
Chair of Software Engineering

Software Verification

Lecture 5: Assertion Inference

Carlo A. Furia
Bertrand Meyer

2

Proving Programs Automatically
The Program Verification problem:
● Given: a program P and a specification S = [Pre, Post]
● Determine: if every execution of P, for any value of input parameters, satisfies S
● Equivalently: establish whether {Pre} P {Post} is (totally) correct

● A general and fully automated solution to the Program
Verification problem is unachievable because the problem
is undecidable

● One of the consequences of this inescapable limitation is
the impossibility of computing verification conditions (VC)
fully automatically

– VC: intermediate assertions used in the correctness proof
– (It is not an obvious consequence: formally, a reduction between

 undecidable problems)

3

Proving Programs Automatically
The Program Verification problem:
● Given: a program P and a specification S = [Pre, Post]
● Determine: if every execution of P, for any value of input parameters, satisfies S
● Equivalently: establish whether {Pre} P {Post} is (totally) correct

Practically:
Proving the correctness of a computer program
requires knowledge about the program that is not
readily available in the program text
 -- Chang & Leino

In this lecture, we survey techniques to automatically
infer assertions in interesting special cases

4

The Assertion Inference Paradox

Correctness is consistency of implementation to specification

The paradox:

if the specification is inferred from the implementation,
what do we prove?

5

The Assertion Inference Paradox

The paradox:
if the specification is inferred from the implementation,
what do we prove?

Possible retorts:
– The paradox only arises for correctness proofs; there are other

applications
(e.g. reverse-engineering legacy software)

– The result may be presented to a programmer for assessment
– Inferred specification may be inconsistent, thus denoting a problem

6

The Assertion Inference Paradox

The paradox:
if the specification is inferred from the implementation,
what do we prove?

The paradox does not arise if we only infer VC (i.e.,
intermediate assertions) and not specifications (pre and
postconditions)

– VC are a technical means to an end (proving correctness)
● the tool infers loop invariants

– The specification is a formal description of what the implementation
should do

● the programmer writes the specification

7

Invariants
Let us consider a general (and somewhat informal)
definition of invariant:

Def. Invariant: assertion whose truth is preserved
by the execution of (parts of) a program.

x: INTEGER
from x := 1 until ... loop x := - x end

Some invariants:
● -1 ≤ x ≤ 1
● x = -1 ∨ x = 0 ∨ x = 1
● x ≥ -10

8

Kinds of Invariants

We can identify different families of
invariants, according to what parts of the
program preserve the invariant:
● Location invariant at x: assertion that holds

whenever the computation reaches location x
● Program invariant: predicate that holds in any

reachable state of the computation
● Class invariant: predicate that holds between

(external) feature invocations
● Loop invariant: predicate that holds after every

iteration of a loop body

Def. Invariant: assertion whose truth is preserved
by the execution of (parts of) a program.

{P} A {I}
{I ∧ ¬ c} B {I}

{P}

from A until c
loop B end

{I ∧ c}

9

Kinds of Invariants

● Location invariant at 2:
x = 0

● Loop invariant:
x = -1 ∨ x = 1

● Program invariant:
x ≥ -10

1: x: INTEGER
2:
3: from x := 1
4: until ...
5: loop x := - x end

10

Focus on Loop Invariants

If we have loop invariants we can get (almost) everything else
at little cost

– but not vice versa:
getting loop invariants requires invention

In the following discussion we focus on loop invariants (and call
them simply “invariants”)

This focus is also consistent with the Assertion Inference
Paradox

11

Focus on Loop Invariants
The various kinds of invariants are closely
related by the inference rules of Hoare logic
● If Lx is a location invariant at x then:

@x Lx⇒

is a program invariant
● If P is a program invariant then it is also a

location invariant at every location x
● If I is a loop invariant of:

x: from ... until c loop ... end
then I ∧ c is a location invariant at x+1

● If L is a location invariant at x+1:
x: a := b + 3

then L [b + 3 / a] is a location invariant at x
● Etc...

{P} A {I}
{I ∧ ¬ c} B {I}

{P}

from A until c
loop B end

{I ∧ c}

{P [e / x]} x := e {P}

12

Techniques for Invariant Inference

Classification of invariant inference
techniques:

● Dynamic techniques
● Static techniques

– statistical techniques
– exact techniques

Classification is neither sharp nor
complete, yet useful

soundness

(Roughly) direction of increasing:

com
pleteness

m
athem

atical
sophistication

13

Exact Static Techniques
for Invariant Inference

14

Static Invariant Inference: classification

Static exact techniques for invariant inference are
further classified in categories:
● Direct
● Assertion-based

● postcondition weakening
● Based on abstract interpretation

● forward analysis (bottom-up)
● backward analysys (top-down)

● Constraint-based
– usually, template-based

15

Exact Static Techniques
for Invariant Inference:

Postcondition-weakening Approach

16

The Role of User-provided Contracts

Techniques for invariant inference rarely take
advantage of other annotations in the program
text, such as contracts provided by the user

– Not every annotation can (or should, cf. Assertion
Inference Paradox) be inferred automatically!

However, there is a close connection between a
loop's invariant and its postcondition

17

The Role of User-provided Contracts
● However, there is a close connection between a

loop's invariant and its postcondition
The invariant is a weakened form of the postcondition
– It is a larger collection of program states

● Example: from x := 0 until x = n loop x := x + 1 end
● Post: x = n (for some n > 0)
● Invariant: 0 ≤ x ≤ n

Init: x = 0 Post: x = n

Inv: 0 ≤ x ≤ n

1≤x≤n n-1≤x≤n. . .

18

Invariants by Postcondition Weakening
● In a nutshell:

 Static verification of candidate invariants
 obtained by mutating postconditions

1. Assume the availability of postconditions

2. Mutate postconditions according to various heuristics
– the heuristics mirror common patterns that link postconditions to

invariants
– each mutated postcondition is a candidate invariant

3. Verify which candidates are indeed invariants
– With an automatic program prover such as Boogie

4. Retain all verified invariants

● 2009 -- C.A. Furia & B. Meyer
● Implementation: gin-pink which finds invariants in Boogie programs

19

Loop invariant inference

Pre Post

{Pre} Program {Post}Program

Candidate
Invariants

Loop

Input

Output

mutate

Program

Loop Invariants

checking invariance

proving correctness
(possibly using additional info)

20

Postcondition Mutation Heuristics
Constant relaxation
● replace “constant” by “variable”

– cannot/may be changed by any of the loop bodies
Uncoupling
● replace subexpression appearing twice by two subexpressions

– for example: subexpression = variable id
Term dropping
● remove a conjunct

Variable aging
● replace subexpression by another expression representing

its previous value

21

Invariant Inference: the Algorithm

● Goal: find invariants of loops in procedure proc
● For each:

● post: postcondition clause of proc
● loop: outer loop in proc

compute all mutations M of post w.r.t. loop
– considering postcondition clauses separately implements

term dropping

● Result: any formula in M which can be verified as
invariant of any loop in proc

22

Maximum value of an array

 max (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 local i: INTEGER
 do
 from i := 0 ; Result := A[1];
 until i = n
 loop
 i := i + 1
 if Result ≤ A[i] then Result := A[i] end
 end
 ensure (∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result) and

(∃ 1 ≤ j ≤ n ∧ A[j] = Result)

23

Maximum value of an array

 max (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 ensure (∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result) and

(∃ 1 ≤ j ≤ n ∧ A[j] = Result)

● Constant relaxation: replace “constant” n by “variable” i
● Term dropping: remove second conjunct

Invariant: ∀ 1 ≤ j ≤ i ⇒ A[j] ≤ Result

24

Maximum value of an array (cont'd)

● Term dropping: remove first conjunct

Invariant: ∃ 1 ≤ j ≤ n ∧ A[j] = Result

 max (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 ensure (∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result) and

(∃ 1 ≤ j ≤ n ∧ A[j] = Result)

25

Maximum value of an array (2nd version)

 max_v2 (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 local i: INTEGER
 do
 from i := 1 ; Result := A[1];
 until i > n
 loop
 if Result ≤ A[i] then Result := A[i] end
 i := i + 1
 end
 ensure ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result

26

Maximum value of an array (2nd version)

● Constant relaxation: replace “constant” n by “variable” i
∀ 1 ≤ j ≤ i ⇒ A[j] ≤ Result

● Variable aging:
 use expression representing the previous value of i: i – 1

Invariant: ∀ 1 ≤ j ≤ i - 1 ⇒ A[j] ≤ Result

 max_v2 (A: ARRAY [T] ; n: INTEGER): T
 require A.length = n ≥ 1
 ensure ∀ 1 ≤ j ≤ n ⇒ A[j] ≤ Result

27

Array Partitioning

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
 require A.length = n ≥ 1
 local l, h: INTEGER
 do
 from l := 1 ; h := n until l = h
 loop
 from until l = h or A[l] > pivot loop l := l + 1 end
 from until l = h or pivot > A[h] loop h := h - 1 end
 A.swap (l, h)
 end
 if pivot ≤ A[l] then l := l – 1 end ; h := l ; Result := h
 ensure (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and

(∀ Result<k≤n ⇒ A[k] ≥ pivot)

28

Array Partitioning

● Uncoupling: replace first occurrence of Result by l
and second by h

 (∀ 1 ≤ k ≤ l ⇒ A[k] ≤ pivot) and (∀ h < k ≤ n ⇒ A[k] ≥ pivot)
● Variable aging: use expression representing the previous

value of l: l – 1

Invariant:
(∀ 1 ≤ k ≤ l - 1 ⇒ A[k] ≤ pivot) and (∀ h < k ≤ n ⇒ A[k] ≥ pivot)

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
 require A.length = n ≥ 1
 ensure (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and

(∀ Result<k≤n ⇒ A[k] ≥ pivot)

29

Array Partitioning

● Term dropping: remove first conjunct
 ∀ Result < k ≤ n ⇒ A[k] ≥ pivot

● Constant relaxation: replace “constant” Result by “variable” h

Invariant: ∀ h < k ≤ n ⇒ A[k] ≥ pivot

partition (A: ARRAY [T]; n: INTEGER; pivot: T): INTEGER
 require A.length = n ≥ 1
 ensure (∀ 1≤k≤ Result ⇒ A[k] ≤ pivot) and

(∀ Result<k≤n ⇒ A[k] ≥ pivot)

30

Implementation: gin-pink

gin-pink: Generation of INvariants by
 PostcondItioN weaKening

● written in Eiffel
● command-line tool

– Boogie in / Boogie out
● works with any high-level language that can be

translated to Boogie
● available for download from

http://se.inf.ethz.ch/people/furia/

31

Limitations of the approach
Some invariants are not mutations of the postcondition
● “completeness” of the postcondition
● integration with other techniques
● more heuristics

Combinatorial explosion
● user guidance

Dependencies
● especially with nested loops
● user guidance

Limitations of automated reasoning techniques
● they progress quickly

32

Exact Static Techniques
for Invariant Inference:

Constraint-based Approach

33

Constraint-based Invariant Inference

● In a nutshell:
 encode semantics of iteration as constraints
 on a template invariant

1.Choose a template invariant expression
● template defines a (infinte) set of assertions

2. Encode the loop semantics as a set of constraints on the template
● initation
● consecution

3. Solve the constraints
● this is usually the complex part

4. Any solution is an invariant
● E.g.: 2003 -- Henny Sipma et al.; 2004 -- Zohar Manna et al. ;

 2007 -- Tom Henzinger et al.

34

Constraint-based Inv. Inference: Example

● Template invariant expression:

 T = c•x + d•n + e ≤ 0
● Constraints encoding loop semantics:

● Initiation: “T holds for the initial values of x and n”

T [0/x; n
0
/n] ≡ c•0 + d•n

0
 + e ≤ 0 ≡ d•n

0
 + e ≤ 0

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end

35

Constraint-based Inv. Inference: Example

● Constraints encoding loop semantics:
● Consecution: “if T holds and one iteration of the loop is executed,

 T still holds”
T [x/x; n/n] (∧ ¬(x ≥ n) ∧ x' = x + 1 ∧ n' = n) ⇒ T [x'/x; n'/n]

● Solving the constraints requires to eliminate occurrences
of x, x', n, n'
● For linear constraints we can use Farkas's Lemma

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end

36

Farkas's Lemma (1902)
Let S be a system of linear inequalities over n real

and let Ψ be a linear inequality:

Then S ⇒ Ψ is valid iff S in unsatisfiable or there exist m+1 real nonnegative

coefficients λ
0
, λ

1
, ..., λ

m
 such that:

37

Constraint-based Inv. Inference: Example
Use Farkas's lemma to turn the consecution
constraint:

T [x/x; n/n] ∧ x < n ∧ x' = x + 1 ∧ n' = n
 ⇒ T [x'/x; n'/n]

into a constraint over c, d, and e only.

38

Constraint-based Inv. Inference: Example

39

Constraint-based Inv. Inference: Example

Finally, eliminate existential quantifiers from Φ
to get the constraint:

c ≤ 0 ∨ (c + d = 0 ∧ e ≤ 0)
– (Quantifier elimination is also quite technical)

40

Constraint-based Inv. Inference: Example

● Any solution [c, d, e] to:
● Initiation and Consecution:

 (d•n
0
 + e ≤ 0) (∧ c ≤ 0 (∨ c + d = 0 ∧ e ≤ 0))

determines an invariant of the loop.

– [0, -1, 0] ---> n ≥ 0
– [1, 0, 0] ---> x ≥ 0
– [1, -1, 0] ---> x – n ≤ 0

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end

41

Constraint-based Inv. Inference: Summary
● Main issues:

– choice of invariant templates for which effective decision procedures exist
● interesting research topic per se, on the brink of undecidability

– heuristics to extract the “best” invariants from the set of solutions
● Advantages:

– sound
– complete (w.r.t. the template)
– exploit heterogeneous decision procedures syncretically
– fully automated (possibly except for providing the template)

● providing the template introduces a “natural” form of interaction with the user
● Disadvantages:

– suitable mathematical decision theories are usually quite sophisticated
● hence, hard to extend and customize

– exact constraint solving is usually quite expensive
– mostly suitable for “algebraic” invariants

● requires integration with other techniques to achieve full functional correctness
proofs

42

Dynamic Techniques
for Invariant Inference

43

Dynamic Invariant Inference

● In a nutshell:
testing of candidate invariants

1. Choose a set of test cases

2.Perform runtime monitoring of candidate invariants

3.If some test run violates a candidate, discard the
candidate

4.The surviving candidates are guessed invariant

● Daikon tool, 1999 -- Mike Ernst et al.

● CITADEL: Daikon for Eiffel, 2008 -- Nadia Polikarpova

● AutoInfer for Eiffel

44

Dynamic Invariant Inference: Example

● Test cases: { n = k | 0 ≤ k ≤ 1000 }
● Candidate invariants:

– { x ≥ c | -1000 ≤ c ≤ 1000 },
{ n ≥ c | -1000 ≤ c ≤ 1000 }

– { x = c·n + d | -500 ≤ c, d ≤ 500 }
– { x < n, x ≤ n, x = n, x ≠ n, x ≥ n, x > n }
– { x ± n ≥ c | -500 ≤ c ≤ 500 }
– ...

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end

45

Dynamic Invariant Inference: Example

● Survivors (after loop iterations) :
– { x ≥ -c | 0 ≤ c ≤ 1000 },

{ n ≥ -c | 0 ≤ c ≤ 1000 }
– x ≤ n
– { x + n ≥ c | -500 ≤ c ≤ 500 }
– ...

dummy_routine (n: NATURAL)
local x: NATURAL do

 from x := 0
 until x ≥ n

loop x := x + 1 end
end

46

Dynamic Invariant Inference: Summary
● Main issues:

– choose suitable test cases
– handle huge sets of candidate invariants

(runtime overhead)
– estimate soundness/quality of survivor predicates
– select heuristically the “best” survivor predicates

● Advantages:
– straightforward to implement (at least compared to other techniques)
– guessing is often rather accurate in practice (possibly with some heuristics)
– customizable and rather flexible:

in principle, whatever you can test you can check for invariance
● Disadvantages:

– unsound (educated guessing)
– without heuristics, large amount of useless, redundant predicates
– sensitive to choice of test cases
– some complex candidate invariants are difficult to implement efficiently

