
Software Verification
Bertrand Meyer

Chair of Software Engineering

Lecture 2: Axiomatic semantics

Axiomatic semantics

Floyd (1967), Hoare (1969), Dijkstra (1978)

Purpose:
 Describe the effect of programs through a theory of

the underlying programming language, allowing proofs

What is a theory?

(Think of any mathematical example, e.g. elementary arithmetic)

A theory is a mathematical framework for proving
properties about a certain object domain

Such properties are called theorems

Components of a theory:
 Grammar (e.g. BNF), defines well-formed formulae

 (WFF)
 Axioms: formulae asserted to be theorems
  Inference rules: ways to prove new theorems from

previously obtained theorems

Notation

Let f be a well-formed formula

Then

 ⊢ f

expresses that f is a theorem

Inference rule

An inference rule is written

 f1, f2, …, fn ___________
 f0

It expresses that if f1, f2, … fn are theorems, we may
infer f0 as another theorem

Example inference rule

“Modus Ponens” (common to many theories):

 p, p ⇒ q

 q

How to obtain theorems

Theorems are obtained from the axioms by zero or more*
applications of the inference rules.

*Finite of course

Example: a simple theory of integers

Grammar: Well-Formed Formulae are boolean expressions
  i1 = i2
  i1 < i2
  ¬ b1
  b1 ⇒ b2

where b1 and b2 are boolean expressions, i1 and i2
integer expressions

An integer expression is one of
  0
 A variable n
  f’ where f is an integer expression

 (represents “successor”)

An axiom and axiom schema

⊢ 0 < 0’

⊢ f < g ⇒ f’ < g’

An inference rule

 P (0), P (f) ⇒ P (f’)

 P (f)

The theories of interest

Grammar: a well-formed formula is a “Hoare triple”

 {P} A {Q}

Assertions

Instructions

Informal meaning: A,
started in any state
satisfying P, will satisfy Q
on termination

Software correctness (a quiz)

Consider

{P } A {Q }

Take this as a job ad in the classifieds

Should a lazy employment candidate hope for a weak or
strong P ? What about Q ?

Two “special offers”:

  1. {False} A {...}
  2. {...} A {True}

Application to a programming language: Eiffel

 extend (new : G ; key : H)
 -- Assuming there is no item of key key,
 -- insert new with key ; set inserted.
 require
 key_not_present: not has (key)
 ensure
 insertion_done: item (key) = new
 key_present: has (key)
 inserted: inserted
 one_more: count = old count + 1

Partial vs total correctness

 {P} A {Q}

Total correctness:
  A, started in any state satisfying P, will

terminate in a state satisfying Q

Partial correctness:
  A, started in any state satisfying P, will, if it

terminates, yield a state satisfying Q

Axiomatic semantics

“Hoare semantics” or “Hoare logic”: a theory describing
the partial correctness of programs, plus termination
rules

What is an assertion?
Predicate (boolean-valued function) on the set of
computation states

True: Function that yields True for all states
False: Function that yields False for all states

P implies Q: means ∀ s : State, P (s) ⇒ Q (s)
and so on for other boolean operators

State

True

False

s

Another view of assertions
We may equivalently view an assertion P as a subset of the
set of states (the subset where the assertion yields True):

True: Full State set
False: Empty subset
implies: subset (inclusion) relation
and: intersection or: union

State

True

P

The case of postconditions

Postconditions are often predicates on two states

Example (Eiffel, in a class COUNTER):

 increment
 require
 count >= 0
 …
 ensure
 count = old count + 1

Elementary mathematics

Assume we want to prove, on integers

 {x > 0} A {y ≥ 0} [1]

but have actually proved

 {x > 0} A {y = z ^ 2} [2]

We need properties from other theories, e.g. arithmetic

“EM”: Elementary Mathematics

The mark [EM] will denote results from other theories,
taken (in this discussion) without proof

Example:

 y = z ^ 2 implies y ≥ 0 [EM]

Rule of consequence

 {P} A {Q}, P’ implies P, Q implies Q’

 {P’} A {Q’}

Rule of conjunction

 {P} A {Q}, {P} A {R}

 {P} A {Q and R}

Axiomatic semantics for a programming language

Example language: Graal (from Introduction to the theory
of Programming Languages)

Scheme: give an axiom or inference rule for every
language construct

Skip

 {P} skip {P}

Abort

 {False} abort {P}

Sequential composition

{P} A {Q}, {Q} B {R}

{P} A ; B {R}

Assignment axiom (schema)

{P [e / x]} x := e {P}

P [e/x] is the expression obtained from P by replacing
(substituting) every occurrence of x by e.

Substitution

x [x/x] =
x [y/x] =
x [x/y] =
x [z/y] =
3 * x + 1 [y/x] =

Applying the assignment axiom

 {y > z – 2} x := x + 1 {y > z – 2}

{2 + 2 = 5} x := x + 1 {2 + 2 = 5}

{y > 0} x := y {x > 0}

{x + 1 > 0} x := x + 1 {x > 0}

Limits to the assignment axiom

No side effects in expressions!
 asking_for_trouble (x: in out INTEGER): INTEGER
 do
 x := x + 1;
 global := global + 1;
 Result := 0
 end

Dothe following hold?

 {global = 0} u := asking_for_trouble (a) {global = 0}
 {a = 0} u := asking_for_trouble (a) {a = 0}

Conditional rule

{P and c} A {Q}, {P and not c} B {Q}

{P} if c then A else B end {Q}

Conditional rule: example proof

Prove:

 {m, n, x, y > 0 and x ≠ y and gcd (x , y) = gcd (m, n)}

 if x > y then
 x := x – y
 else
 y := y – x
 end

 {m, n, x, y > 0 and gcd (x , y) = gcd (m, n)}

Loop rule (partial correctness)

{P} A {I}, {I and not c} B {I},

{P} from A until c loop B end {I and c}

Loop rule (partial correctness, variant)

{P} A {I}, {I and not c} B {I}, {(I and c) implies Q}

{P} from A until c loop B end {Q}

Loop termination

Must show there is a variant:

Expression v of type INTEGER such that
(for a loop from A until c loop B end with precondition P):

 1. {P} A {v ≥ 0}

 2. ∀ v0 > 0:
 {v = v0 and not c} B {v < v0 and v ≥ 0}

36

from
 i := 0 ; Result := a [1]

until

 i = a.upper
loop

 i := i + 1

 Result := max (Result , a [i])
end

Computing the maximum of an array

37

Levenshtein distance

B

Operation

“Beethoven” to “Beatles”

Distance

E E

A

E T N

S

NH V E O

L

OB E T H V E

0 0 1

R

1 2

D

3

R

4

D

5

R

4

38

B E A T L E S

B

E

E

T

H

3 0 1 2 5 6 7 4

0

1

2

3

5

4

3 0 1 2 5 6 7 4

1

2

3

5

4

0 2 3 4 5 6

1

1

1

0 1 2 3 4 5

2 1 2 3 3 4

3 2 2 1 2 3 4

4 3 3 2 2 3 4 4

39

Levenshtein distance algorithm

distance (source, target: STRING): INTEGER
 -- Minimum number of operations to turn source into

target
 local
 dist : ARRAY_2 [INTEGER]
 i, j, del, ins, subst : INTEGER
 do
 create dist.make (source.count, target.count)
 from i := 0 until i > source.count loop
 dist [i, 0] := i ; i := i + 1
 end

 from j := 0 until j > target.count loop
 dist [0, j] := j ; j := j + 1
 end
 -- (Continued)

40

Levenshtein distance algorithm

 from i := 1 until i > source.count loop
 from j := 1 until j > target.count invariant

 loop
 if source [i] = target [j] then
 dist [i, j] := dist [i -1, j -1]

 else
 deletion := dist [i -1, j]

 insertion := dist [i , j - 1]
 substitution := dist [i - 1, j - 1]

 dist [i, j] := minimum (deletion, insertion, substitution) + 1
 end
 j := j + 1

 end
 i := i + 1
 end
 Result := dist (source.count, target.count)
end

???

41

Reversing a list

from
 pivot := first_element
 first_element := Void

until pivot = Void loop
 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

42

Reversing a list

from
 pivot := first_element
 first_element := Void

until pivot = Void loop
 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

43

Reversing a list

from
 pivot := first_element
 first_element := Void

until pivot = Void loop
 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

44

Reversing a list

from
 pivot := first_element
 first_element := Void

until pivot = Void loop
 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

45

i i pivot pivot

Reversing a list

from
 pivot := first_element
 first_element := Void

until pivot = Void loop
 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)

end

first_element

right

1 2 3 4 5

46

Loop as approximation strategy

a 1 a 2 a i a n

Result = a 1

Result = Max (a 1 .. a 2)

Result = Max (a 1 .. a i)

Result = Max (a 1 .. a n)

= Max (a 1 .. a 1) i := i + 1
 Result := max (Result , a [i])

The loop
invariant

Loop body:

47

Loops as problem-solving strategy

A loop invariant is a property that:

  Is easy to establish initially
 (even to cover a trivial part of the data)

  Is easy to extend to cover a bigger part

  If covering all data, gives the desired result!

48

B E A T L E S

B

E

E

T

H

3 0 1 2 5 6 7 4

0

1

2

3

5

4

3 0 1 2 5 6 7 4

1

2

3

4

0 2 3 4 5 6

1

1

1

0 1 2 3 4 5

2 1 2 3 3 4

3 2 2 1
K

Keep
K

2 I

I
Insert

D

D
Delete

R

Replace
R

Invariant: each a [i, j]
is distance from
source [1..i] to target [1..j]

49

Levenshtein loop

 from i := 1 until i > source.count loop
 from j := 1 until j > target.count invariant

 loop
 if source [i] = target [j] then
 new := dist [i -1, j -1]

 else
 deletion := dist [i -1, j]
 insertion := dist [i , j - 1]
 substitution := dist [i - 1, j - 1]
 new := deletion.min (insertion.min (substitution)) + 1

 end
 dist [i, j] := new

 j := j + 1
 end
 i := i + 1
 end

 Result := dist (source.count, target.count)

-- For all p : 1 .. i, q : 1 .. j –1, we can turn source [1 .. p]
-- into target [1 .. q] in dist [p, q] operations

50

Reversing a list

from
 pivot := first_element
 first_element := Void

until pivot = Void loop
 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)

end

first_element pivot

right

i

1 2 3 4 5

Invariant: from first_element
following right, initial items
in inverse order; from pivot,
rest of items in original order

51

Routines (1)

For:
 f (x: T) do Body end

{P} Body {Q}

{P [a/x]} f (a) {Q [a/x]}

52

Routines (2)

For:
 f (x: T) do Body end

(∀ a | {P [a/x]} f (a) {Q [a/x]}) implies {P} Body {Q}

{P [a/x]} f (a) {Q [a/x]}

53

Hoare (1971)

The solution to the infinite regress is simple and dramatic:
to permit the use of the desired conclusion as a hypothesis
in the proof of the body itself. Thus we are permitted to
prove that the procedure body possesses a property, on
the assumption that every recursive call possesses that
property, and then to assert categorically that every call,
recursive or otherwise, has that property. This assumption
of what we want to prove before embarking on the proof
explains well the aura of magic which attends a
programmer's first introduction to recursive programming.

Procedures and Parameters: An Axiomatic Approach, in E. Engeler
(ed.), Symposium on Semantics of Algorithmic Languages, Lecture
Notes in Mathematics 188, pp. 102-16 (1971).

54

Functions

The preceding rule applies to procedures (routines with no
results)

Extension to functions?

55

Soundness and completeness

How do we know that an axiomatic semantics (or logic) is
“right”?

  Sound: every deduced property holds of all
corresponding program executions

  Complete: every property that holds of all program
executions can be proved by the logic

 (Undecidable!)

56

A model

To examine soundness and completeness we need a model:
a mathematical description of program executions

Basic model (programs without input):

 M: Instruction → (State State)

 State Variable → Value

Also needed:
 E: Expression → (State Value)

→ /

Partial
functions

= Δ

→ /

57

Example interpretations

M [x := e] (s) =

M [i1 ; i2] (s) =

M [if c then i1 else i2 end] (s) =

s ∪ [x, E [e] (s)] \

“Overriding
union”

58

Notation

For an axiomatic theory A, a model M and a property p:

 M |= p

 means that p can be proved from M

 A |- p

 means that p can be proved from A

