
Chair of Software Engineering

Software Verification

Lecture 10:
Software Model Checking

Carlo A. Furia

2

Program Verification: the very idea

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

require
True

ensure
Result >= a
Result >= b

P: a program S: a specification

Does P S hold?⊧

The Program Verification problem:
● Given: a program P and a specification S
● Determine: if every execution of P, for any value of input parameters, satisfies S

3

Verification of Finite-State Program

P: a program S: a specification

Does P S hold?⊧

The Program Verification problem is decidable
if P is finite-state

– Model-checking techniques

But real programs are not finite-state.

4

Software Model-Checking: the Very Idea

The term Software Model-Checking denotes an
array of techniques to automatically verify real
programs based on finite-state models of them.

It is a convergence of verification techniques
which started happening during the late 1990's.

The term “software model checker” is probably a
misnomer [...] We retain the term solely to reflect
historical development.

-- R. Jhala & R. Majumdar: “Software Model Checking”
ACM CSUR, October 2009

5

Abstraction/Refinement Software M.-C.

Software Model-Checking based on CEGAR:
Counterexample-Guided Abstraction/Refinement
● A successful framework for software model-

checking

Integrates three fundamental techniques:
● Predicate abstraction of programs
● Detection of spurious counterexamples
● Refinement by predicate discovery

6

The Big Picture

CouterExample Guided Abstraction Refinement

ABSTRACT PROGRAM

(increasing) abstraction

CONCRETE PROGRAM

CouterExample Guided Abstraction Refinement

ABSTRACT PROGRAM

(increasing) abstraction

CONCRETE PROGRAM

PROVE correct
execute

CouterExample Guided Abstraction Refinement

ABSTRACT PROGRAM

(increasing) abstraction

CONCRETE PROGRAM

PROVE correct

REFINE

execute

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

(increasing) abstraction

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE

(increasing) abstraction

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE
executable?

COUNTEREMPLE not
executable

(increasing) abstraction

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE
executable?

COUNTEREMPLE not
executable

REFINE by ruling out
concrete execution

(increasing) abstraction

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

REFINE

(increasing) abstraction

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

(increasing) abstraction

Outcome: Successful Verification

CONCRETE PROGRAMABSTRACT PROGRAM

proof SUCCEEDS: PROGRAM is VERIFIED

MODEL-CHECK

Outcome: Real Bug Found

MODEL-CHECK

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE
executable?

COUNTEREMPLE
executable: REAL BUG

MODEL-CHECK

Outcome: Loop Forever

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE
executable?

COUNTEREMPLE not
executable

REFINE by ruling out
concrete execution

(increasing) abstraction

CEGAR Software Model-Checking

Integrates three fundamental techniques:
● Predicate abstraction of programs
● Detection of spurious counterexamples
● Refinement by predicate discovery

Let us now present these techniques in some
detail.

Technical premises:
weakest preconditions of
assertion statements
and parallel conditional assignments

Assertions and assumptions

For a straightforward presentation of the techniques in
the following, we introduce two distinct forms of
annotations in the programming language.
● Assumptions describe information that every run reaching the

statement has.
 assume exp end

– A run reaching an assumption that evaluates to False is infeasible.
● Assertions describe information that every run continuing

after the statement must have.
 assert exp end

– A run reaching an assertion that evaluates to False terminates with
an error.

Assertions and assumptions

The weakest precondition of assertions and
assumptions is computed with the following rules.
● { exp ⇒ Q } assume exp end { Q }
● { exp ∧ Q } assert exp end { Q }

We will not use annotations directly in source
programs, but only to build transformations into
predicate abstractions and to describe program runs.

Sometimes, we will denote assertions or assumptions
with brackets:

 [exp]

Parallel assignments
For a straightforward presentation of the
techniques in the following, we also introduce
the parallel assignment:

v
1
, v

2
, ..., v

m
 := e

1
, e

2
, ..., e

m

● First, all the expressions e
1
, e

2
, ..., e

m
 are evaluated on

the pre state.
● Then, the computed values are orderly assigned to the

variables v
1
, v

2
, ..., v

m
.

Example:
{ x = 3, y = 1 } x := y ; y := x { x = , y = }
{ x = 3, y = 1 } x, y := y, x { x = , y = }

Parallel assignments
For a straightforward presentation of the
techniques in the following, we also introduce
the parallel assignment:

v
1
, v

2
, ..., v

m
 := e

1
, e

2
, ..., e

m

● First, all the expressions e
1
, e

2
, ..., e

m
 are evaluated on

the pre state.
● Then, the computed values are orderly assigned to the

variables v
1
, v

2
, ..., v

m
.

Example:
{ x = 3, y = 1 } x := y ; y := x { x = 1 , y = 1 }
{ x = 3, y = 1 } x, y := y, x { x = 1 , y = 3 }

Parallel conditional assignment
● The parallel assignment and the conditional can be

combined into a parallel conditional assignment:
if c1

+ then v1 := e1
+ elseif c1

- then v1 := e1
- else v1 := e1

? end

if c2
+ then v2 := e2

+ elseif c2
- then v2 := e2

- else v2 := e2
? end

...

if cm
+ then vm := em

+ elseif cm
- then vm := em

- else vm := em
? end

● First, evaluate all the conditions (well-formedness requires ck
+

and ck
- to be mutually exclusive, for all k).

● Then, evaluate the expressions.
● Finally, perform the assignments.

26

Predicate Abstraction

27

Abstraction

Abstraction is a pervasive idea in computer science. It has to
do with modeling some crucial (behavioral) aspects while
ignoring some other, less relevant, ones.

● Semantics of a program P: a set of runs ⟨P⟩

– set of all runs of P for any choice of input arguments
– a run is completely described by a list of program locations

that gets executed in order, together with the value that
each variables has at the location.

● Abstraction of a program P: another program A_P

– A_P's semantics is “similar” to P's
● define some mapping between the runs of A_P and P

– A_P is more amenable to analysis than P

28

Over- and Under-Approximation

Two main kinds of abstraction:
● over-approximation: program AO_P

– AO_P allows “more runs” than P
– for every r ∈ ⟨P⟩ there exists a r' ∈ ⟨AO_P⟩

– intuitively: ⟨P⟩ ⊆ ⟨AO_P⟩

– AO_P allows some runs that are “spurious”
(also “infeasible”) for P

● under-approximation: program AU_P

– AU_P allows “fewer runs” than P
– for every r ∈ ⟨AU_P⟩ there exists a r' ∈ ⟨P⟩

– intuitively: ⟨AU_P⟩ ⊆ ⟨P⟩

– AU_P disallows some runs that are “legal”
(also “feasible”) for P

29

Over- and Under-Approximation: Example

max (x, y: INTEGER): INTEGER
do

if x > y

then Result := x

else Result := y

end

end
AU_max (x, y: INTEGER): INTEGER
do

if x > y

then Result := x

else assume False end

end

end

AO_max (x, y: INTEGER): INTEGER
do

if x > y

then Result := x

else Result := y

end
if ? then Result := 3 end

end

30

Predicate Abstraction

In predicate abstraction, the abstraction A_P of a program P uses
only Boolean variables called “predicates”.
● Each predicate captures a significant fact about the state of P
● The abstraction A_P is constructed parametrically w.r.t. a set pred

of chosen predicates as an over-approximation of the program P
– the arguments of A_P are the predicates in pred

● assume arguments are both input and output parameters
(this deviates from Eiffel's semantics)

– each statement stmt in P is replaced by a (possibly compound)
statement stmt' in A_P such that:

● if executing stmt in P leads to a concrete state S, then
executing stmt' in A_P leads to a state which is the strongest
over-approximation of S in terms of pred

31

Predicate Abstraction: Informal Overview
1. Each predicate corresponds to a Boolean expression.

2. A set of Boolean program variables in A_P track the values of the
predicates in the abstraction.

3. Translate each statement in P into a (compound) statement which
updates the Boolean variables.

4. To have an over-approximation the statements in A_P will:

a) define whatever follows with certainty from the information given
by the predicates
● use under-approximations of arbitrary Boolean expressions

through the predicates
b) everything else is nondeterministically chosen

32

Boolean Predicates and Expressions
Consider a set of predicates
 pred = {p(1), ..., p(m)}

and a set of corresponding Boolean expressions over program
variables
 exp = {e(1), ..., e(m)}

For a generic Boolean expression f over program variables,
Pred(f) denotes the weakest Boolean expression over pred
that is at least as strong as f.
● Namely: substituting every atom p(i) in Pred(f) with the

corresponding expression e(i) gives an expression that
implies f.

● Hence, Pred(f) is an under-approximation of f, used to build
the strongest over-approximations of statements.

33

Boolean Under-Approximation: Example
● pred = { p, q, r }
● exp = { x = 1, x = 2, x ≤ 3 }

● Pred(x = 1) =
● Pred(x = 0) =
● Pred(x ≤ 2) =
● Pred(x ≠ 0) =

34

Boolean Under-Approximation: Example
● pred = { p, q, r }
● exp = { x = 1, x = 2, x ≤ 3 }

● Pred(x = 1) = p
● Pred(x = 0) = False
● Pred(x ≤ 2) = p v q
● Pred(x ≠ 0) = p v q v ¬r

● In general: Pred (¬f) ≠ ¬ Pred (f)

35

Abstraction of Assignments

An assignment: x := f
is over-approximated by a parallel conditional assignment
with m components. For 1 ≤ i ≤ m:

if Pred(+f(i)) then
 p(i) := True
elseif Pred(-f(i)) then
 p(i) := False
else p(i) := ? end

● +f(i) is the backward substitution of e(i) through x := f
● -f(i) is the backward substitution of ¬e(i) through x := f

36

Abstraction of Assignments: Example
● pred = { p, q, r }
● exp = { x > y, Result ≥ x, Result ≥ y }

● Result := x is over-approximated by:
● if p then p := True elseif not p then p := False else p := ? end

– which does nothing
● if True then q := True elseif False then q := False else q := ? end

– which is equivalent to: q := True
● if p then r := True elseif False then r := False else r := ? end

– which is equivalent to: if p then r := True else r := ? end

37

Abstraction of Assignments: Example
● pred = { p, q, r }
● exp = { x = 1, y = 1, x > y }

y := x
is over-approximated by

q := p ; r := False

{ x = y }
is over-approximated by

{ x ≤ y } ∩
({ x = y = 1 } ∪ { x, y ≠ 1 })

or, equivalently,
{ x ≤ y }

38

Parallel assignments are necessary

The conditional assignments must be executed in parallel to
guarantee that the abstraction is sound in general.

Example for:
● p representing x = True; q representing x = False

concrete (x: BOOLEAN)
do

x := not x
end

abstract_ok (p, q: BOOLEAN)
do

p, q := q, p
end

abstract_ko (p, q: BOOLEAN)
do

p := q
q := p

end

39

Abstraction of Assumptions

An assumption: assume ex end
is over-approximated by one assumption:

assume not Pred(not ex) end
and a parallel conditional assignment with m components.
For 1 ≤ i ≤ m:

if Pred(+ex(i)) then
 p(i) := True
elseif Pred(-ex(i)) then
 p(i) := False
else p(i) := ? end

● +ex(i) is the backward sub. of e(i) through assume ex end
● -ex(i) is the backward sub. of ¬e(i) through assume ex end

40

Abstraction of Assumptions: Example
The double negation is used
to get an over-approximation
from the under-
approximation given by Pred:
● the complement of an

under-approximation of x
is an over-approximation
of the complement of x.

● { p (x=1), q (x=2),
 r (x≤3) }

● Pred(x ≤ 2) = p v q
● Pred(x > 2) = ¬r
● assume x ≤ 2 end
● assume p v q end is

assume x=1 v x=2 end
● assume ¬(¬r) end is

assume x ≤ 3 end

41

Abstraction of Assertions

An assertion: assert ex end
is over-approximated with the same schema as
assumptions, namely by one assertion:

assert not Pred(not ex) end
and a parallel conditional assignment with m components.
For 1 ≤ i ≤ m:

if Pred(+ex(i)) then
 p(i) := True
elseif Pred(-ex(i)) then
 p(i) := False
else p(i) := ? end

● +ex(i) is the backward sub. of e(i) through assert ex end
● -ex(i) is the backward sub. of ¬e(i) through assert ex end

42

Abstraction of Conditionals
A conditional:

if cond then
-- then branch

else
-- else branch

end
is over-approximated by first transforming it into normal form:

if ? then
assume cond end
-- then branch

else
assume not cond end
-- else branch

end
and then applying the other transformations.

43

Abstraction of Loops
A loop:

from
-- initialization

until cond loop
-- loop body

end
is over-approximated by first transforming it into normal form:

from
-- initialization

until ? loop
assume not cond end
-- loop body

end
assume cond end

and then applying the other transformations.

44

Abstractions of pre and postconditions

Preconditions are treated as assume statements and
postconditions as assert statements.

(In abstracting the postcondition, the if statements can be
omitted).

In all our examples we will always choose predicates which
completely describe the pre and postcondition, hence no
real abstraction will be introduced.

45

Predicate Abstraction: Example
max (x, y: INTEGER): INTEGER do

if x > y

then Result := x

else Result := y

end

ensure Result ≥ x and Result ≥ y end

Predicates:
● p: x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume x > y end ; Result := x

else
assume x ≤ y end ; Result := y

end

ensure Result ≥ x and Result ≥ y end

46

Predicate Abstraction: Example
Predicates:
● p: x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
Result := x

else
assume not p end
Result := y

end

ensure q and r end

47

Predicate Abstraction: Example
Predicates:
● p: x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
q := True
if p then r := True else r := ? end

else
assume not p end
Result := y

end

ensure q and r end

48

Predicate Abstraction: Example
Predicates:
● p: x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
q := True
if p then r := True else r := ? end

else
assume not p end
r := True
if not p then q := True else q := ? end

end

ensure q and r end

49

Predicate Abstraction: Example
Predicates:
● p: x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
q := True
r := True

else
assume not p end
r := True
q := True

end

ensure q and r end

50

Predicate Abstraction: Example
max (x, y: INTEGER): INTEGER do

if x > y

then Result := x

else Result := y

end

ensure Result ≥ x and Result ≥ y end

Apqr_max (p, q, r: BOOLEAN) do

if p

then q := True ; r := True

else r := True ; q := True

end

ensure q and r end

Predicates:
● p: x > y
● q: Result ≥ x
● r: Result ≥ y

51

Predicate Abstraction and Verification
What does it mean to verify the predicate abstraction A_P of a
program P?
● A_P is finite state

– verification is decidable: we can verify A_P automatically
● A_P is an over-approximation of P

– if A_P is correct then so is P
● any run of P is abstracted by some run of A_P

– if A_P is not correct we can't conclude about the correctness
of P

● a counterexample run of A_P: the abstract counterexample r
– if r is also the abstraction of some run of P then P is also

not correct
– if r is a run which infeasible for P then r is a spurious

counterexample

52

Model-checking a Boolean Program
● For a Boolean program P over predicates pred = {p(1), ..., p(m)}

● P's body: a sequence loc = [L(1), ..., L(n)] of instructions or conditional jumps

● P's postcondition: post

● Build an FSA = [Σ, S, I, ρ, F] where:

● Σ = loc

● S = {True, False}m x (loc U {halt})

–
each state in S denotes a program state:

● a truth value for every Boolean variable in pred
● a program location which represents the next line to be executed,
or halt if the execution has terminated

● I = { [v(1), ..., v(m), L(1)] ∈ S }

–
the initial states are for any value of the input Boolean arguments

–
L(1) is the next instruction to be executed

● [v'(1), ..., v'(m), L'] ∈ ρ ([v(1), ..., v(m), L], L) iff

–
L is a conditional jump and:

● [v(1), ..., v(m)] satisfies the condition; and
● v'(i) = v(i) for all 1 ≤ i ≤ m; and
● L' is the target of the jump when successful.

–
L is a conditional jump and:

● [v(1), ..., v(m)] does not satisfy the condition; and
● v'(i) = v(i) for all 1 ≤ i ≤ m; and
● L' is the target of the jump when unsuccessful.

–
L is an instruction and:

● [v'(1), ..., v'(m)] is the state resulting from executing L on state [v(1), ..., v(m)]; and
● L' is the successor of L (or halt if the program halts after executing L)

● F = { [v(1), ..., v(m), halt] ∈ S | post does not hold for [v(1), ..., v(m)] }

–
error states: halting states where the postcondition doesn't hold

53

Predicate Abstraction: Example
Apqr_ max (p, q, r: BOOLEAN) do

1: if p

2: then q := True

3: r := True

4: else r := True

5: q := True

end

ensure q and r end

54

Predicate Abstraction: Example
Apqr_ max (p, q, r: BOOLEAN) do

1: if p

2: then q := True

3: r := True

4: else r := True

5: q := True

end

ensure q and r end

● Error states: including predicates ¬q
or ¬r without outgoing edges

● There are clearly no accepting
(error) runs because the error
states are not even connected

● Apqr_max is correct and so is max

55

Detection of Spurious Counterexamples

56

Predicate Abstraction and Verification
What does it mean to verify the predicate abstraction A_P of a
program P?

● A_P is an over-approximation of P
– if A_P is not correct we can't conclude about

the correctness of P
● a counterexample run of A_P: the

abstract counterexample r
1. if r is also the abstraction of some run of P

then P is also not correct
2. if r is a run which infeasible for P

then r is a spurious counterexample

Let us show an automated technique to detect spurious
counterexamples.

57

Abstract Counterexamples

Consider an abstract counterexample (c.e.), i.e. a run
of the finite-state predicate abstraction A_P

{ Pred(0) } { Abstract initial state }
Stmt(1) Instruction or test

{ Pred(1) } { Abstract state }
Stmt(2) Instruction or test

... ...
Stmt(N) Instruction or test

{ Pred(N) } { Abstract final state }

Goal: find whether there exists a concrete run of P
which is abstracted by this abstract counterexample

58

Abstract Counterexamples: Example
max (x, y: INTEGER): INTEGER do

if x > y

then Result := x

else Result := y

end

ensure Result ≥ x and Result ≥ y end

Aqr_max (q, r: BOOLEAN) do

if ?

then q := True ; r := ?

else r := True ; q := ?

end

ensure q and r end

Predicates:
● q: Result ≥ x
● r: Result ≥ y

59

Abstract Counterexamples: Example

● Error states:
including ¬q or ¬r
and without
outgoing edges

● An abstract
counterexample
trace in green

Aqr_max (q, r: BOOLEAN) do

if ?

then q := True ; r := ?

else r := True ; q := ?

end

ensure q and r end

60

Concrete Run of Abstract C.E.

Because of how A_P has been built, there exists a statement in
P for every (possibly compound) statement in A_P

Abstract run: Concrete run:

{ Pred(0) }
Stmt(1) Concrete-stmt(1)

{ Pred(1) }
Stmt(2) Concrete-stmt(2)
... ...
Stmt(N) Concrete-stmt(N)

{ Pred(N) }

Let us check whether the concrete run is infeasible, according
to the semantics of P.

61

Feasibility of a Concrete Run
Compute the weakest precondition of True over the concrete run with
conditions (assume, conditionals, or exit conditions) interpreted as assert
(this is doable automatically because there are no loops):

Abstract run: Concrete run:

{ Pred(0) } { WP(0) }
Stmt(1) Concrete-stmt(1)

{ Pred(1) } { WP(1) }
Stmt(2) Concrete-stmt(2)
... ...
Stmt(N) Concrete-stmt(N)

{ Pred(N) } { True }

Every formula WP(i) characterizes the states of P reaching a final state
where Pred(N) holds and hence where the postcondition fails.

62

Feasibility of a Concrete Run

The concrete run is infeasible if WP(i) and
Pred(i) is unsatisfiable for some 1 ≤ i ≤ N.

Concrete run:

{ Pred(0) and WP(0) }
Concrete-stmt(1)

{ Pred(1) and WP(1) }
Concrete-stmt(2)
...
Concrete-stmt(N)

{ Pred(N) and True }

63

Spurious Counterexamples: Example

Abstract c.e. trace:
{q, ¬r}

[?]
{q, ¬r}

q := True ; r := ?
{q, ¬r}

Concrete trace:
{x > y}

assert x > y end
{True}

Result := x
{True}

The counterexample is infeasible because:
{x > y and q and ¬r} is inconsistent
as {x > y and q} implies {r}

64

Sufficient condition for infeasibility

The condition for infeasibility is only sufficient:
● If WP(i) and Pred(i) is satisfiable for all 1 ≤ i ≤ N,

further analysis may be needed, in general, to
determine if the run is feasible.

● There are additional techniques to decide feasibility
automatically (assuming satisfiability is decidable for
the first-order fragment used in the annotations).

● In our examples, we will simply determine by manual
inspection if a run that passes the infeasibility test is
feasible or not.

65

Abstract Counterexamples: Example
neg_pow (x, y: INTEGER): INTEGER do
require x < 0 and y > 0

from Result := 1
until y ≤ 0
loop

Result := Result * x
y := y - 1

end

ensure Result > 0 end

Apqr_neg_pow (p, q, r: BOOLEAN) do

require p and q

from r := True
until ¬q
loop

if p and r then r := False else r := ? end
q := ?

end

ensure r end

Predicates:
● p: x < 0
● q: y > 0
● r: Result > 0

66

Abstract Counterexamples: Example

Predicates:
● p: x < 0
● q: y > 0
● r: Result > 0

Abstract c.e. trace:
{p, q, ¬r}

r := True
{p, q, r}

[q]
{p, q, r}

[p and r]
{p, q, r}

r := False
{p, q, ¬r}

q := ?
{p, ¬q, ¬r}

[¬q]
{p, ¬q, ¬r}

Apqr_neg_pow (p, q, r: BOOLEAN) do

require p and q

from r := True
until ¬q
loop

if p and r then r := False else r := ? end
q := ?

end

ensure r end

67

Abstract Counterexamples: Example
Abstract c.e. trace:
{p, q, ¬r}

r := True
{p, q, r}

[q]
{p, q, r}

[p and r]
{p, q, r}

r := False
{p, q, ¬r}

q := ?
{p, ¬q, ¬r}

[¬q]
{p, ¬q, ¬r}

Concrete trace:
{y = 1}

Result := 1
{y = 1}

assert y > 0 end
{y ≤ 1}

Result := Result * x
{y ≤ 1}

y := y - 1
{y ≤ 0}

assert y ≤ 0 end
{True}

68

Abstract Counterexamples: Example

Concrete trace:
{y = 1}

Result := 1
{y = 1}

assert y > 0 end
{y ≤ 1}

Result := Result * x
{y ≤ 1}

y := y - 1
{y ≤ 0}

assert y ≤ 0 end
{True}

Predicates:
● p: x < 0
● q: y > 0
● r: Result > 0

The counterexample is feasible.
We have found a real bug in the
concrete program occurring for
input y = 1 (and any x < 0).

69

Predicate Discovery and Refinement

70

Predicate Discovery

A spurious counterexample shows that the used
abstraction is too coarse.

We build a finer abstraction by adding new
predicates to the set pred.

These new predicates must be chosen so that the
spurious counterexample is not allowed in the new
abstraction.

71

Syntax-based Predicate Discovery

The simplest way to find new predicates is syntactic:

Concrete run:

{ Pred(0) and WP(0) } { WP(0) } \ { Pred(0) }
Concrete-stmt(1)

{ Pred(1) and WP(1) } { WP(1) } \ { Pred(1) }
Concrete-stmt(2)

...
Concrete-stmt(N)

{ Pred(N) and True } { True } \ { Pred(N) }

Look for predicates that:
● hold in the concrete run
● are not traced by any predicate in the abstract run
● contradict the predicates in the abstract run

72

Syntax-based Predicate Discovery: Example
Concrete trace:
{x > y} \ {q, ¬r}

assert x > y end
{True} \ {q, ¬r}

Result := x
{True} \ {q, ¬r}

The predicate from the concrete run that is not
traced in the abstract run is:
● p = x > y
Predicate p contradicts {q, ¬r}. It is enough to
verify the program with the new abstraction.

Predicates:
● q: Result >= x
● ¬r: Result < y

73

Summary, Tools, and Extensions

74

CEGAR: Summary

● Finite-state predicate abstraction of real programs
– Static analysis & abstract interpretation

● Automated verification of finite-state programs
– Model checking of reachability properties

● Detection of spurious counterexamples
– Axiomatic semantics & automated theorem proving

● Automated counterexample-based refinement
– Symbolic model-checking techniques

75

Software Model-Checking Tools
CEGAR software model-checkers
● SLAM -- Ball and Rajamani, ~2001

– first full implementation of CEGAR software m-c
– used at Microsoft for device driver verification

● BLAST -- Henzinger et al., ~2002
– does lazy abstraction: partial refinement of abstract program
– several extensions for arrays, recursive routines, etc.

● Magic -- Clarke et al., ~2003
– modular verification of concurrent programs

● F-Soft -- Gupta et al., ~2005
– Combines software model-checking with abstract interpretation

techniques
● CBMC & SATABS -- Kroening et al., ~2005

– Use bounded model-checking techniques

76

Software Model-Checking Tools
Other (non CEGAR) software model-checking tools
● Verisoft -- Godefroid et al. ~2001
● Java PathFinder -- Visser et al., ~2000
● Bandera -- Hatcliff, Dwyers, et al., ~2000

77

Software Model-Checking: Extensions
● Inter-procedural analysis
● Complex data structures
● Concurrent programs
● Recursive routines
● Heap-based languages
● Termination analysis
● Integration with other verification techniques

– Static analysis
– Testing

● ...

None of these directions is exclusive domain of software
model-checking, of course...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

