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Plan for today's lecture 

  In the first part we discuss program slicing as another 
example of an application of data flow analysis. 

  In the second part we discuss abstract interpretation, a 
general framework for expressing program analyses. 
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Program slicing 

sum := 0 
 
i := 0 
while i < y do 
    sum := sum + x 
 
    i := i + 1 
end 
print(sum) 
 

sum := 0 
prod := 1 
i := 0 
while i < y do 
    sum := sum + x 
    prod := prod * x 
    i := i + 1 
end 
print(sum) 
print(prod) 
 

"What program statements potentially affect the value of 
variable sum at line 8 of the program?" 
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Program slicing 

  Program slicing provides an answer to the question 

  The resulting program statements are called the 
program slice. 
  The program point l is called the slicing criterion. 
  An observer focusing on the slicing criterion (i.e. only 
observing values of the variables at program point l) 
cannot distinguish a run of the program from the run of its 
slice. 

 

"What program statements potentially affect the 
values of the variables at program point l?" 



6 

Applications of program slicing 

  Debugging: Slicing lets the programmer focus on the 
program part relevant to a certain failure, which might 
lead to quicker detection of a fault. 
  Testing: Slicing can minimize test cases, i.e. find the 
smallest set of statements that produces a certain failure 
(good for regression testing). 
  Parallelization: Slicing can determine parts of the 
program which can be computed independently of each 
other and can thus be parallelized. 
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Classification 

  Static slicing vs. dynamic slicing 
  Static: general, not considering a particular input 
  Dynamic: computed for a fixed input, therefore 

smaller slices can be obtained 
  Backward slicing vs. forward slicing 

  Backward: "Which statements affect the execution 
of a statement?" 

  Forward: "Which statements are affected by the 
execution of a certain statement?" 

   In the following we present an algorithm for static 
backward slicing. 
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Program slice 

A backward slice S of program P with respect to slicing 
criterion l is any executable program with the following 
properties: 
 
1.  S can be obtained by deleting zero or more statements 

from P. 
2.  If P halts on input I, then the values of the variables at 

program point l are the same in P and in S every time 
program point l is executed.  
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Slicing algorithm 

  We present a slicing algorithm for static backward 
slicing. 
  Many different approaches, we show one that 
constructs a program dependence graph (PDG). 
  A PDG is a directed graph with two types of edges: 

  Data dependencies: given by data-flow analysis 
  Control dependencies: program point l is control-

dependent on program point l' if  
(1)  l' labels the guard of a control structure  
(2) the execution of l depends on the outcome of 
     the evaluation of the guard at l' 
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Control flow graph of the example program 

[print(sum)]8 

[print(prod)]9 

[i<y]4 

[sum := sum + x]5 

[prod := prod * x]6 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 

[i:=0]3 
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Example: Program dependence graph 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

[print(sum)]8 [print(prod)]9 

{(l, l') | l ∈ ∪ UD(x, l') where l' labels a block} 
x used 

in block l' 

1. Data dependence subgraph  

(self-loops are omitted) 
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Example: Program dependence graph 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

ENTRY 

[print(sum)]8 [print(prod)]9 

2. Control dependence subgraph  

(1) Edge from special node ENTRY to any node not within 
     any control structure (such as while, if-then-else) 

(2) Edge from any guard of a control structure to any  
     statement within the control structure  
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Example: Computing the program slice 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

ENTRY 

[print(sum)]8 [print(prod)]9 

Slicing using the PDG: 
(1) Take as initial node the one given by the slicing criterion 

(2) Include all nodes which the initial node transitively  
     depends upon (use both data- and control-dependencies) 

Data dependencies 
Control dependencies 
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One framework to rule them all 

  In the past lecture we have introduced a particular style 
of program analysis: data flow analysis. 

  For these types of analyses, and others, a main concern 
is correctness: how do we know that a particular analysis 
produces sound results (does not forget possible errors)? 

  In the following we discuss abstract interpretation, a 
general framework for describing program analyses and 
reasoning about their correctness. 
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Main ideas: Concrete computations 

  An ordinary program describes computations in some 
concrete domain of values. 

  Example: program states that record the integer 
value of every program variable.  

   σ ∈ State = Var -> Z 

  Possible computations can be described by the concrete 
semantics of the programming language used. 
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Main ideas: Abstract computations 

  Abstract interpretation of a program describes 
computation in a different, abstract domain. 

  Example: program states that only record a specific 
property of integers, instead of their value: their 
sign, whether they are even/odd, or contained in 
[-32768, 32767] etc. 

   σ ∈ AbstractState = Var -> {even, odd} 
 

  In order to obtain abstract computations, an abstract 
semantics for the programming language has to be defined. 
  Abstract interpretation provides a framework for 
proving that the abstract semantics is sound with respect 
to the concrete semantics. 
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The collecting semantics 

We assume the state of a program to be modeled as: 
 

 σ ∈ State = Var -> Z 
 
We will use the following notation for function update:  
 

 σ[x ↦ k](y) =  
 
We construct the collecting semantics as a function which 
gives for every program label the set of all possible states. 

 C : Labels -> ℘(State) 
 

! 

" 

# 
$ 

% 
$ 

k  if x = y 
σ(y)  otherwise 
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Rules of the collecting semantics 
 
Cl' = {σ[x ↦ n] | σ ∈ Cl and C[e]σ = n} 
 
 
 
Cltrue = {σ | σ ∈ Cl and C[b]σ = true} 
Clfalse = {σ | σ ∈ Cl and C[b]σ = false} 
 
 
 
Cl = Cl1 ∪ Cl2 

[x := e] 

[b] 

l1 l2 

l 

lfalse 

ltrue 

l' 

l 

l 

Note: In difference to the lecture on program analysis, 
labels are not on blocks, but on edges. 
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Example: Collecting semantics 

[y:=1] 

[x ≠ 0] 

[y:=x*y] 

[x:=x-1] 

1 

3 

2 
5 

4 

C1 = {σ | σ(x) > 0} 

C2 = {σ[y ↦ 1] | σ ∈ C1} ∪ 
       {σ[x ↦ σ(x) - 1] | σ ∈ C4} 

 C3 = C2∩{σ | σ(x) ≠ 0} 

C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3} 

C5 = C2∩{σ | σ(x) = 0} 

Assume x > 0.  
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Solving the equations 

  The equation system we obtain has variables C1, ..., C5 
which are interpreted over the complete lattice ℘(State). 
  We can express the equation system as a monotone 
function F : ℘(State)5 -> ℘(State)5  

 F(C1, ..., C5) = ({σ | σ(x) > 0}, ..., C2∩{σ | σ(x) = 0}) 
  Using Tarski's Fixed Point Theorem, we know that a least 
fixed point exists. 
  We have seen: The least fixed point can be computed by 
repeatedly applying F, starting with the bottom element ⊥ = 
(∅,∅,∅,∅,∅) of the complete lattice until stabilization. 

   F(⊥) ⊑ F(F(⊥)) ⊑ ... ⊑ Fn(⊥) = Fn+1(⊥) 
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Example: Fixed Point Computation 

[y:=1] 

[x ≠ 0] 

[y:=x*y] 

[x:=x-1] 

1 

3 

2 
5 

4 

∅ 

∅ 
∅ 

∅ 

∅ 

{[x↦m,y↦n] | m > 0} 

{[x↦m,y↦1] | m > 0} 

{[x↦0,y↦m] | m > 0} 
{[x↦m,y↦1] | m > 0} 

{[x↦m,y↦m] | m > 0} 

C1 = {σ | σ(x) > 0} 
C2 = {σ[y ↦ 1] | σ ∈ C1} ∪ 
       {σ[x ↦ σ(x) - 1] | σ ∈ C4} 
C3 = C2∩{σ | σ(x) ≠ 0} 
C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3} 
C5 = C2∩{σ | σ(x) = 0} 

∪ {[x↦m-1,y↦m] | m > 0} 

...  etc. 
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Domain for Sign Analysis 

We want to focus on the sign of integers, using the domain 
 

 σ ∈ AbstractState = Var -> Signs 
 
where Signs is the following structure: 
 
 
 
 
 
 
How is such a structure called?  

⊤ 

⊥ 

+ 0 - 

A complete lattice 

⊤  represents all integers 
+  the positive integers 
-  the negative integers 
0 the set {0} 
⊥ the empty set 
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Example: Sign Analysis 

[y:=1] 

[x ≠ 0] 

[y:=x*y] 

[x:=x-1] 

1 

3 

2 
5 

4 

A1 = [x ↦ +, y ↦ T] 

A2 = A1[y ↦ +] ⊔  
       A4[x ↦ A4(x) ⊖ +]  

A3 = A2 

A4 = A3[y ↦ A3(x) ⊗ A3(y)] 

A5 = A2 ⊓ [x ↦ 0, y ↦ T] 

Assume x > 0. Use the abstract domain for sign analysis.  
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Introductory example: Expressions 

A little language of expressions 
 
Syntax 
e ::= n | e * e 
 
Concrete semantics 
C[n] = n 
C[e * e] = C[e] · C[e] 
 
Example 
C[-3 * 2 * -5] = C[-3 * 2] · C[-5] = C[-3 * 2] · (-5) = ... = 30 
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Introductory example: Abstraction 

Assume that we are not interested in the value of an 
expression but only in its sign:  

  Negative:  – 
  Zero:   0 
  Positive:  + 

Abstract semantics 
A[n] = sign(n) 

A[e * e] = A[e] ⊗ A[e] 
 
Example 
A[-3 * 2 * -5] = A[-3 * 2] ⊗ A[-5] = A[-3 * 2] ⊗ (-) = ... = 
= (-) ⊗ (+) ⊗ (-) = (+) 
 
 
 
 
 

⊗ - 0 + 

- 
0 
+ 

+ 
0 
- 

+ 
0 
0 
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Introductory example: Soundness 

  We want to express that the abstract semantics 
correctly describes the sign of a corresponding concrete 
computation. 
  For this we first link each concrete value to an abstract 
value: 

Representation function    
β : Z -> {-, 0, +}    

β(n) =      
 

! 

" 

# 
$ 

% 
$ 

-  if n < 0 
0      if n = 0 
+      if n > 0 
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Introductory example: Soundness 

  Conversely, we can also link abstract values to the set of 
concrete values they describe: 

Concretization function  

γ : {-, 0, +} -> ℘(Z) 

γ(s) =  
 
 

  Soundness then describes intuitively that the concrete 
value of an expression is described by its abstract value: 

 ∀e. C[e] ∈ γ(A[e]) 
! 

" 

# 
$ 

% 
$ 

{n | n < 0}  if s = - 
{0}              if s = 0 
{n | n > 0}   if s = + 
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Extending the language 

Syntax 
e ::= n | e * e | e + e | -e 
 
Abstract semantics 
A[n] = sign(n) 
A[-e] = ⊝A[e] 

A[e + e] = A[e] ⊕ A[e] 
 
 
 
Observation: The abstract domain {-,0,+} is not closed 
under the interpretation of addition. 
 

⊕ - 0 + 

- 
0 
+ 

- 0 + 

⊝ + 0 - 

+ 0 
- 

+ 

? - 
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Extending the abstract domain 

We have to introduce an additional abstract value: 

  ⊤  "top" – (any value) 
 

⊕ - 0 + ⊤ 
- - - ⊤ ⊤ 
0 0 + ⊤ 
+ + ⊤ 
⊤ ⊤ 
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The new abstract domain 

We can extend the concretization function to the new 
abstract domain {-,0,+, ⊤, ⊥} (add ⊥ for completeness): 

     γ(⊤) = Z       γ(⊥) = ∅ 
We obtain the following structure when drawing the 
partial order induced by  

  a ≤ b iff γ(a) ⊆ γ(b) 
 
 
 
 
 
How is such a structure called?  

⊤ 

⊥ 

+ 0 - 

A complete lattice 
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Construction of complete lattices 

  If we know some complete lattices, we can construct 
new ones by combining them 
  Such constructions become important when designing 
new analyses with complex analysis domains 
 
 
Example: Total function space 
 
Let (D1, ⊑1) be a partially ordered set and let S be a set. 
Then (D, ⊑), defined as follows, is a complete lattice: 
  D = S -> D1       ("space of total functions") 
  f ⊑ f'  iff ∀ s ∈ S : f(s) ⊑1 f'(s)  ("point-wise ordering") 



34 

The framework of abstract interpretation 

  Starting from a concrete domain C, define an abstract 
domain (A, ⊑), which must be a complete lattice 
  Define a representation function β that maps a concrete 
value to its best abstract value 

  β : C -> A 
  From this we can derive the concretization function γ 

 γ : A -> ℘(C) 
  γ(a) = {c ∈ C | β(c) ⊑ a} 

and abstraction function α for sets of concrete values 

 α : ℘(C) -> A 

 α(C) = ⨆ {β(c) | c ∈ C} 
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Galois connections 

  The following properties of α and γ hold: 
 
Monotonicity 

 (1)  α and γ are monotone functions 
Galois connection 

 (3)  c ⊆ γ(α(c))   for all c ∈ ℘(C) 
 (2)  a  ⊒  α(γ(a))   for all a ∈ A 

 
  Galois connection: This property means intuitively that 
the functions α and γ are "almost inverses" of each other.  
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Figure: Galois connection 

c 

γ(a) 

α(c) 

a 

C A 
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Galois insertions 

  For a Galois connection, there may be several elements 
of A that describe the same element in C 
  As a result, A may contain elements which are irrelevant 
for describing C 
  The concept of Galois insertion fixes this: 
 
Monotonicity 

 (1)  α and γ are monotone functions 
Galois insertion 

 (3)  c ⊆ γ(α(c))   for all c ∈ ℘(C) 
 (2)  a  =  α(γ(a))   for all a ∈ A 
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Figure: Galois insertion 

c 

γ(α(c)) 

α(c) 

C A 
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Induced Operations 

  A Galois connection can be used to induce the abstract 
operations from the concrete ones. 

  We can show that the induced operation  op = α ∘ op ∘ γ 
is the most precise abstract operation in this setting. 
  The induced operation might not be computable. In this 
case we can define an upper approximation op#, op ⊑ op#, 
and use this as abstract operation.  
 

℘(C) ℘(C) 

A A 

α γ 

op 

α ∘ op ∘ γ abstract execution 

concrete execution 
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Range analysis 

  To introduce the notion of widening, we have a look at 
range analysis, which provides for every variable an over-
approximation of its integer value range. 
  We are left with the task of choosing a suitable 
abstract domain: the interval lattice suggests itself. 

Interval = {⊥}∪ {[x,y] | x ≤ y, x ∈ Z ∪ {∞}, y ∈ Z ∪ {∞}} 

⊥ 

[0,0] [1,1] [2,2] [-1,-1] 

[-∞,+∞] 

[-1,0] [0,1] [1,2] 

[-1,1] [0,2] 
[1,+∞] 

[0,+∞] 
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Example 

 
 
 
 
 
 
 
 
 
  At program point 2, the following sequence of abstract 
states arises: [x↦[1,1]], [x↦[1,2]], [x↦[1,3]], ... 
Consequence: The analysis never terminates (or, if n is 
statically known, converges only very slowly). 
 
 

[x:=1] 

[x ≤ n] 

[x:=x+1] 

1 

3 

2 
4 

[x↦⊤] 

[x↦[1,1]] 

[x↦[1,1]] 

⊔ [x↦[2,2]]  = [x↦[1,2]]  

 Consider the following program: 
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The ascending chain condition 

 Using an arbitrary complete lattice as abstract domain, 
the solution is not computable in general. 
  The reason for that is the fact that the value space 
might be unbounded, containing infinite ascending chains: 

 (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,  
 but there exists no n such that ln = ln+1 = · · · 

  If we replace it with an abstract space that is finite (or 
does not possess infinite ascending chains), then the 
computation is guaranteed to terminate. 
  In general, we want an abstract domain to satisfy the 
ascending chain condition, i.e. each ascending chain 
eventually stabilises:  

 if (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,  
 then there exists n such that ln = ln+1 = · · · 
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Non-termination 

  The reason for the non-termination in the example is 
that the interval lattice contains infinite ascending chains. 
 
 
 
 
 
 
 
 
  Trick, if we cannot eliminate ascending chains: We 
redefine the join operator of the lattice to jump to the 
extremal value more quickly. 
Before: [1,1] ⊔ [2,2] = [1,2]  Now: [1,1] ∇ [2,2] = [1,+∞] 

⊥ 

[0,0] [1,1] [2,2] [-1,-1] 

[-∞,+∞] 

[-1,0] [0,1] [1,2] 

[-1,1] [0,2] 
[1,+∞] 

[0,+∞] 
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Widening 

A widening ∇ : D x D -> D on a partially ordered set (D, ⊑) 
satisfies the following properties: 
 
1.  For all x, y ∈ D.    x ⊑ x∇y    and    y ⊑ x∇y 
2.  For all ascending chains x1 ⊑ x2 ⊑ x3 ⊑ · · · the ascending 

chain y1 = x1 ⊑ y2 = y1 ∇ x2 ⊑ · · · ⊑ yn+1 = yn ∇ xn+1 
eventually stabilizes. 

 
  Widening is used to accelerate the convergence towards 
an upper approximation of the least fixed point.  
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Example (continued) 

  Assume we have a widening operator ∇ that is defined 
such that [1,1] ∇ [2,2] = [1, +∞] 

 
 
 
 
 
 
 
  The analysis converges quickly. 
 
 

[x:=1] 

[x ≤ n] 

[x:=x+1] 

1 

3 

2 
4 

[x↦⊤] 

[x↦[1,1]] 

[x↦[1,1]] 

∇ [x↦[2,2]]  = [x↦[1,+∞]]  

[x↦[1,n]]  

[x↦[1,+∞]] ∇ [x↦[1,n]]  = [x↦[1,+∞]]  

[x↦[n+1,+∞]]  
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Reading 

Patrick Cousot and Radhia Cousot. Abstract interpretation: 
a unified lattice model for static analysis of programs by 
construction or approximation of fixpoints. In: POPL'77, 
pages 238-252. ACM Press, 1977  
 
Neil D. Jones, Flemming Nielson:  Abstract Interpretation: 
a Semantics-Based Tool for Program Analysis, 1994 
 
Flemming Nielson, Hanne Riis Nielson, Chris Hankin: 
Principles of Program Analysis, Springer, 2005. 
Chapter 1: Section 1.5 
Chapter 4 (advanced material) 


