 

from 
 pivot := first_element 
 first_element := Void 

until pivot = Void loop 
 i := first_element 
 first_element := pivot 
 pivot := pivot.right 
 first_element.put_right (i ) 

end 

first_element pivot 

right 

i 

1 2 3 4 5 
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Reversing a list 

from 
 pivot := first_element 
 first_element := Void 

until pivot = Void loop 
 i := first_element 
 first_element := pivot 
 pivot := pivot.right 
 first_element.put_right (i ) 

end 

first_element pivot 

right 

i 

1 2 3 4 5 
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Reversing a list 

from 
 pivot := first_element 
 first_element := Void 

until pivot = Void loop 
 i := first_element 
 first_element := pivot 
 pivot := pivot.right 
 first_element.put_right (i ) 

end 

first_element pivot 

right 

i 

1 2 3 4 5 
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Reversing a list 

from 
 pivot := first_element 
 first_element := Void 

until pivot = Void loop 
 i := first_element 
 first_element := pivot 
 pivot := pivot.right 
 first_element.put_right (i ) 

end 

first_element pivot 

right 

i 

1 2 3 4 5 
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i i pivot pivot 

Reversing a list 

from 
 pivot := first_element 
 first_element := Void 

until pivot = Void loop 
 i := first_element 
 first_element := pivot 
 pivot := pivot.right 
 first_element.put_right (i ) 

end 

first_element 

right 

1 2 3 4 5 
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Loop as approximation strategy 

a 1 a 2 a i a n 

Result = a 1 

Result = Max (a 1 .. a 2) 

Result = Max (a 1 .. a i ) 

Result = Max (a 1 .. a n ) 

= Max (a 1 .. a 1) i := i  + 1 
 Result := max (Result , a [i ])  

The loop 
invariant 

Loop body: 
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Loops as problem-solving strategy 

A loop invariant is a property that: 

  Is easy to establish initially 
  (even to cover a trivial part of the data) 

  Is easy to extend to cover a bigger part 

  If covering all data, gives the desired result! 



48 

B E A T L E S 

B 

E 

E 

T 

H 

3 0 1 2 5 6 7 4 

0 

1 

2 

3 

5 

4 

3 0 1 2 5 6 7 4 

1 

2 

3 

4 

0 2 3 4 5 6 

1 

1 

1 

0 1 2 3 4 5 

2 1 2 3 3 4 

3 2 2 1 
K 

Keep 
K 

2 I 

I 
Insert 

D

D
Delete 

R 

Replace 
R 

Invariant: each a [i, j ] 
is distance from 
source [1..i ] to target [1..j ] 
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Levenshtein loop 

 from i := 1 until i > source.count  loop 
   from j := 1 until j > target.count invariant 

    

  loop 
    if source [i ] = target [ j ] then 
     new := dist [ i -1, j -1]       

 else 
     deletion := dist [i -1, j ] 
     insertion := dist [i , j - 1] 
     substitution := dist [i - 1, j - 1] 
     new := deletion.min (insertion.min (substitution)) + 1 

   end 
     dist [i, j ] := new 

   j := j + 1 
   end 
   i := i + 1 
  end 

 Result := dist (source.count, target.count) 

-- For all p : 1 .. i, q : 1 .. j –1, we can turn source [1 .. p ] 
-- into target [1 .. q ] in dist [p, q ] operations 



50 

Reversing a list 

from 
 pivot := first_element 
 first_element := Void 

until pivot = Void loop 
 i := first_element 
 first_element := pivot 
 pivot := pivot.right 
 first_element.put_right (i ) 

end 

first_element pivot 

right 

i 

1 2 3 4 5 

Invariant: from first_element 
following right, initial items 
in inverse order; from pivot, 
rest of items in original order 
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Routines (1) 

For: 
 f (x: T) do Body end 

{P} Body {Q} 
________________________ 

{P [a/x]}   f (a)  {Q [a/x]} 
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Routines (2) 

For: 
 f (x: T) do Body end 

(∀ a |  {P [a/x]}   f (a)  {Q [a/x]} )   implies   {P} Body {Q} 
___________________________________________ 

{P [a/x]}   f (a)  {Q [a/x]} 
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Hoare (1971) 

The solution to the infinite regress is simple and dramatic: 
to permit the use of the desired conclusion as a hypothesis 
in the proof of the body itself. Thus we are permitted to 
prove that the procedure body possesses a property, on 
the assumption that every recursive call possesses that 
property, and then to assert categorically that every call, 
recursive or otherwise, has that property. This assumption 
of what we want to prove before embarking on the proof 
explains well the aura of magic which attends a 
programmer's first introduction to recursive programming. 

Procedures and Parameters: An Axiomatic Approach, in E. Engeler 
(ed.), Symposium on Semantics of Algorithmic Languages, Lecture 
Notes in Mathematics 188, pp. 102-16 (1971).  
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Functions 

The preceding rule applies to procedures (routines with no 
results) 

Extension to functions? 
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Soundness and completeness 

How do we know that an axiomatic semantics (or logic) is 
“right”? 

  Sound: every deduced property holds of all 
corresponding program executions 

  Complete: every property that holds of all program 
executions can be proved by the logic   

    (Undecidable!) 
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A model 

To examine soundness and completeness we need a model: 
a mathematical description of program executions 

Basic model (programs without input): 

 M: Instruction → (State     State) 

 State       Variable → Value 

Also needed:  
 E: Expression → (State     Value) 

→ / 

Partial 
functions 

= Δ 

→ / 
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Example interpretations 

M [x := e] (s)    =  

M [i1 ; i2] (s)    =  

M [if c then i1 else i2 end] (s)  =  

s ∪ [x, E [e] (s)] \ 

“Overriding 
union” 
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Notation 

For an axiomatic theory A, a model M and a property p: 

 M |= p 

  means that p can be proved from M 

 A |- p 

  means that p can be proved from A 


