

Chair of Software Engineering

Software Verification

Lecture 10: Software Model Checking

Carlo A. Furia

Program Verification: the very idea

P: a program	S: a specification	
max (a, b: INTEGER): INTEGER is	S	
do	re	quire
if a > b then	True	
Result := a		
else	en	sure
Result := b		Result ≻= a
end		<mark>Result</mark> ≻= b
end		
Does	P⊧S	hold?

The Program Verification problem:

- Given: a program P and a specification S
- Determine: if every execution of P, for any value of input parameters, satisfies S

Verification of Finite-State Program

P: a program	S: a specification	
Does	P⊧S	hold?

The Program Verification problem is decidable if P is finite-state

- Model-checking techniques

But real programs are not finite-state.

(。)

Software Model-Checking: the Very Idea

The term Software Model-Checking denotes an array of techniques to automatically verify real programs based on finite-state models of them.

It is a convergence of verification techniques which started happening during the late 1990's.

The term "software model checker" is probably a misnomer [...] We retain the term solely to reflect historical development.

-- R. Jhala & R. Majumdar: "Software Model Checking" ACM CSUR, October 2009 (•)

Abstraction/Refinement Software M.-C.

Software Model-Checking based on CEGAR: Counterexample-Guided Abstraction/Refinement

• A successful framework for software modelchecking

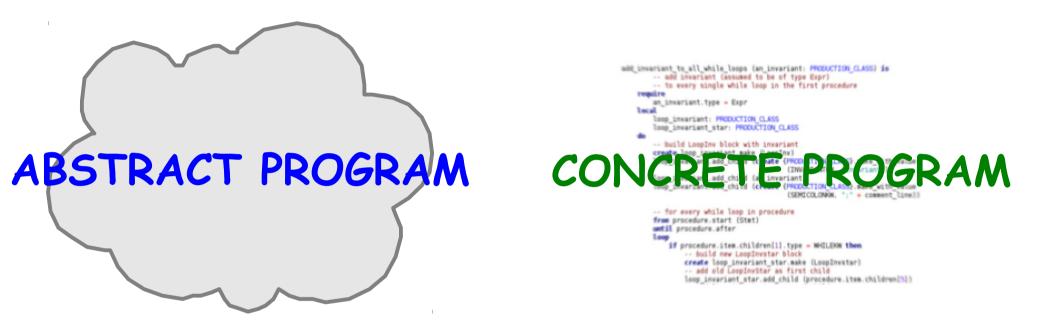
Integrates three fundamental techniques:

- Predicate abstraction of programs
- Detection of spurious counterexamples
- Refinement by predicate discovery

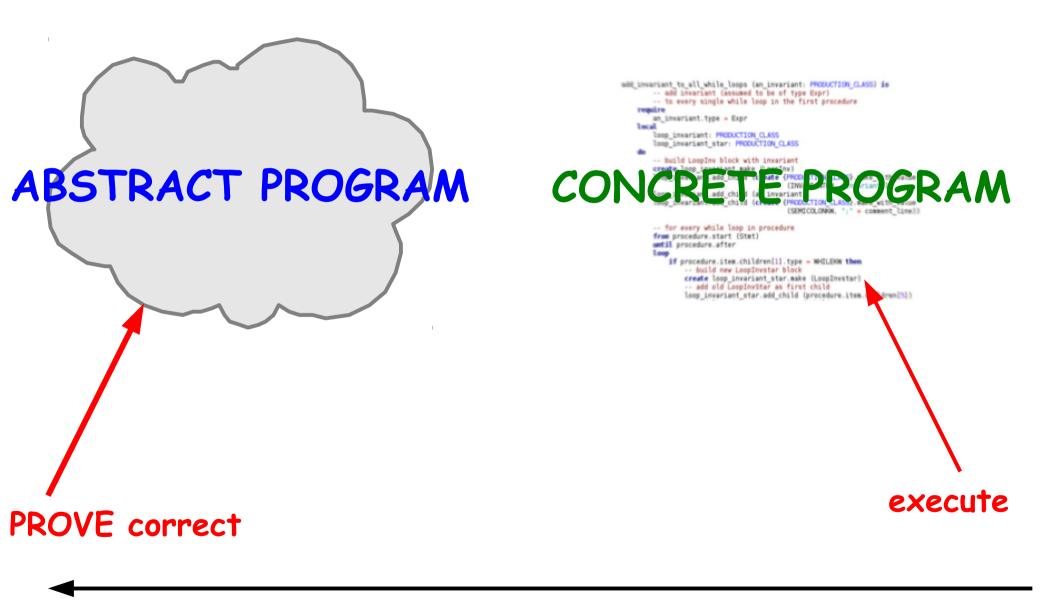
(•)

The Big Picture

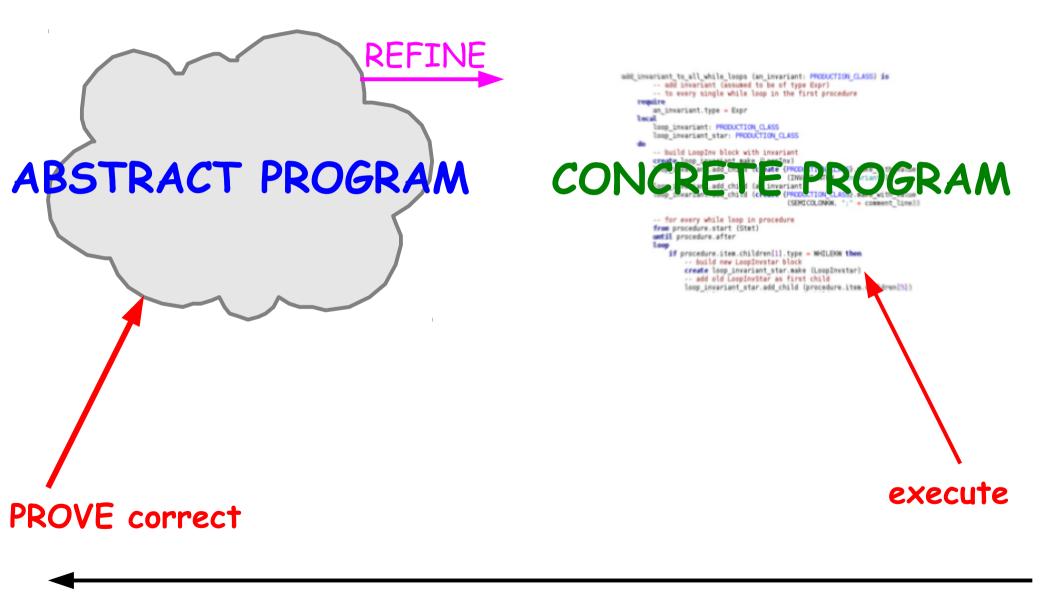
 \bigcirc



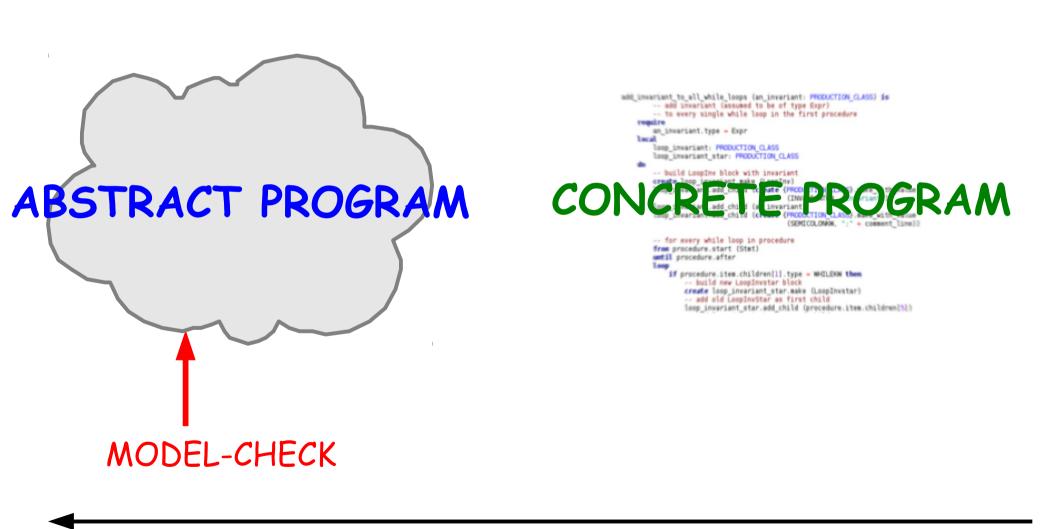
 \bigcirc



 \bigcirc

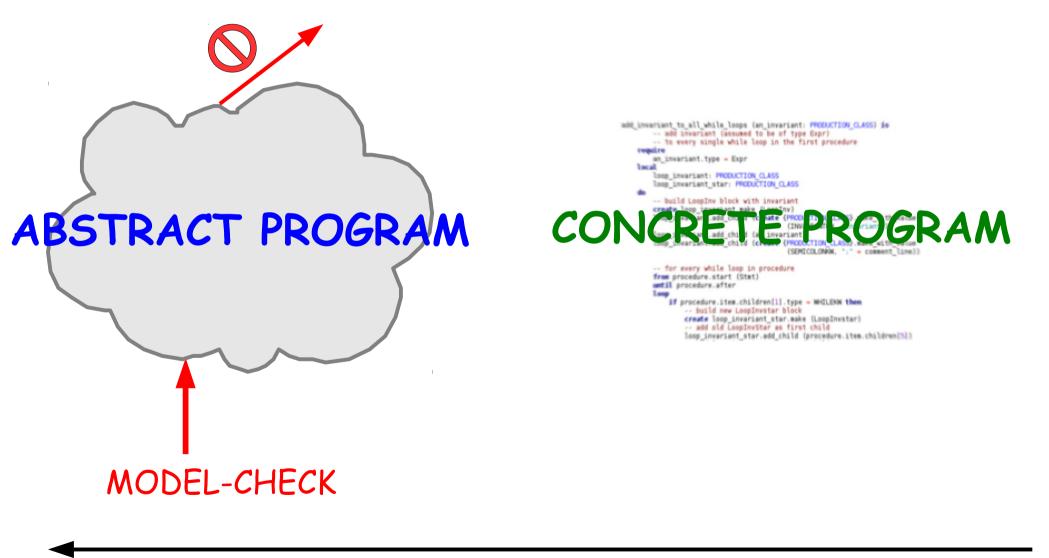


 \bigcirc

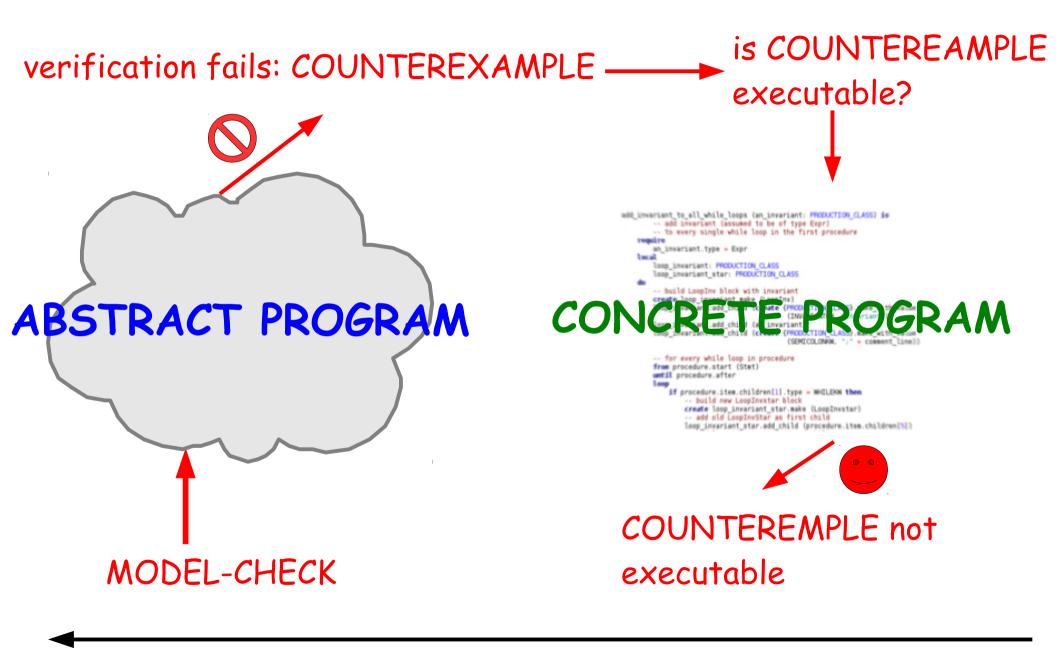


 \bigcirc

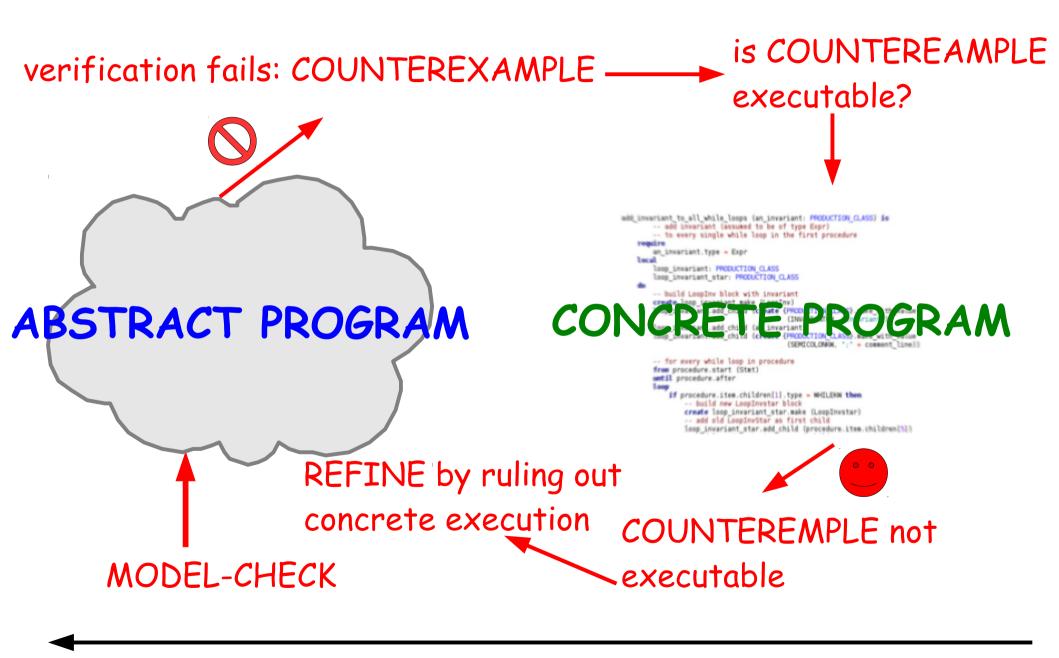
verification fails: COUNTEREXAMPLE



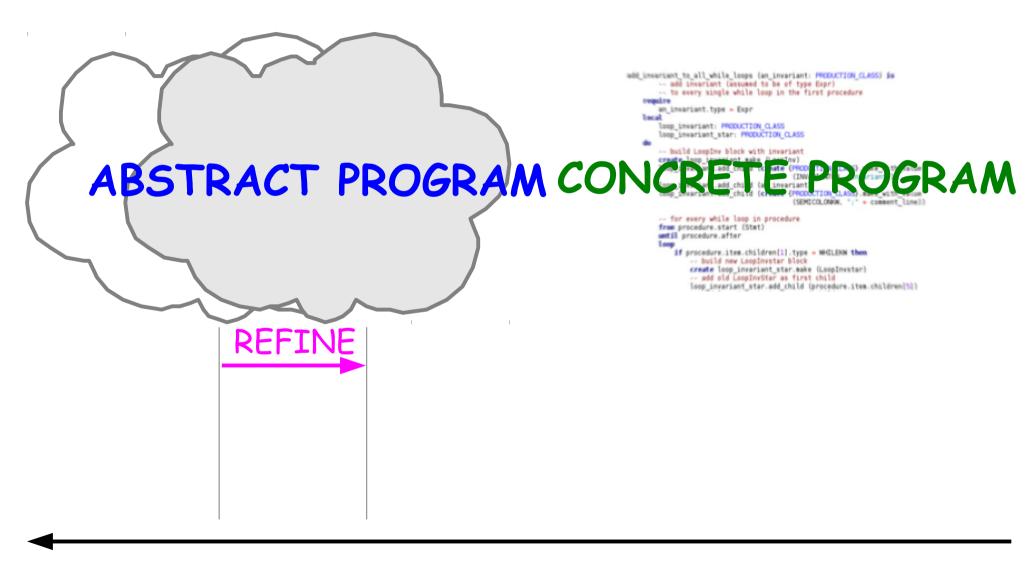
(•)



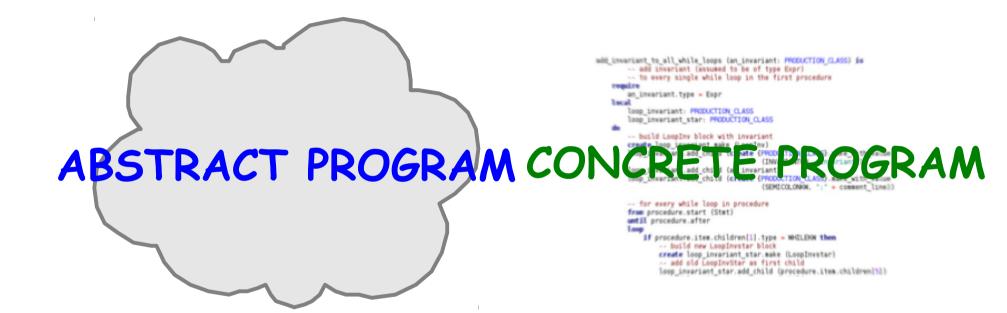
(•)

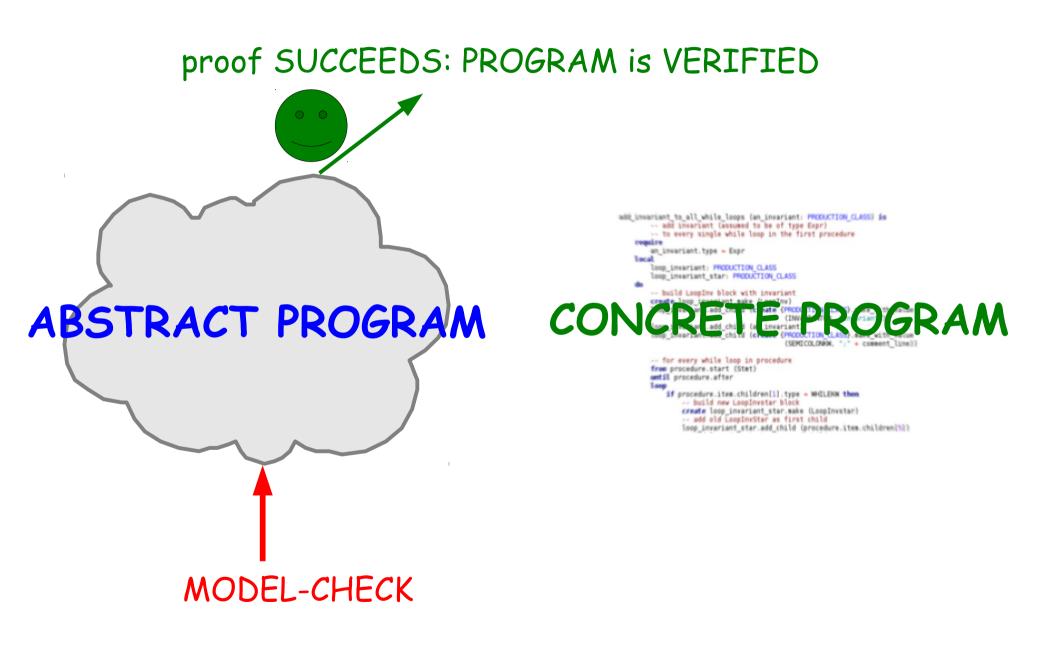


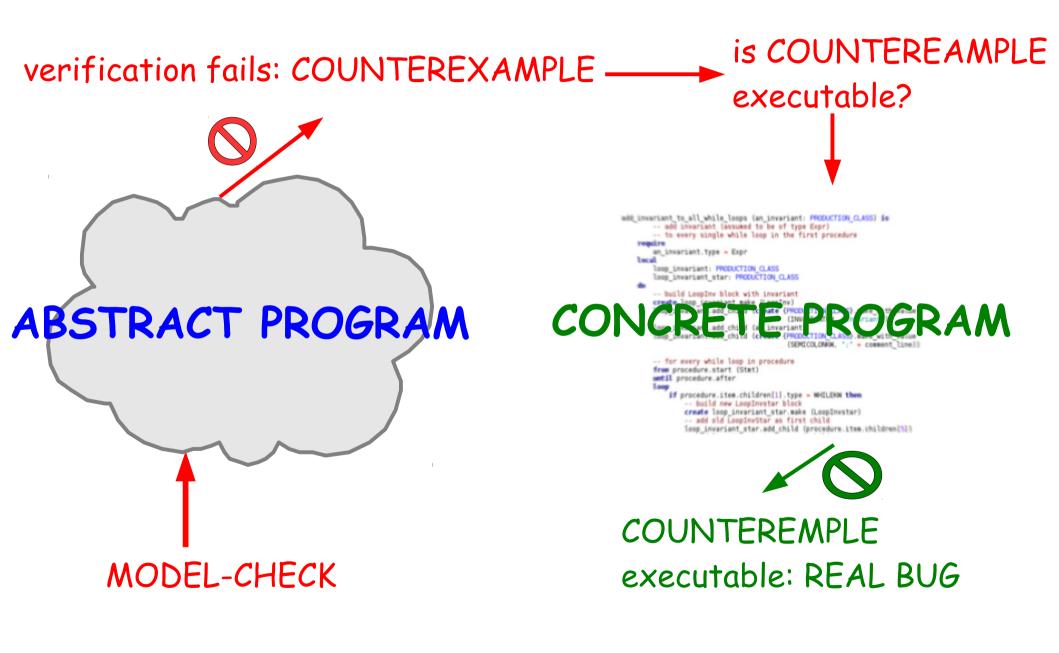
 \bigcirc

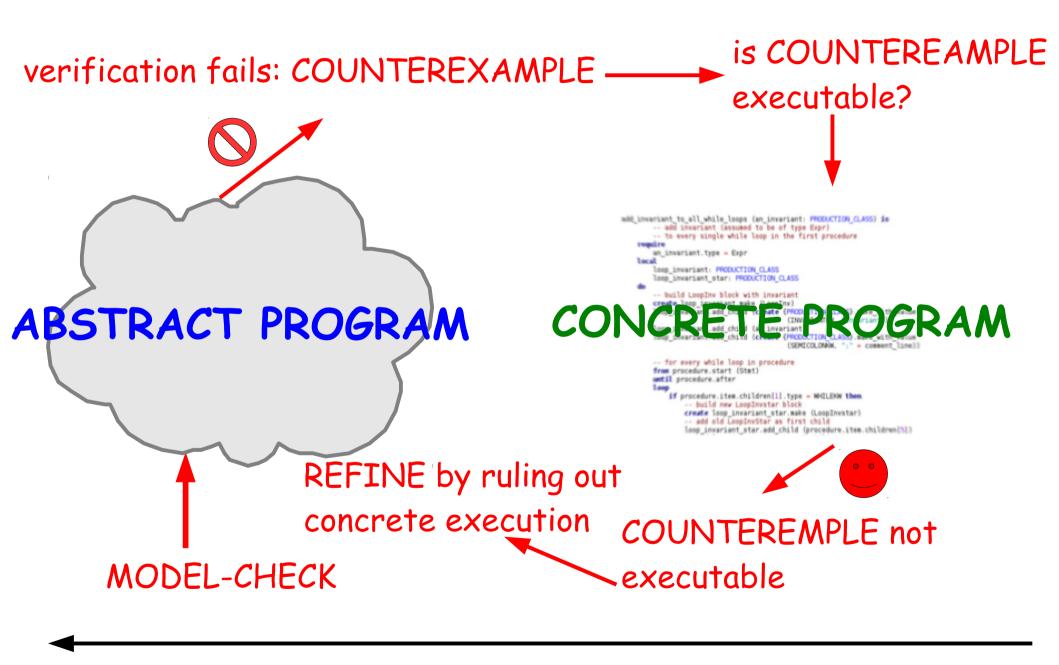


 \bigcirc









(increasing) abstraction

Integrates three fundamental techniques:

- Predicate abstraction of programs
- Detection of spurious counterexamples
- Refinement by predicate discovery

Let us now present these techniques in some detail.

Technical premises: weakest preconditions of assertion statements and parallel conditional assignments

Assertions and assumptions

For a straightforward presentation of the techniques in the following, we introduce two distinct forms of annotations in the programming language.

• Assumptions describe information that every run reaching the statement has.

assume exp end

- A run reaching an assumption that evaluates to False is infeasible.
- Assertions describe information that every run continuing after the statement must have.
 assert exp end
 - A run reaching an assertion that evaluates to False terminates with an error.

Assertions and assumptions

The weakest precondition of assertions and assumptions is computed with the following rules.

- { $exp \Rightarrow Q$ } assume $exp end \{ Q \}$
- { exp $\land Q$ } assert exp end { Q }

We will not use annotations directly in source programs, but only to build transformations into predicate abstractions and to describe program runs.

Sometimes, we will denote assertions or assumptions with brackets:

[exp]

Parallel assignments

For a straightforward presentation of the techniques in the following, we also introduce the parallel assignment:

$$v_1, v_2, ..., v_m := e_1, e_2, ..., e_m$$

- First, all the expressions $e_1, e_2, ..., e_m$ are evaluated on the pre state.
- Then, the computed values are orderly assigned to the variables $v_1, v_2, ..., v_m$.

Example:

$${x = 3, y = 1} x := y; y := x {x = , y = }$$

 ${x = 3, y = 1} x, y := y, x {x = , y = }$

Parallel assignments

For a straightforward presentation of the techniques in the following, we also introduce the parallel assignment:

$$v_1, v_2, ..., v_m := e_1, e_2, ..., e_m$$

- First, all the expressions $e_1, e_2, ..., e_m$ are evaluated on the pre state.
- Then, the computed values are orderly assigned to the variables v₁, v₂, ..., v_m.

Example:

$$\{ x = 3, y = 1 \} x := y ; y := x \{ x = 1, y = 1 \} \\ \{ x = 3, y = 1 \} x, y := y, x \{ x = 1, y = 3 \}$$

Parallel conditional assignment

• The parallel assignment and the conditional can be combined into a parallel conditional assignment:

if c_1^+ then $v_1 := e_1^+$ else if c_1^- then $v_1 := e_1^-$ else $v_1 := e_1^?$ end

if c_2^+ then $v_2 := e_2^+$ else if c_2^- then $v_2 := e_2^-$ else $v_2 := e_2^?$ end

if c_m^+ then $v_m := e_m^+$ else if c_m^- then $v_m := e_m^-$ else $v_m := e_m^2$ end

- First, evaluate all the conditions (well-formedness requires c_k^+ and c_k^- to be mutually exclusive, for all k).
- Then, evaluate the expressions.

. . .

• Finally, perform the assignments.

Predicate Abstraction

Abstraction

Abstraction is a pervasive idea in computer science. It has to do with modeling some crucial (behavioral) aspects while ignoring some other, less relevant, ones.

- Semantics of a program P: a set of runs (P)
 - set of all runs of P for any choice of input arguments
 - a run is completely described by a list of program locations that gets executed in order, together with the value that each variables has at the location.
- Abstraction of a program P: another program A_P
 - A_P's semantics is "similar" to P's
 - define some mapping between the runs of A_P and P
 - A_P is more amenable to analysis than P

Over- and Under-Approximation

Two main kinds of abstraction:

- over-approximation: program AO_P
 - _ AO_P allows "more runs" than P
 - _ for every $r \in \langle P \rangle$ there exists a $r' \in \langle AO_P \rangle$
 - _ intuitively: $\langle P \rangle \subseteq \langle AO_P \rangle$
 - AO_P allows some runs that are "spurious" (also "infeasible") for P
- under-approximation: program AU_P
 - _ AU_P allows "fewer runs" than P
 - for every $r \in \langle AU_P \rangle$ there exists a $r' \in \langle P \rangle$
 - _ intuitively: $\langle AU_P \rangle \subseteq \langle P \rangle$
 - AU_P disallows some runs that are "legal" (also "feasible") for P

\bigcap		
$\left \right.$	(AU_P)	$\langle \mathcal{P} \rangle$
	$\langle \mathcal{AO}_{-}\mathcal{P} \rangle$	

Over- and Under-Approximation: Example

```
max (x, y: INTEGER): INTEGER
do
```

```
if x > y
then Result := x
```

```
else Result := y
```

end

end

```
AO_max (x, y: INTEGER): INTEGER
do
if x > y
then Result := x
else Result := y
end
if ? then Result := 3 end
end
```

```
AU_max (x, y: INTEGER): INTEGER
do
if x > y
then Result := x
else assume False end
end
end
```

In predicate abstraction, the abstraction A_P of a program P uses only Boolean variables called "predicates".

- Each predicate captures a significant fact about the state of P
- The abstraction A_P is constructed parametrically w.r.t. a set pred of chosen predicates as an over-approximation of the program P
 - the arguments of A_P are the predicates in pred
 - assume arguments are both input and output parameters (this deviates from Eiffel's semantics)
 - each statement stmt in P is replaced by a (possibly compound) statement stmt' in A_P such that:
 - if executing stmt in P leads to a concrete state S, then
 executing stmt' in A_P leads to a state which is the strongest
 over-approximation of S in terms of pred

Predicate Abstraction: Informal Overview

- 1. Each predicate corresponds to a Boolean expression.
- 2. A set of Boolean program variables in A_P track the values of the predicates in the abstraction.
- 3. Translate each statement in P into a (compound) statement which updates the Boolean variables.
- 4. To have an over-approximation the statements in A_P will:
 - a) define whatever follows with certainty from the information given by the predicates
 - use under-approximations of arbitrary Boolean expressions through the predicates
 - b) everything else is nondeterministically chosen

Boolean Predicates and Expressions

Consider a set of predicates pred = {p(1), ..., p(m)}

and a set of corresponding Boolean expressions over program variables

For a generic Boolean expression f over program variables, Pred(f) denotes the weakest Boolean expression over pred that is at least as strong as f.

- Namely: substituting every atom p(i) in Pred(f) with the corresponding expression e(i) gives an expression that implies f.
- Hence, Pred(f) is an under-approximation of f, used to build the strongest over-approximations of statements.

Boolean Under-Approximation: Example

- pred = { p, q, r }
- $exp = \{x = 1, x = 2, x \le 3\}$

- Pred(x = 1) =
- Pred(x = 0) =
- $Pred(x \le 2) =$
- Pred(x ≠ 0) =

Boolean Under-Approximation: Example

- pred = { p, q, r }
- $exp = \{x = 1, x = 2, x \le 3\}$

- Pred(x = 1) = p
- Pred(x = 0) = False
- $Pred(x \le 2) = p v q$
- $Pred(x \neq 0) = p \vee q \vee \neg r$

• In general: Pred $(-f) \neq -$ Pred (f)

Abstraction of Assignments

An assignment: x := f

is over-approximated by a parallel conditional assignment with m components. For $1 \le i \le m$:

if Pred(+f(i)) then
 p(i) := True
elseif Pred(-f(i)) then
 p(i) := False
else p(i) := ? end

- +f(i) is the backward substitution of e(i) through x := f
- -f(i) is the backward substitution of ¬e(i) through x := f

(。)

Abstraction of Assignments: Example

- pred = { p, q, r }
- exp = $\{x > y, \text{Result} \ge x, \text{Result} \ge y\}$
- Result := x is over-approximated by:
 - if p then p := True elseif not p then p := False else p := ? end
 which does nothing
 - if True then q := True elseif False then q := False else q := ? end
 - which is equivalent to: q := True
 - if p then r := True elseif False then r := False else r := ? end
 - which is equivalent to: if p then r := True else r := ? end

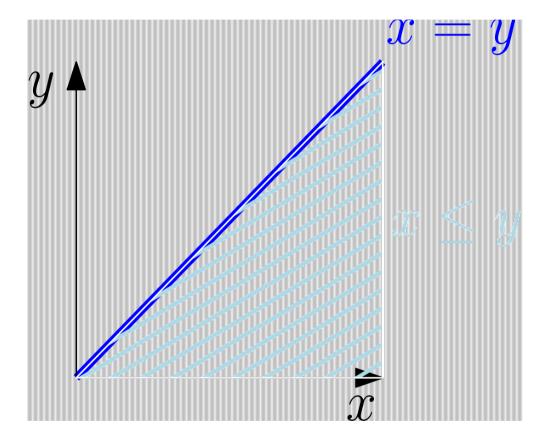
(。)

Abstraction of Assignments: Example

- pred = { p, q, r }
- $exp = \{x = 1, y = 1, x > y\}$

y := x is over-approximated by q := p ; r := False

 $\{ x = y \}$ is over-approximated by $\{ x \le y \} \cap$ $(\{ x = y = 1 \} \cup \{ x, y \ne 1 \})$ or, equivalently, $\{ x \le y \}$



Parallel assignments are necessary

The conditional assignments must be executed in parallel to guarantee that the abstraction is sound in general. Example for:

• p representing x = True; q representing x = False

```
concrete (x: BOOLEAN)
do
     x := not x
end
```

```
abstract_ok (p, q: BOOLEAN)
do
    p, q := q, p
end
abstract_ko (p, q: BOOLEAN)
do
    p := q
```

q := p

end

(。)

Abstraction of Assumptions

```
An assumption: assume ex end
is over-approximated by one assumption:
assume not Pred(not ex) end
and a parallel conditional assignment with m components.
For 1 ≤ i ≤ m:
```

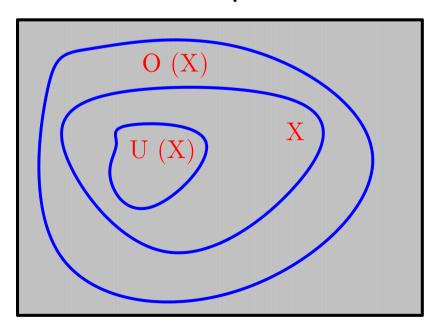
if Pred(+ex(i)) then
 p(i) := True
elseif Pred(-ex(i)) then
 p(i) := False
else p(i) := ? end

- +ex(i) is the backward sub. of e(i) through assume ex end
- -ex(i) is the backward sub. of ¬e(i) through assume ex end

Abstraction of Assumptions: Example

The double negation is used to get an over-approximation from the underapproximation given by Pred:

 the complement of an under-approximation of x is an over-approximation of the complement of x.



- { p (x=1), q (x=2), r (x≤3) }
- $Pred(x \le 2) = p \lor q$
- Pred(x > 2) = ¬r
- assume x ≤ 2 end
- assume p v q end is
 assume x=1 v x=2 end
- assume ¬(¬r) end is
 assume x ≤ 3 end

(•)

Abstraction of Assertions

An assertion: assert ex end is over-approximated with the same schema as assumptions, namely by one assertion: assert not Pred(not ex) end and a parallel conditional assignment with m components. For 1 ≤ i ≤ m:

if Pred(+ex(i)) then
 p(i) := True
elseif Pred(-ex(i)) then
 p(i) := False
else p(i) := ? end

- +ex(i) is the backward sub. of e(i) through assert ex end
- -ex(i) is the backward sub. of ¬e(i) through assert ex end

A conditional: if cond then -- then branch else -- else branch end is over-approximated by first transforming it into normal form: if? then assume cond end -- then branch else assume not cond end -- else branch end and then applying the other transformations.

•

Abstraction of Loops

A loop:

from -- initialization until cond loop -- loop body end is over-approximated by first transforming it into normal form: from -- initialization until? loop assume not cond end -- loop body end assume cond end and then applying the other transformations.

Abstractions of pre and postconditions

Preconditions are treated as assume statements and postconditions as assert statements.

(In abstracting the postcondition, the **if** statements can be omitted).

In all our examples we will always choose predicates which completely describe the pre and postcondition, hence no real abstraction will be introduced.

(•)

```
max (x, y: INTEGER): INTEGER do
if x > y
    then Result := x
    else Result := y
end
```

ensure Result \geq x and Result \geq y end

```
Apqr_max (p, q, r: BOOLEAN) do
    if ? then
        assume x > y end ; Result := x
    else
        assume x ≤ y end ; Result := y
    end
    ensure Result ≥ x and Result ≥ y end
```

Predicates:

- p: x > y
- q: Result $\ge x$
- r: Result \ge y

Predicates:

- p: x > y
- q: Result $\ge x$
- r: Result \ge y

```
Apqr_max (p, q, r: BOOLEAN) do
   if?then
      assume p end
      Result := x
   else
      assume not p end
      Result := y
   end
ensure q and r end
```

(。)

Predicates:

- p: x > y
- q: Result $\ge x$
- r: Result \ge y

```
Apqr_max (p, q, r: BOOLEAN) do
   if?then
      assume p end
      q := True
      if p then r := True else r := ? end
   else
      assume not p end
      Result := y
   end
ensure q and r end
```

Predicates:

- p: x > y
- q: Result ≥ x
 - r: Result \ge y

```
Apqr_max (p, q, r: BOOLEAN) do
   if?then
      assume p end
       q := True
       if p then r := True else r := ? end
   else
      assume not p end
       r := True
       if not p then q := True else q := ? end
   end
ensure q and r end
```

Predicates:

- p: x > y
- q: Result $\ge x$
- r: Result \ge y

```
Apgr_max (p, q, r: BOOLEAN) do
   if?then
      assume p end
      q := True
      r := True
   else
      assume not p end
      r := True
      q := True
   end
ensure q and r end
```

```
max (x, y: INTEGER): INTEGER do
if x > y
    then Result := x
    else Result := y
end
```

```
ensure Result \geq x and Result \geq y end
```

```
Apqr_max (p, q, r: BOOLEAN) do

if p

then q := True ; r := True

else r := True ; q := True

end

ensure q and r end
```

Predicates:

- p: x > y
- q: Result $\ge x$
- r: Result \ge y

Predicate Abstraction and Verification

What does it mean to verify the predicate abstraction A_P of a program P?

- A_P is finite state
 - verification is decidable: we can verify A_P automatically
- A_P is an over-approximation of P
 - if A_P is correct then so is P
 - any run of P is abstracted by some run of A_P
 - if A_P is not correct we can't conclude about the correctness of P
 - a counterexample run of A_P: the abstract counterexample r
 - if r is also the abstraction of some run of P then P is also not correct
 - if r is a run which infeasible for P then r is a spurious counterexample

Model-checking a Boolean Program

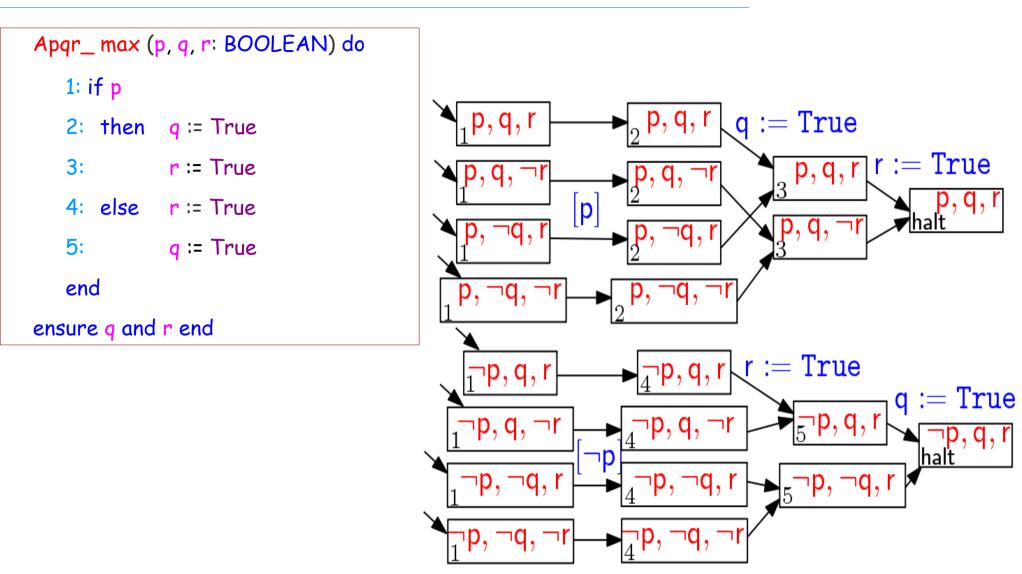
• For a Boolean program P over predicates pred = {p(1), ..., p(m)}

• P's body: a sequence loc = [L(1), ..., L(n)] of instructions or conditional jumps

- $\hfill \mathsf{P}$'s postcondition: post
- Build an $FSA = [\Sigma, S, I, \rho, F]$ where:
 - <mark>Σ</mark> = loc
 - S = {True, False}^m x (loc U {halt})
 - _each state in S denotes a program state:
 - . a truth value for every Boolean variable in pred
 - . a program location which represents the next line to be executed,
 - or halt if the execution has terminated
 - $I = \{ [v(1), ..., v(m), L(1)] \in S \}$
 - _the initial states are for any value of the input Boolean arguments
 - _L(1) is the next instruction to be executed
 - - _L is a conditional jump and:
 - $\ensuremath{\cdot}$ [v(1), ..., v(m)] satisfies the condition; and
 - . v'(i) = v(i) for all $1 \le i \le m$; and
 - .L' is the target of the jump when successful.
 - _L is a conditional jump and:
 - $\ _{\bullet} \left[v(1), \, ..., \, v(m) \right]$ does not satisfy the condition; and
 - . v'(i) = v(i) for all $1 \le i \le m$; and
 - .L' is the target of the jump when unsuccessful.
 - _L is an instruction and:

```
\cdot [v'(1), ..., v'(m)] is the state resulting from executing L on state [v(1), ..., v(m)]; and
```

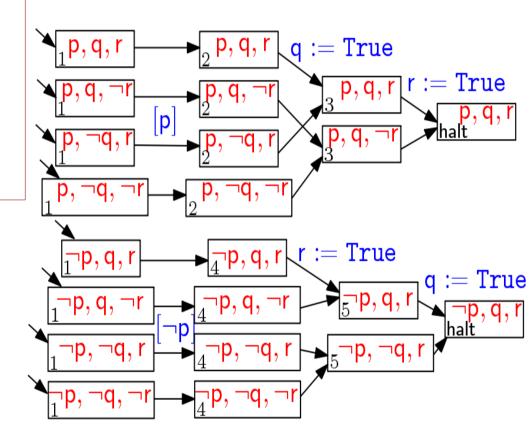
- .L' is the successor of L (or halt if the program halts after executing L)
- $\label{eq:F} \textbf{F} = \{ [v(1), ..., v(m), halt] \in S \ | \ post \ does \ not \ hold \ for \ [v(1), ..., v(m)] \}$
 - _error states: halting states where the postcondition doesn't hold



 \bigcirc

Apqr_ max (p, q, r: BOOLEAN) do	
1: if p	
2: then	q := True
3:	r := True
4: else	r := True
5:	q := True
end	
ensure q and r end	

- Error states: including predicates ¬q or ¬r without outgoing edges
- There are clearly no accepting (error) runs because the error states are not even connected
- Appr_max is correct and so is max



Detection of Spurious Counterexamples

 \bigcirc

Predicate Abstraction and Verification

What does it mean to verify the predicate abstraction A_P of a program P?

- A_P is an over-approximation of P
 - if A_P is not correct we can't conclude about the correctness of P
 - a counterexample run of A_P: the abstract counterexample r

 if r is also the abstraction of some run of P then P is also not correct
 if r is a run which infeasible for P

then r is a spurious counterexample

Let us show an automated technique to detect spurious counterexamples.

Abstract Counterexamples

Consider an abstract counterexample (c.e.), i.e. a run of the finite-state predicate abstraction A_P

{ Pred(0) }
 Stmt(1)
{ Pred(1) }
 Stmt(2)

Stmt(N) { Pred(N) }

. . .

{ Abstract initial state }
 Instruction or test
{ Abstract state }
 Instruction or test

Instruction or test
{ Abstract final state }

Goal: find whether there exists a concrete run of P which is abstracted by this abstract counterexample

. . .

```
max (x, y: INTEGER): INTEGER do
if x > y
    then Result := x
    else Result := y
end
```

Predicates:

- q: Result $\geq x$
- r: Result \ge y

```
ensure Result \geq x and Result \geq y end
```

```
Aqr_max (q, r: BOOLEAN) do

if ?

then q := True ; r := ?

else r := True ; q := ?

end

ensure q and r end
```

(。)

```
Aqr_max (q, r: BOOLEAN) do
      if ?
                                             r :=
          then q := True ; r := ?
         else r := True ; q := ?
                                                             rue
      end
  ensure q and r end
                                                \mathsf{q}, \neg \mathsf{r}
                                                           \neg q, r
• Error states:
                                                                    \neg q,
                                        q,
  including ¬q or ¬r
  and without
  outgoing edges
                                                         :=True
  An abstract
counterexample
                                           q :=
  trace in green
```

(。)

Concrete Run of Abstract C.E.

Because of how A_P has been built, there exists a statement in P for every (possibly compound) statement in A_P

Concrete run:

Concrete-stmt(1)

Concrete-stmt(2)

Concrete-stmt(N)

...

Let us check whether the concrete run is infeasible, according to the semantics of P.

•

Feasibility of a Concrete Run

Compute the weakest precondition of True over the concrete run with conditions (assume, conditionals, or exit conditions) interpreted as assert (this is doable automatically because there are no loops):

Abstract run:	Concrete run:
{ Pred(0) }	{ WP(0) }
Stmt(1)	Concrete-stmt(1)
{ Pred(1) }	{ WP(1) }
Stmt(2)	Concrete-stmt(2)
 Stmt(N)	 Concrete-stmt(N)
{ Pred(N) }	{ True }

Every formula WP(i) characterizes the states of P reaching a final state where Pred(N) holds and hence where the postcondition fails.

Feasibility of a Concrete Run

The concrete run is infeasible if WP(i) and Pred(i) is unsatisfiable for some $1 \le i \le N$.

Concrete run:

{ Pred(0) and WP(0) }
 Concrete-stmt(1)
{ Pred(1) and WP(1) }
 Concrete-stmt(2)

Concrete-stmt(N)
{ Pred(N) and True }

(。)

Spurious Counterexamples: Example

Abstract c.e. trace: {q, ¬r} [?] {q, ¬r} q := True ; r := ? {q, ¬r} Concrete trace: {x > y} assert x > y end {True} Result := x {True}

The counterexample is infeasible because: $\{x > y \text{ and } q \text{ and } \neg r\}$ is inconsistent as $\{x > y \text{ and } q\}$ implies $\{r\}$ (•)

Sufficient condition for infeasibility

The condition for infeasibility is only sufficient:

 If WP(i) and Pred(i) is satisfiable for all 1 ≤ i ≤ N, further analysis may be needed, in general, to determine if the run is feasible.

- There are additional techniques to decide feasibility automatically (assuming satisfiability is decidable for the first-order fragment used in the annotations).
- In our examples, we will simply determine by manual inspection if a run that passes the infeasibility test is feasible or not.

```
neg_pow (x, y: INTEGER): INTEGER do
require x < 0 and y > 0
```

```
from Result := 1
until y \le 0
loop
Result := Result * x
y := y - 1
end
```

```
ensure Result > 0 end
```

```
Predicates:
```

- p: x < 0
- **q**: y > 0
- r: Result > 0

```
Apqr_neg_pow (p, q, r: BOOLEAN) do

require p and q

from r := True

until -q

loop

if p and r then r := False else r := ? end

q := ?

end

ensure r end
```

(。)

Apqr_neg_pow (p, q, r: BOOLEAN) do

```
require p and q
from r := True
until ¬q
loop
if p and r then r := False else r := ? end
q := ?
end
ensure r end
```

Predicates:

- p: x < 0
- <mark>q</mark>: y > 0
- r: Result > 0

Abstract c.e. trace: {**p**, **q**, ¬**r**} r := True{**p**, **q**, **r**} **[q]** {**p**, **q**, **r**} [p and r] {**p**, **q**, **r**} r := False {**p**, **q**, ¬**r**} **q** := ? {p, ¬q, ¬r} [**¬q**] {p, ¬q, ¬r}

Abstract c.e. trace: {**p**, **q**, ¬**r**} r := True{**p**, **q**, **r**} **[q]** {**p**, **q**, **r**} [p and r] {**p**, **q**, **r**} r := False {p, q, ¬r} q := ? {p, ¬q, ¬r} [**¬q**] {p, ¬q, ¬r}

Concrete trace: $\{y = 1\}$ Result := 1 $\{y = 1\}$ assert y > 0 end $\{y \le 1\}$

Result := Result * × {y ≤ 1} y := y - 1 {y ≤ 0} assert y ≤ 0 end {True} (•)

Concrete trace: $\{y = 1\}$ Result := 1 $\{y = 1\}$ assert y > 0 end $\{y \le 1\}$

- Predicates:
 - p: x < 0
 - **q**: y > 0
- r: Result > 0

Result := Result * x $\{y \le 1\}$ y := y - 1 $\{y \le 0\}$ assert $y \le 0$ end $\{True\}$

The counterexample is feasible. We have found a real bug in the concrete program occurring for input y = 1 (and any x < 0). (•)

Predicate Discovery and Refinement

 \bigcirc

A spurious counterexample shows that the used abstraction is too coarse.

We build a finer abstraction by adding new predicates to the set pred.

These new predicates must be chosen so that the spurious counterexample is not allowed in the new abstraction.

Syntax-based Predicate Discovery

The simplest way to find new predicates is syntactic:

Concrete run:

. . .

```
{ Pred(0) and WP(0) }
  Concrete-stmt(1)
  { Pred(1) and WP(1) }
  Concrete-stmt(2)
```

```
Concrete-stmt(N)
{ Pred(N) and True }
```

```
\{ WP(0) \} \setminus \{ Pred(0) \}
```

```
\{ WP(1) \} \setminus \{ Pred(1) \}
```

```
{ True }  \{ Pred(N) \}
```

Look for predicates that:

- hold in the concrete run
- are not traced by any predicate in the abstract run
- contradict the predicates in the abstract run

(•)

Syntax-based Predicate Discovery: Example

Concrete trace: $\{x > y\} \setminus \{q, \neg r\}$ assert x > y end $\{True\} \setminus \{q, \neg r\}$ Result := x $\{True\} \setminus \{q, \neg r\}$

Predicates:

- q: Result >= x
- ¬r: Result < y</p>

The predicate from the concrete run that is not traced in the abstract run is:

• p = x > y

Predicate p contradicts $\{q, \neg r\}$. It is enough to verify the program with the new abstraction.

Summary, Tools, and Extensions

()

• Finite-state predicate abstraction of real programs

- Static analysis & abstract interpretation

• Automated verification of finite-state programs

- Model checking of reachability properties

Detection of spurious counterexamples

- Axiomatic semantics & automated theorem proving

• Automated counterexample-based refinement

- Symbolic model-checking techniques

Software Model-Checking Tools

CEGAR software model-checkers

- SLAM -- Ball and Rajamani, ~2001
 - first full implementation of CEGAR software m-c
 - used at Microsoft for device driver verification
- BLAST -- Henzinger et al., ~2002
 - does lazy abstraction: partial refinement of abstract program
 - several extensions for arrays, recursive routines, etc.
- Magic -- Clarke et al., ~2003
 - modular verification of concurrent programs
- F-Soft -- Gupta et al., ~2005
 - Combines software model-checking with abstract interpretation techniques
- CBMC & SATABS -- Kroening et al., ~2005
 - Use bounded model-checking techniques

Software Model-Checking Tools

Other (non CEGAR) software model-checking tools

- Verisoft -- Godefroid et al. ~2001
- Java PathFinder -- Visser et al., ~2000
- Bandera -- Hatcliff, Dwyers, et al., ~2000

•)

Software Model-Checking: Extensions

- Inter-procedural analysis
- Complex data structures
- Concurrent programs
- Recursive routines
- Heap-based languages
- Termination analysis
- Integration with other verification techniques
 - Static analysis
 - Testing
- ...

None of these directions is exclusive domain of software model-checking, of course...

(。)