
Chair of Software Engineering

Software Verification

Lecture 5: Assertion Inference

Carlo A. Furia
Bertrand Meyer



2

Proving Programs Automatically
The Program Verification problem:
● Given: a program P and a specification S = [Pre, Post]
● Determine: if every execution of P, for any value of input parameters, satisfies S
● Equivalently: establish whether {Pre} P {Post} is (totally) correct

● A general and fully automated solution to the Program 
Verification problem is unachievable because the problem 
is undecidable

● One of the consequences of this inescapable limitation is 
the impossibility of computing verification conditions (VC) 
fully automatically

– VC: intermediate assertions used in the correctness proof
– ( It is not an obvious consequence: formally, a reduction between

  undecidable problems )
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Proving Programs Automatically
The Program Verification problem:
● Given: a program P and a specification S = [Pre, Post]
● Determine: if every execution of P, for any value of input parameters, satisfies S
● Equivalently: establish whether {Pre} P {Post} is (totally) correct

Practically:
Proving the correctness of a computer program
requires knowledge about the program that is not
readily available in the program text
                                                    -- Chang & Leino

In this lecture, we survey techniques to automatically 
infer assertions in interesting special cases
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The Assertion Inference Paradox

Correctness is consistency of implementation to specification

The paradox:

if the specification is inferred from the implementation,
what do we prove?
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The Assertion Inference Paradox

The paradox:
if the specification is inferred from the implementation,
what do we prove?

Possible retorts:
– The paradox only arises for correctness proofs; there are other 

applications
(e.g. reverse-engineering legacy software)

– The result may be presented to a programmer for assessment
– Inferred specification may be inconsistent, thus denoting a problem
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The Assertion Inference Paradox

The paradox:
if the specification is inferred from the implementation,
what do we prove?

The paradox does not arise if we only infer VC (i.e., 
intermediate assertions) and not specifications (pre and 
postconditions)

– VC are a technical means to an end (proving correctness)
● the tool infers loop invariants

– The specification is a formal description of what the implementation 
should do

● the programmer writes the specification
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Invariants
Let us consider a general (and somewhat informal) 
definition of invariant:

Def. Invariant: assertion whose truth is preserved 
by the execution of (parts of) a program.

x: INTEGER
from x := 1  until ...  loop x := - x end

Some invariants:
● -1 ≤ x ≤ 1
● x = -1 ∨ x = 0 ∨ x = 1
● x ≥ -10
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Kinds of Invariants

We can identify different families of 
invariants, according to what parts of the 
program preserve the invariant:
● Location invariant at x: assertion that holds 

whenever the computation reaches location x
● Program invariant: predicate that holds in any 

reachable state of the computation
● Class invariant: predicate that holds between 

(external) feature invocations
● Loop invariant: predicate that holds after every 

iteration of a loop body

Def. Invariant: assertion whose truth is preserved 
by the execution of (parts of) a program.

{P} A {I}
{I ∧ ¬ c} B {I}     

_________________
{P}

from A until c
loop B end

{I ∧ c}
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Kinds of Invariants

● Location invariant at 2:
x = 0

● Loop invariant:
x = -1 ∨ x = 1

● Program invariant:
x ≥ -10

1: x: INTEGER
2: 
3: from x := 1
4: until ...
5: loop x := - x end
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Focus on Loop Invariants

If we have loop invariants we can get (almost) everything else 
at little cost

– but not vice versa:
getting loop invariants requires invention

In the following discussion we focus on loop invariants (and call 
them simply “invariants”)

This focus is also consistent with the Assertion Inference 
Paradox
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Focus on Loop Invariants
The various kinds of invariants are closely 
related by the inference rules of Hoare logic
● If Lx is a location invariant at x then:

@x  Lx⇒

is a program invariant
● If P is a program invariant then it is also a 

location invariant at every location x
● If I is a loop invariant of:

x: from ... until c loop ... end
then I ∧ c is a location invariant at x+1

● If L is a location invariant at x+1:
x: a := b + 3

then L [b + 3 / a] is a location invariant at x
● Etc...

{P} A {I}
{I ∧ ¬ c} B {I}     

_________________
{P}

from A until c
loop B end

{I ∧ c}

{P [e / x]} x := e {P}
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Techniques for Invariant Inference

Classification of invariant inference 
techniques:

● Dynamic techniques
● Static techniques

– statistical techniques
– exact techniques

Classification is neither sharp nor 
complete, yet useful

soundness

(Roughly) direction of increasing:

com
pleteness

m
athem

atical
sophistication
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Exact Static Techniques
for Invariant Inference
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Static Invariant Inference: classification

Static exact techniques for invariant inference are 
further classified in categories:
● Direct
● Assertion-based

● postcondition weakening
● Based on abstract interpretation

● forward analysis (bottom-up)
● backward analysys (top-down)

● Constraint-based
– usually, template-based
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Exact Static Techniques
for Invariant Inference:

Postcondition-weakening Approach
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The Role of User-provided Contracts

Techniques for invariant inference rarely take 
advantage of other annotations in the program 
text, such as contracts provided by the user

– Not every annotation can (or should, cf. Assertion 
Inference Paradox) be inferred automatically!

However, there is a close connection between a 
loop's invariant and its postcondition
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The Role of User-provided Contracts
● However, there is a close connection between a 

loop's invariant and its postcondition
The invariant is a weakened form of the postcondition
– It is a larger collection of program states

● Example: from x := 0 until x = n loop x := x + 1 end
● Post: x = n (for some n > 0)
● Invariant:  0 ≤ x ≤ n

Init: x = 0 Post: x = n

Inv: 0 ≤ x ≤ n

1≤x≤n n-1≤x≤n. . . 
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Invariants by Postcondition Weakening
● In a nutshell:

  Static verification of candidate invariants
  obtained by mutating postconditions

1. Assume the availability of postconditions

2. Mutate postconditions according to various heuristics
– the heuristics mirror common patterns that link postconditions to 

invariants
– each mutated postcondition is a candidate invariant

3. Verify which candidates are indeed invariants
– With an automatic program prover such as Boogie

4. Retain all verified invariants

● 2009 -- C.A. Furia & B. Meyer
● Implementation: gin-pink which finds invariants in Boogie programs
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Loop invariant inference

Pre Post

{Pre}  Program  {Post}Program

Candidate
Invariants

Loop

Input

Output

mutate

Program

Loop Invariants

checking invariance

proving correctness
(possibly using additional info)
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Postcondition Mutation Heuristics
Constant relaxation
● replace “constant” by “variable”

– cannot/may be changed by any of the loop bodies
Uncoupling
● replace subexpression appearing twice by two subexpressions

– for example: subexpression = variable id
Term dropping
● remove a conjunct

Variable aging
● replace subexpression by another expression representing

its previous value
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Invariant Inference: the Algorithm

● Goal: find invariants of loops in procedure proc
● For each:

● post: postcondition clause of proc
● loop: outer loop in proc

compute all mutations M of post w.r.t. loop
– considering postcondition clauses separately implements 

term dropping

● Result: any formula in M which can be verified as 
invariant of any loop in proc
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Maximum value of an array

  max (A: ARRAY [T] ; n: INTEGER): T
     require A.length = n ≥ 1
     local i: INTEGER
     do
        from i := 0 ;  Result := A[1];
        until i = n
        loop
           i := i + 1
           if  Result ≤ A[i]  then  Result := A[i]  end
        end
     ensure ( ∀ 1 ≤ j ≤ n  ⇒ A[j] ≤ Result )   and

( ∃ 1 ≤ j ≤ n ∧ A[j] = Result )
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Maximum value of an array

  max (A: ARRAY [T] ; n: INTEGER): T
     require A.length = n ≥ 1
     ensure ( ∀ 1 ≤ j ≤ n  ⇒ A[j] ≤ Result )  and

( ∃ 1 ≤ j ≤ n ∧ A[j] = Result )

● Constant relaxation: replace “constant” n by “variable” i
● Term dropping: remove second conjunct

Invariant: ∀ 1 ≤ j ≤ i  ⇒ A[j] ≤ Result



24

Maximum value of an array (cont'd)

● Term dropping: remove first conjunct

Invariant: ∃ 1 ≤ j ≤ n ∧ A[j] = Result

  max (A: ARRAY [T] ; n: INTEGER): T
     require A.length = n ≥ 1
     ensure ( ∀ 1 ≤ j ≤ n  ⇒ A[j] ≤ Result )  and

( ∃ 1 ≤ j ≤ n ∧ A[j] = Result )
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Maximum value of an array (2nd version)

  max_v2 (A: ARRAY [T] ; n: INTEGER): T
     require A.length = n ≥ 1
     local i: INTEGER
     do
        from i := 1 ;  Result := A[1];
        until i > n
        loop
           if  Result ≤ A[i]  then  Result := A[i]  end
           i := i + 1
        end
     ensure ∀ 1 ≤ j ≤ n  ⇒ A[j] ≤ Result
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Maximum value of an array (2nd version)

● Constant relaxation: replace “constant” n by “variable” i 
∀ 1 ≤ j ≤ i  ⇒ A[j] ≤ Result

● Variable aging:
 use expression representing the previous value of i: i – 1

Invariant:   ∀ 1 ≤ j ≤ i - 1  ⇒ A[j] ≤ Result

  max_v2 (A: ARRAY [T] ; n: INTEGER): T
     require A.length = n ≥ 1
     ensure ∀ 1 ≤ j ≤ n  ⇒ A[j] ≤ Result
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Array Partitioning

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
   require A.length = n ≥ 1
   local l, h: INTEGER
   do
     from l := 1 ; h := n  until l = h
     loop
        from until l = h or A[l] > pivot loop l := l + 1 end
        from until l = h or pivot > A[h] loop h := h - 1 end
        A.swap (l, h)
     end
     if pivot ≤ A[l] then l := l – 1 end ;  h := l ; Result := h
   ensure  (  ∀ 1≤k≤ Result  ⇒ A[k] ≤ pivot) and

(  ∀ Result<k≤n  ⇒ A[k] ≥ pivot)
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Array Partitioning

● Uncoupling: replace first occurrence of Result by l
and second by h

 (  ∀ 1 ≤ k ≤ l  ⇒ A[k] ≤ pivot) and (  ∀ h < k ≤ n  ⇒ A[k] ≥ pivot)
● Variable aging: use expression representing the previous

value of l: l – 1

Invariant:
(  ∀ 1 ≤ k ≤ l - 1  ⇒ A[k] ≤ pivot) and (  ∀ h < k ≤ n  ⇒ A[k] ≥ pivot)

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
   require A.length = n ≥ 1
   ensure (  ∀ 1≤k≤ Result  ⇒ A[k] ≤ pivot) and

(  ∀ Result<k≤n  ⇒ A[k] ≥ pivot)
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Array Partitioning

● Term dropping: remove first conjunct
   ∀ Result < k ≤ n  ⇒ A[k] ≥ pivot

● Constant relaxation: replace “constant” Result by “variable” h

Invariant:   ∀ h < k ≤ n  ⇒ A[k] ≥ pivot

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
   require A.length = n ≥ 1
   ensure (  ∀ 1≤k≤ Result  ⇒ A[k] ≤ pivot) and

(  ∀ Result<k≤n  ⇒ A[k] ≥ pivot)
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Implementation: gin-pink

gin-pink: Generation of INvariants by
   PostcondItioN weaKening

● written in Eiffel
● command-line tool

– Boogie in / Boogie out
● works with any high-level language that can be 

translated to Boogie
● available for download from 

http://se.inf.ethz.ch/people/furia/
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Limitations of the approach
Some invariants are not mutations of the postcondition
● “completeness” of the postcondition
● integration with other techniques
● more heuristics

Combinatorial explosion
● user guidance

Dependencies
● especially with nested loops
● user guidance

Limitations of automated reasoning techniques
● they progress quickly
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Exact Static Techniques
for Invariant Inference:

Constraint-based Approach
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Constraint-based Invariant Inference

● In a nutshell:
 encode semantics of iteration as constraints
 on a template invariant

1.Choose a template invariant expression
● template defines a (infinte) set of assertions

2. Encode the loop semantics as a set of constraints on the template
● initation
● consecution

3. Solve the constraints
● this is usually the complex part

4. Any solution is an invariant
● E.g.: 2003 -- Henny Sipma et al.; 2004 -- Zohar Manna et al. ;

  2007 -- Tom Henzinger et al.
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Constraint-based Inv. Inference: Example

● Template invariant expression:

         T  =  c•x + d•n + e ≤ 0
● Constraints encoding loop semantics:

● Initiation: “T holds for the initial values of x and n”

T [0/x; n
0
/n]       ≡  c•0 + d•n

0
 + e ≤ 0 ≡ d•n

0
 + e ≤ 0

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end
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Constraint-based Inv. Inference: Example

● Constraints encoding loop semantics:
● Consecution: “if T holds and one iteration of the loop is executed,

      T still holds”
T [x/x; n/n]  ( ∧ ¬(x ≥ n)  ∧ x' = x + 1 ∧ n' = n )  ⇒ T [x'/x; n'/n]

● Solving the constraints requires to eliminate occurrences
of x, x', n, n'
● For linear constraints we can use Farkas's Lemma

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end
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Farkas's Lemma (1902)
Let S be a system of linear inequalities over n real 

and let Ψ be a linear inequality:

Then S  ⇒ Ψ is valid iff S in unsatisfiable or there exist m+1 real nonnegative 

coefficients λ
0
, λ

1
, ..., λ

m
 such that:
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Constraint-based Inv. Inference: Example
Use Farkas's lemma to turn the consecution 
constraint:

T [x/x; n/n]  ∧ x < n  ∧ x' = x + 1 ∧ n' = n
                     ⇒ T [x'/x; n'/n]

into a constraint over c, d, and e only.
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Constraint-based Inv. Inference: Example
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Constraint-based Inv. Inference: Example

Finally, eliminate existential quantifiers from Φ
to get the constraint:

c ≤ 0  ∨  ( c + d = 0  ∧ e ≤ 0 )
– (Quantifier elimination is also quite technical)
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Constraint-based Inv. Inference: Example

● Any solution [c, d, e] to:
● Initiation and Consecution:

 ( d•n
0
 + e ≤ 0 )  ( ∧ c ≤ 0    ( ∨ c + d = 0  ∧ e ≤ 0 ) )

determines an invariant of the loop.

– [0, -1, 0]  ---> n ≥ 0
– [1, 0, 0]  ---> x ≥ 0
– [1, -1, 0]   ---> x – n ≤ 0

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end
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Constraint-based Inv. Inference: Summary
● Main issues:

– choice of invariant templates for which effective decision procedures exist
● interesting research topic per se, on the brink of undecidability

– heuristics to extract the “best” invariants from the set of solutions
● Advantages:

– sound
– complete (w.r.t. the template)
– exploit heterogeneous decision procedures syncretically
– fully automated (possibly except for providing the template)

● providing the template introduces a “natural” form of interaction with the user
● Disadvantages:

– suitable mathematical decision theories are usually quite sophisticated
● hence, hard to extend and customize

– exact constraint solving is usually quite expensive
– mostly suitable for “algebraic” invariants

● requires integration with other techniques to achieve full functional correctness 
proofs
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Dynamic Techniques
for Invariant Inference
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Dynamic Invariant Inference

● In a nutshell:
testing of candidate invariants

1. Choose a set of test cases

2.Perform runtime monitoring of candidate invariants

3.If some test run violates a candidate, discard the 
candidate

4.The surviving candidates are guessed invariant

● Daikon tool, 1999 -- Mike Ernst et al.

● CITADEL: Daikon for Eiffel, 2008  -- Nadia Polikarpova

● AutoInfer for Eiffel
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Dynamic Invariant Inference: Example

● Test cases:  { n = k  |  0 ≤ k ≤ 1000 }
● Candidate invariants:

– { x ≥ c  |  -1000 ≤ c ≤ 1000 },
{ n ≥ c  |  -1000 ≤ c ≤ 1000 }

– { x = c·n + d  |  -500 ≤ c, d ≤ 500 }
– { x < n, x ≤ n, x = n, x ≠ n, x ≥ n, x > n }
– { x ± n ≥ c  |  -500 ≤ c ≤ 500 }
– ...

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end



45

Dynamic Invariant Inference: Example

● Survivors (after loop iterations) :
– { x ≥ -c  |  0 ≤ c ≤ 1000 },

{ n ≥ -c  |  0 ≤ c ≤ 1000 }
– x ≤ n
– { x + n ≥ c  |  -500 ≤ c ≤ 500 }
– ...

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end
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Dynamic Invariant Inference: Summary
● Main issues:

– choose suitable test cases
– handle huge sets of candidate invariants

(runtime overhead)
– estimate soundness/quality of survivor predicates
– select heuristically the “best” survivor predicates

● Advantages:
– straightforward to implement (at least compared to other techniques)
– guessing is often rather accurate in practice (possibly with some heuristics)
– customizable and rather flexible:

in principle, whatever you can test you can check for invariance
● Disadvantages:

– unsound (educated guessing)
– without heuristics, large amount of useless, redundant predicates
– sensitive to choice of test cases
– some complex candidate invariants are difficult to implement efficiently


