
Chair of Software Engineering

Software Verification

Sebastian Nanz

Lecture 8: Abstract Interpretation

2

Plan for today's lecture

  In the first part we discuss program slicing as another
example of an application of data flow analysis.

  In the second part we discuss abstract interpretation, a
general framework for expressing program analyses.

Chair of Software Engineering

Program Slicing

4

Program slicing

sum := 0

i := 0
while i < y do
 sum := sum + x

 i := i + 1
end
print(sum)

sum := 0
prod := 1
i := 0
while i < y do
 sum := sum + x
 prod := prod * x
 i := i + 1
end
print(sum)
print(prod)

"What program statements potentially affect the value of
variable sum at line 8 of the program?"

1
2
3
4
5
6
7

8
9

1

3
4
5

7

8

5

Program slicing

  Program slicing provides an answer to the question

  The resulting program statements are called the
program slice.
  The program point l is called the slicing criterion.
  An observer focusing on the slicing criterion (i.e. only
observing values of the variables at program point l)
cannot distinguish a run of the program from the run of its
slice.

"What program statements potentially affect the
values of the variables at program point l?"

6

Applications of program slicing

  Debugging: Slicing lets the programmer focus on the
program part relevant to a certain failure, which might
lead to quicker detection of a fault.
  Testing: Slicing can minimize test cases, i.e. find the
smallest set of statements that produces a certain failure
(good for regression testing).
  Parallelization: Slicing can determine parts of the
program which can be computed independently of each
other and can thus be parallelized.

7

Classification

  Static slicing vs. dynamic slicing
  Static: general, not considering a particular input
  Dynamic: computed for a fixed input, therefore

smaller slices can be obtained
  Backward slicing vs. forward slicing

  Backward: "Which statements affect the execution
of a statement?"

  Forward: "Which statements are affected by the
execution of a certain statement?"

  In the following we present an algorithm for static
backward slicing.

8

Program slice

A backward slice S of program P with respect to slicing
criterion l is any executable program with the following
properties:

1.  S can be obtained by deleting zero or more statements

from P.
2.  If P halts on input I, then the values of the variables at

program point l are the same in P and in S every time
program point l is executed.

9

Slicing algorithm

  We present a slicing algorithm for static backward
slicing.
  Many different approaches, we show one that
constructs a program dependence graph (PDG).
  A PDG is a directed graph with two types of edges:

  Data dependencies: given by data-flow analysis
  Control dependencies: program point l is control-

dependent on program point l' if
(1) l' labels the guard of a control structure
(2) the execution of l depends on the outcome of
 the evaluation of the guard at l'

10

Control flow graph of the example program

[print(sum)]8

[print(prod)]9

[i<y]4

[sum := sum + x]5

[prod := prod * x]6

[sum:=0]1

[i := i + 1]7

[prod:=1]2

[i:=0]3

11

Example: Program dependence graph

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

[print(sum)]8 [print(prod)]9

{(l, l') | l ∈ ∪ UD(x, l') where l' labels a block}
x used

in block l'

1. Data dependence subgraph

(self-loops are omitted)

12

Example: Program dependence graph

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

ENTRY

[print(sum)]8 [print(prod)]9

2. Control dependence subgraph

(1) Edge from special node ENTRY to any node not within
 any control structure (such as while, if-then-else)

(2) Edge from any guard of a control structure to any
 statement within the control structure

13

Example: Computing the program slice

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

ENTRY

[print(sum)]8 [print(prod)]9

Slicing using the PDG:
(1) Take as initial node the one given by the slicing criterion

(2) Include all nodes which the initial node transitively
 depends upon (use both data- and control-dependencies)

Data dependencies
Control dependencies

Chair of Software Engineering

Abstract Interpreta4on

Introduc4on

15

One framework to rule them all

  In the past lecture we have introduced a particular style
of program analysis: data flow analysis.

  For these types of analyses, and others, a main concern
is correctness: how do we know that a particular analysis
produces sound results (does not forget possible errors)?

  In the following we discuss abstract interpretation, a
general framework for describing program analyses and
reasoning about their correctness.

16

Main ideas: Concrete computations

  An ordinary program describes computations in some
concrete domain of values.

  Example: program states that record the integer
value of every program variable.

 σ ∈ State = Var -> Z

  Possible computations can be described by the concrete
semantics of the programming language used.

17

Main ideas: Abstract computations

  Abstract interpretation of a program describes
computation in a different, abstract domain.

  Example: program states that only record a specific
property of integers, instead of their value: their
sign, whether they are even/odd, or contained in
[-32768, 32767] etc.

 σ ∈ AbstractState = Var -> {even, odd}

  In order to obtain abstract computations, an abstract
semantics for the programming language has to be defined.
  Abstract interpretation provides a framework for
proving that the abstract semantics is sound with respect
to the concrete semantics.

18

The collecting semantics

We assume the state of a program to be modeled as:

 σ ∈ State = Var -> Z

We will use the following notation for function update:

 σ[x ↦ k](y) =

We construct the collecting semantics as a function which
gives for every program label the set of all possible states.

 C : Labels -> ℘(State)

!

"

$

%
$

k if x = y
σ(y) otherwise

19

Rules of the collecting semantics

Cl' = {σ[x ↦ n] | σ ∈ Cl and C[e]σ = n}

Cltrue = {σ | σ ∈ Cl and C[b]σ = true}
Clfalse = {σ | σ ∈ Cl and C[b]σ = false}

Cl = Cl1 ∪ Cl2

[x := e]

[b]

l1 l2

l

lfalse

ltrue

l'

l

l

Note: In difference to the lecture on program analysis,
labels are not on blocks, but on edges.

20

Example: Collecting semantics

[y:=1]

[x ≠ 0]

[y:=x*y]

[x:=x-1]

1

3

2
5

4

C1 = {σ | σ(x) > 0}

C2 = {σ[y ↦ 1] | σ ∈ C1} ∪
 {σ[x ↦ σ(x) - 1] | σ ∈ C4}

 C3 = C2∩{σ | σ(x) ≠ 0}

C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3}

C5 = C2∩{σ | σ(x) = 0}

Assume x > 0.

21

Solving the equations

  The equation system we obtain has variables C1, ..., C5
which are interpreted over the complete lattice ℘(State).
  We can express the equation system as a monotone
function F : ℘(State)5 -> ℘(State)5

 F(C1, ..., C5) = ({σ | σ(x) > 0}, ..., C2∩{σ | σ(x) = 0})
  Using Tarski's Fixed Point Theorem, we know that a least
fixed point exists.
  We have seen: The least fixed point can be computed by
repeatedly applying F, starting with the bottom element ⊥ =
(∅,∅,∅,∅,∅) of the complete lattice until stabilization.

 F(⊥) ⊑ F(F(⊥)) ⊑ ... ⊑ Fn(⊥) = Fn+1(⊥)

22

Example: Fixed Point Computation

[y:=1]

[x ≠ 0]

[y:=x*y]

[x:=x-1]

1

3

2
5

4

∅

∅
∅

∅

∅

{[x↦m,y↦n] | m > 0}

{[x↦m,y↦1] | m > 0}

{[x↦0,y↦m] | m > 0}
{[x↦m,y↦1] | m > 0}

{[x↦m,y↦m] | m > 0}

C1 = {σ | σ(x) > 0}
C2 = {σ[y ↦ 1] | σ ∈ C1} ∪
 {σ[x ↦ σ(x) - 1] | σ ∈ C4}
C3 = C2∩{σ | σ(x) ≠ 0}
C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3}
C5 = C2∩{σ | σ(x) = 0}

∪ {[x↦m-1,y↦m] | m > 0}

... etc.

23

Domain for Sign Analysis

We want to focus on the sign of integers, using the domain

 σ ∈ AbstractState = Var -> Signs

where Signs is the following structure:

How is such a structure called?

⊤

⊥

+ 0 -

A complete lattice

⊤ represents all integers
+ the positive integers
- the negative integers
0 the set {0}
⊥ the empty set

24

Example: Sign Analysis

[y:=1]

[x ≠ 0]

[y:=x*y]

[x:=x-1]

1

3

2
5

4

A1 = [x ↦ +, y ↦ T]

A2 = A1[y ↦ +] ⊔
 A4[x ↦ A4(x) ⊖ +]

A3 = A2

A4 = A3[y ↦ A3(x) ⊗ A3(y)]

A5 = A2 ⊓ [x ↦ 0, y ↦ T]

Assume x > 0. Use the abstract domain for sign analysis.

Chair of Software Engineering

Abstract Interpreta4on

Founda4ons

26

Introductory example: Expressions

A little language of expressions

Syntax
e ::= n | e * e

Concrete semantics
C[n] = n
C[e * e] = C[e] · C[e]

Example
C[-3 * 2 * -5] = C[-3 * 2] · C[-5] = C[-3 * 2] · (-5) = ... = 30

27

Introductory example: Abstraction

Assume that we are not interested in the value of an
expression but only in its sign:

  Negative: –
  Zero: 0
  Positive: +

Abstract semantics
A[n] = sign(n)

A[e * e] = A[e] ⊗ A[e]

Example
A[-3 * 2 * -5] = A[-3 * 2] ⊗ A[-5] = A[-3 * 2] ⊗ (-) = ... =
= (-) ⊗ (+) ⊗ (-) = (+)

⊗ - 0 +

-
0
+

+
0
-

+
0
0

28

Introductory example: Soundness

  We want to express that the abstract semantics
correctly describes the sign of a corresponding concrete
computation.
  For this we first link each concrete value to an abstract
value:

Representation function
β : Z -> {-, 0, +}

β(n) =

!

"

$

%
$

- if n < 0
0 if n = 0
+ if n > 0

29

Introductory example: Soundness

  Conversely, we can also link abstract values to the set of
concrete values they describe:

Concretization function

γ : {-, 0, +} -> ℘(Z)

γ(s) =

  Soundness then describes intuitively that the concrete
value of an expression is described by its abstract value:

 ∀e. C[e] ∈ γ(A[e])
!

"

$

%
$

{n | n < 0} if s = -
{0} if s = 0
{n | n > 0} if s = +

30

Extending the language

Syntax
e ::= n | e * e | e + e | -e

Abstract semantics
A[n] = sign(n)
A[-e] = ⊝A[e]

A[e + e] = A[e] ⊕ A[e]

Observation: The abstract domain {-,0,+} is not closed
under the interpretation of addition.

⊕ - 0 +

-
0
+

- 0 +

⊝ + 0 -

+ 0
-

+

? -

31

Extending the abstract domain

We have to introduce an additional abstract value:

 ⊤ "top" – (any value)

⊕ - 0 + ⊤
- - - ⊤ ⊤
0 0 + ⊤
+ + ⊤
⊤ ⊤

32

The new abstract domain

We can extend the concretization function to the new
abstract domain {-,0,+, ⊤, ⊥} (add ⊥ for completeness):

 γ(⊤) = Z γ(⊥) = ∅
We obtain the following structure when drawing the
partial order induced by

 a ≤ b iff γ(a) ⊆ γ(b)

How is such a structure called?

⊤

⊥

+ 0 -

A complete lattice

33

Construction of complete lattices

  If we know some complete lattices, we can construct
new ones by combining them
  Such constructions become important when designing
new analyses with complex analysis domains

Example: Total function space

Let (D1, ⊑1) be a partially ordered set and let S be a set.
Then (D, ⊑), defined as follows, is a complete lattice:
  D = S -> D1 ("space of total functions")
  f ⊑ f' iff ∀ s ∈ S : f(s) ⊑1 f'(s) ("point-wise ordering")

34

The framework of abstract interpretation

  Starting from a concrete domain C, define an abstract
domain (A, ⊑), which must be a complete lattice
  Define a representation function β that maps a concrete
value to its best abstract value

 β : C -> A
  From this we can derive the concretization function γ

 γ : A -> ℘(C)
 γ(a) = {c ∈ C | β(c) ⊑ a}

and abstraction function α for sets of concrete values

 α : ℘(C) -> A

 α(C) = ⨆ {β(c) | c ∈ C}

35

Galois connections

  The following properties of α and γ hold:

Monotonicity

 (1) α and γ are monotone functions
Galois connection

 (3) c ⊆ γ(α(c)) for all c ∈ ℘(C)
 (2) a ⊒ α(γ(a)) for all a ∈ A

  Galois connection: This property means intuitively that
the functions α and γ are "almost inverses" of each other.

36

Figure: Galois connection

c

γ(a)

α(c)

a

C A

37

Galois insertions

  For a Galois connection, there may be several elements
of A that describe the same element in C
  As a result, A may contain elements which are irrelevant
for describing C
  The concept of Galois insertion fixes this:

Monotonicity

 (1) α and γ are monotone functions
Galois insertion

 (3) c ⊆ γ(α(c)) for all c ∈ ℘(C)
 (2) a = α(γ(a)) for all a ∈ A

38

Figure: Galois insertion

c

γ(α(c))

α(c)

C A

39

Induced Operations

  A Galois connection can be used to induce the abstract
operations from the concrete ones.

  We can show that the induced operation op = α ∘ op ∘ γ
is the most precise abstract operation in this setting.
  The induced operation might not be computable. In this
case we can define an upper approximation op#, op ⊑ op#,
and use this as abstract operation.

℘(C) ℘(C)

A A

α γ

op

α ∘ op ∘ γ abstract execution

concrete execution

Chair of Software Engineering

Abstract Interpreta4on

Widening

41

Range analysis

  To introduce the notion of widening, we have a look at
range analysis, which provides for every variable an over-
approximation of its integer value range.
  We are left with the task of choosing a suitable
abstract domain: the interval lattice suggests itself.

Interval = {⊥}∪ {[x,y] | x ≤ y, x ∈ Z ∪ {∞}, y ∈ Z ∪ {∞}}

⊥

[0,0] [1,1] [2,2] [-1,-1]

[-∞,+∞]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]
[1,+∞]

[0,+∞]

42

Example

  At program point 2, the following sequence of abstract
states arises: [x↦[1,1]], [x↦[1,2]], [x↦[1,3]], ...
Consequence: The analysis never terminates (or, if n is
statically known, converges only very slowly).

[x:=1]

[x ≤ n]

[x:=x+1]

1

3

2
4

[x↦⊤]

[x↦[1,1]]

[x↦[1,1]]

⊔ [x↦[2,2]] = [x↦[1,2]]

 Consider the following program:

43

The ascending chain condition

 Using an arbitrary complete lattice as abstract domain,
the solution is not computable in general.
  The reason for that is the fact that the value space
might be unbounded, containing infinite ascending chains:

 (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,
 but there exists no n such that ln = ln+1 = · · ·

  If we replace it with an abstract space that is finite (or
does not possess infinite ascending chains), then the
computation is guaranteed to terminate.
  In general, we want an abstract domain to satisfy the
ascending chain condition, i.e. each ascending chain
eventually stabilises:

 if (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,
 then there exists n such that ln = ln+1 = · · ·

44

Non-termination

  The reason for the non-termination in the example is
that the interval lattice contains infinite ascending chains.

  Trick, if we cannot eliminate ascending chains: We
redefine the join operator of the lattice to jump to the
extremal value more quickly.
Before: [1,1] ⊔ [2,2] = [1,2] Now: [1,1] ∇ [2,2] = [1,+∞]

⊥

[0,0] [1,1] [2,2] [-1,-1]

[-∞,+∞]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]
[1,+∞]

[0,+∞]

45

Widening

A widening ∇ : D x D -> D on a partially ordered set (D, ⊑)
satisfies the following properties:

1.  For all x, y ∈ D. x ⊑ x∇y and y ⊑ x∇y
2.  For all ascending chains x1 ⊑ x2 ⊑ x3 ⊑ · · · the ascending

chain y1 = x1 ⊑ y2 = y1 ∇ x2 ⊑ · · · ⊑ yn+1 = yn ∇ xn+1
eventually stabilizes.

  Widening is used to accelerate the convergence towards
an upper approximation of the least fixed point.

46

Example (continued)

  Assume we have a widening operator ∇ that is defined
such that [1,1] ∇ [2,2] = [1, +∞]

  The analysis converges quickly.

[x:=1]

[x ≤ n]

[x:=x+1]

1

3

2
4

[x↦⊤]

[x↦[1,1]]

[x↦[1,1]]

∇ [x↦[2,2]] = [x↦[1,+∞]]

[x↦[1,n]]

[x↦[1,+∞]] ∇ [x↦[1,n]] = [x↦[1,+∞]]

[x↦[n+1,+∞]]

47

Reading

Patrick Cousot and Radhia Cousot. Abstract interpretation:
a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In: POPL'77,
pages 238-252. ACM Press, 1977

Neil D. Jones, Flemming Nielson: Abstract Interpretation:
a Semantics-Based Tool for Program Analysis, 1994

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:
Principles of Program Analysis, Springer, 2005.
Chapter 1: Section 1.5
Chapter 4 (advanced material)

