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Program Verification: the very idea

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

require
True

ensure
Result >= a
Result >= b

P: a program S: a specification

Does           P  S               hold?⊧

The Program Verification problem:
● Given: a program P and a specification S
● Determine: if every execution of P, for any value of input parameters, satisfies S
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Verification of Finite-State Program

P: a program S: a specification

Does           P  S               hold?⊧

The Program Verification problem is decidable 
if P is finite-state

– Model-checking techniques

But real programs are not finite-state.
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Software Model-Checking: the Very Idea

The term Software Model-Checking denotes an 
array of techniques to automatically verify real 
programs based on finite-state models of them.

It is a convergence of verification techniques 
which started happening during the late 1990's.

The term “software model checker” is probably a 
misnomer [...] We retain the term solely to reflect 
historical development.

-- R. Jhala & R. Majumdar: “Software Model Checking”
ACM CSUR, October 2009
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Abstraction/Refinement Software M.-C.

Software Model-Checking based on CEGAR:
Counterexample-Guided Abstraction/Refinement 
● A successful framework for software model-

checking

Integrates three fundamental techniques:
● Predicate abstraction of programs
● Detection of spurious counterexamples
● Refinement by predicate discovery
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The Big Picture



  

CouterExample Guided Abstraction Refinement

ABSTRACT PROGRAM

(increasing) abstraction

CONCRETE PROGRAM



  

CouterExample Guided Abstraction Refinement

ABSTRACT PROGRAM

(increasing) abstraction

CONCRETE PROGRAM

PROVE correct
execute



  

CouterExample Guided Abstraction Refinement
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MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

(increasing) abstraction



  

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE

(increasing) abstraction



  

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM
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executable?

COUNTEREMPLE not 
executable

(increasing) abstraction



  

MODEL-CHECK

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE 
executable?

COUNTEREMPLE not 
executable

REFINE by ruling out 
concrete execution

(increasing) abstraction



  

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

REFINE

(increasing) abstraction



  

CouterExample Guided Abstraction Refinement

CONCRETE PROGRAMABSTRACT PROGRAM

(increasing) abstraction



  

Outcome: Successful Verification

CONCRETE PROGRAMABSTRACT PROGRAM

proof SUCCEEDS: PROGRAM is VERIFIED

MODEL-CHECK



  

Outcome: Real Bug Found

MODEL-CHECK

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE 
executable?

COUNTEREMPLE 
executable: REAL BUG



  

MODEL-CHECK

Outcome: Loop Forever

CONCRETE PROGRAMABSTRACT PROGRAM

verification fails: COUNTEREXAMPLE is COUNTEREAMPLE 
executable?

COUNTEREMPLE not 
executable

REFINE by ruling out 
concrete execution

(increasing) abstraction



  

CEGAR Software Model-Checking

Integrates three fundamental techniques:
● Predicate abstraction of programs
● Detection of spurious counterexamples
● Refinement by predicate discovery

Let us now present these techniques in some 
detail.



  

Technical premises:
weakest preconditions of
assertion statements
and parallel conditional assignments



  

Assertions and assumptions

For a straightforward presentation of the techniques in 
the following, we introduce two distinct forms of 
annotations in the programming language.
● Assumptions describe information that every run reaching the 

statement has.
 assume exp end

– A run reaching an assumption that evaluates to False is infeasible.
● Assertions describe information that every run continuing 

after the statement must have.
   assert exp end

– A run reaching an assertion that evaluates to False terminates with 
an error.



  

Assertions and assumptions

The weakest precondition of assertions and 
assumptions is computed with the following rules.
● { exp ⇒ Q } assume exp end { Q }
● { exp ∧ Q } assert exp end { Q }

We will not use annotations directly in source 
programs, but only to build transformations into 
predicate abstractions and to describe program runs.

Sometimes, we will denote assertions or assumptions 
with brackets:

     [exp]



  

Parallel assignments
For a straightforward presentation of the 
techniques in the following, we also introduce 
the parallel assignment:

v
1
, v

2
, ..., v

m
 := e

1
, e

2
, ..., e

m

● First, all the expressions e
1
, e

2
, ..., e

m
 are evaluated on 

the pre state.
● Then, the computed values are orderly assigned to the 

variables v
1
, v

2
, ..., v

m
.

Example:
{ x = 3, y = 1 }  x := y ; y := x  { x =   , y =   }
{ x = 3, y = 1 }  x, y := y, x  { x =   , y =   }



  

Parallel assignments
For a straightforward presentation of the 
techniques in the following, we also introduce 
the parallel assignment:

v
1
, v

2
, ..., v

m
 := e

1
, e

2
, ..., e

m

● First, all the expressions e
1
, e

2
, ..., e

m
 are evaluated on 

the pre state.
● Then, the computed values are orderly assigned to the 

variables v
1
, v

2
, ..., v

m
.

Example:
{ x = 3, y = 1 }  x := y ; y := x  { x = 1 , y = 1 }
{ x = 3, y = 1 }  x, y := y, x  { x = 1 , y = 3 }



  

Parallel conditional assignment
● The parallel assignment and the conditional can be 

combined into a parallel conditional assignment: 
if c1

+ then v1 := e1
+ elseif c1

- then v1 := e1
- else v1 := e1

? end

if c2
+ then v2 := e2

+ elseif c2
- then v2 := e2

- else v2 := e2
? end

...

if cm
+ then vm := em

+ elseif cm
- then vm := em

- else vm := em
? end

● First, evaluate all the conditions (well-formedness requires ck
+ 

and ck
- to be mutually exclusive, for all k).

● Then, evaluate the expressions.
● Finally, perform the assignments.
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Predicate Abstraction
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Abstraction

Abstraction is a pervasive idea in computer science. It has to 
do with modeling some crucial (behavioral) aspects while 
ignoring some other, less relevant, ones.

● Semantics of a program P:  a set of runs ⟨P⟩

– set of all runs of P for any choice of input arguments
– a run is completely described by a list of program locations 

that gets executed in order, together with the value that 
each variables has at the location.

● Abstraction of a program P:   another program A_P

– A_P's semantics is “similar” to P's
● define some mapping between the runs of A_P and P

– A_P is more amenable to analysis than P
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Over- and Under-Approximation

Two main kinds of abstraction:
● over-approximation: program AO_P

– AO_P allows “more runs” than P
– for every r ∈ ⟨P⟩ there exists a r' ∈ ⟨AO_P⟩

– intuitively: ⟨P⟩  ⊆ ⟨AO_P⟩

– AO_P allows some runs that are “spurious”
(also “infeasible”) for P

● under-approximation:  program AU_P

– AU_P allows “fewer runs” than P
– for every r ∈ ⟨AU_P⟩ there exists a r' ∈ ⟨P⟩

– intuitively: ⟨AU_P⟩  ⊆ ⟨P⟩

– AU_P disallows some runs that are “legal”
(also “feasible”) for P
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Over- and Under-Approximation: Example

max (x, y: INTEGER): INTEGER
do

if x > y

then Result := x

else Result := y

end

end
AU_max (x, y: INTEGER): INTEGER
do

if x > y

then Result := x

else assume False end

end

end

AO_max (x, y: INTEGER): INTEGER
do

if x > y

then Result := x

else Result := y

end
if ? then Result := 3 end

end
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Predicate Abstraction

In predicate abstraction, the abstraction A_P of a program P uses 
only Boolean variables called “predicates”.
● Each predicate captures a significant fact about the state of P
● The abstraction A_P is constructed parametrically w.r.t. a set pred 

of chosen predicates as an over-approximation of the program P
– the arguments of A_P are the predicates in pred

● assume arguments are both input and output parameters
(this deviates from Eiffel's semantics)

– each statement stmt in P is replaced by a (possibly compound) 
statement stmt' in A_P such that:

● if executing stmt in P leads to a concrete state S, then 
executing stmt' in A_P leads to a state which is the strongest 
over-approximation of S in terms of pred
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Predicate Abstraction: Informal Overview
1. Each predicate corresponds to a Boolean expression.

2. A set of Boolean program variables in A_P track the values of the 
predicates in the abstraction.

3. Translate each statement in P into a (compound) statement which 
updates the Boolean variables.

4. To have an over-approximation the statements in A_P will:

a) define whatever follows with certainty from the information given 
by the predicates
● use under-approximations of arbitrary Boolean expressions 

through the predicates
b) everything else is nondeterministically chosen
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Boolean Predicates and Expressions
Consider a set of predicates
     pred = {p(1), ..., p(m)}

and a set of corresponding Boolean expressions over program 
variables
     exp = {e(1), ..., e(m)}

For a generic Boolean expression f over program variables, 
Pred(f) denotes the weakest Boolean expression over pred
that is at least as strong as f.
● Namely: substituting every atom p(i) in Pred(f) with the 

corresponding expression e(i) gives an expression that 
implies f.

● Hence, Pred(f) is an under-approximation of f, used to build 
the strongest over-approximations of statements.
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Boolean Under-Approximation: Example
● pred = { p, q,  r }
● exp =  { x = 1, x = 2, x ≤ 3 }

● Pred(x = 1) =
● Pred(x = 0) =
● Pred(x ≤ 2) =
● Pred(x ≠ 0) =



34

Boolean Under-Approximation: Example
● pred = { p, q,  r }
● exp =  { x = 1, x = 2, x ≤ 3 }

● Pred(x = 1) = p
● Pred(x = 0) = False
● Pred(x ≤ 2) = p v q
● Pred(x ≠ 0) = p v q v ¬r

● In general: Pred (¬f) ≠ ¬ Pred (f)
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Abstraction of Assignments

An assignment: x := f
is over-approximated by a parallel conditional assignment 
with m components. For 1 ≤ i ≤ m:

if Pred(+f(i)) then
 p(i) := True
elseif Pred(-f(i)) then
 p(i) := False
else p(i) := ? end

● +f(i) is the backward substitution of e(i) through x := f
● -f(i) is the backward substitution of ¬e(i) through x := f
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Abstraction of Assignments: Example
● pred = { p, q,     r }
● exp = { x > y, Result ≥ x, Result ≥ y }

● Result := x is over-approximated by:
● if p then p := True elseif not p then p := False else p := ? end

– which does nothing
● if True then q := True elseif False then q := False else q := ? end

– which is equivalent to: q := True
● if p then r := True elseif False then r := False else r := ? end

– which is equivalent to: if p then r := True else r := ? end
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Abstraction of Assignments: Example
● pred = { p,  q,  r }
● exp =  { x = 1, y = 1, x > y }

y := x
is over-approximated by

q := p ; r := False

{ x = y }
is over-approximated by

{ x ≤ y } ∩
({ x = y = 1 } ∪ { x, y ≠ 1 })

or, equivalently,
{ x ≤ y }
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Parallel assignments are necessary

The conditional assignments must be executed in parallel to 
guarantee that the abstraction is sound in general.

Example for:
● p representing x = True; q representing x = False

concrete (x: BOOLEAN) 
do

x := not x
end

abstract_ok (p, q: BOOLEAN) 
do

p, q := q, p
end

abstract_ko (p, q: BOOLEAN) 
do

p := q
q := p

end
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Abstraction of Assumptions

An assumption: assume  ex  end
is over-approximated by one assumption:

assume  not Pred(not ex)  end
and a parallel conditional assignment with m components. 
For 1 ≤ i ≤ m:

if Pred(+ex(i)) then
 p(i) := True
elseif Pred(-ex(i)) then
 p(i) := False
else p(i) := ? end

● +ex(i) is the backward sub. of e(i) through assume ex end
● -ex(i) is the backward sub. of ¬e(i) through assume ex end
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Abstraction of Assumptions: Example
The double negation is used 
to get an over-approximation 
from the under-
approximation given by Pred:
● the complement of an 

under-approximation of x 
is an over-approximation 
of the complement of x.

● { p (x=1), q (x=2),
  r (x≤3) }

● Pred(x ≤ 2) = p v q
● Pred(x > 2) = ¬r
● assume x ≤ 2 end
● assume p v q end  is

assume x=1 v x=2 end
● assume ¬(¬r) end  is

assume x ≤ 3 end
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Abstraction of Assertions

An assertion: assert  ex  end
is over-approximated with the same schema as 
assumptions, namely by one assertion:

assert  not Pred(not ex)  end
and a parallel conditional assignment with m components. 
For 1 ≤ i ≤ m:

if Pred(+ex(i)) then
 p(i) := True
elseif Pred(-ex(i)) then
 p(i) := False
else p(i) := ? end

● +ex(i) is the backward sub. of e(i) through assert ex end
● -ex(i) is the backward sub. of ¬e(i) through assert ex end
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Abstraction of Conditionals
A conditional:

if cond then
-- then branch

else
-- else branch

end
is over-approximated by first transforming it into normal form:

if ? then
assume cond end
-- then branch

else
assume not cond end
-- else branch

end
and then applying the other transformations.
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Abstraction of Loops
A loop:

from
-- initialization

until cond loop
-- loop body

end
is over-approximated by first transforming it into normal form:

from
-- initialization

until ? loop
assume not cond end
-- loop body

end
assume cond end

and then applying the other transformations.
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Abstractions of pre and postconditions

Preconditions are treated as assume statements and 
postconditions as assert statements.

(In abstracting the postcondition, the if statements can be 
omitted).

In all our examples we will always choose predicates which 
completely describe the pre and postcondition, hence no 
real abstraction will be introduced.
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Predicate Abstraction: Example
max (x, y: INTEGER): INTEGER do

if x > y

then Result := x

else Result := y

end

ensure Result ≥ x and Result ≥ y end

Predicates:
● p:  x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume x > y end  ;  Result := x

else
assume x ≤ y end  ;  Result := y

end

ensure Result ≥ x and Result ≥ y end
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Predicate Abstraction: Example
Predicates:
● p:  x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
Result := x

else
assume not p end
Result := y

end

ensure q and r end
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Predicate Abstraction: Example
Predicates:
● p:  x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
q := True
if p then r := True else r := ? end

else
assume not p end
Result := y

end

ensure q and r end
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Predicate Abstraction: Example
Predicates:
● p:  x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
q := True
if p then r := True else r := ? end

else
assume not p end
r := True
if not p then q := True else q := ? end

end

ensure q and r end
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Predicate Abstraction: Example
Predicates:
● p:  x > y
● q: Result ≥ x
● r: Result ≥ y

Apqr_max (p, q, r: BOOLEAN) do

if ? then
assume p end
q := True
r := True

else
assume not p end
r := True
q := True

end

ensure q and r end



50

Predicate Abstraction: Example
max (x, y: INTEGER): INTEGER do

if x > y

then Result := x

else Result := y

end

ensure Result ≥ x and Result ≥ y end

Apqr_max (p, q, r: BOOLEAN) do

if p

then q := True ; r := True

else r := True ; q := True

end

ensure q and r end

Predicates:
● p:  x > y
● q: Result ≥ x
● r: Result ≥ y
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Predicate Abstraction and Verification
What does it mean to verify the predicate abstraction A_P of a 
program P?
● A_P is finite state

– verification is decidable: we can verify A_P automatically
● A_P is an over-approximation of P

– if A_P is correct then so is P
● any run of P is abstracted by some run of A_P

– if A_P is not correct we can't conclude about the correctness
of P

● a counterexample run of A_P: the abstract counterexample r
– if r is also the abstraction of some run of P then P is also 

not correct
– if r is a run which infeasible for P then r is a spurious 

counterexample
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Model-checking a Boolean Program
● For a Boolean program P over predicates pred = {p(1), ..., p(m)}

● P's body: a sequence loc = [L(1), ..., L(n)] of instructions or conditional jumps

● P's postcondition: post

● Build an    FSA = [Σ, S, I, ρ, F]  where:

● Σ = loc

● S = {True, False}m x  ( loc U {halt} )

–
each state in S denotes a program state:

● a truth value for every Boolean variable in pred
● a program location which represents the next line to be executed,
or halt if the execution has terminated

● I = { [v(1), ..., v(m), L(1)]  ∈ S }

–
the initial states are for any value of the input Boolean arguments

–
L(1) is the next instruction to be executed

● [v'(1), ..., v'(m), L']   ∈ ρ ([v(1), ..., v(m), L], L) iff

–
L is a conditional jump and:

● [v(1), ..., v(m)] satisfies the condition; and
● v'(i) = v(i) for all 1 ≤ i ≤ m; and
● L' is the target of the jump when successful.

–
L is a conditional jump and:

● [v(1), ..., v(m)] does not satisfy the condition; and
● v'(i) = v(i) for all 1 ≤ i ≤ m; and
● L' is the target of the jump when unsuccessful.

–
L is an instruction and:

● [v'(1), ..., v'(m)] is the state resulting from executing L on state [v(1), ..., v(m)]; and
● L' is the successor of L (or halt if the program halts after executing L)

● F = { [v(1), ..., v(m), halt]  ∈ S  |  post does not hold for [v(1), ..., v(m)] }

–
error states: halting states where the postcondition doesn't hold
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Predicate Abstraction: Example
Apqr_ max (p, q, r: BOOLEAN) do

1: if p

2: then q := True

3:   r := True

4: else r := True

5:   q := True

end

ensure q and r end
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Predicate Abstraction: Example
Apqr_ max (p, q, r: BOOLEAN) do

1: if p

2: then q := True

3:   r := True

4: else r := True

5:   q := True

end

ensure q and r end

● Error states: including predicates ¬q 
or ¬r without outgoing edges

● There are clearly no accepting 
(error) runs because the error 
states are not even connected

● Apqr_max is correct and so is max
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Detection of Spurious Counterexamples
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Predicate Abstraction and Verification
What does it mean to verify the predicate abstraction A_P of a 
program P?

● A_P is an over-approximation of P
– if A_P is not correct we can't conclude about

the correctness of P
● a counterexample run of A_P: the

abstract counterexample r
1. if r is also the abstraction of some run of P

then P is also not correct
2. if r is a run which infeasible for P

then r is a spurious counterexample

Let us show an automated technique to detect spurious 
counterexamples.
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Abstract Counterexamples

Consider an abstract counterexample (c.e.), i.e. a run 
of the finite-state predicate abstraction A_P

{ Pred(0) }     { Abstract initial state }
Stmt(1)      Instruction or test

{ Pred(1) }     { Abstract state }
Stmt(2)      Instruction or test

...         ...
Stmt(N)      Instruction or test

{ Pred(N) }     { Abstract final state }

Goal: find whether there exists a concrete run of P 
which is abstracted by this abstract counterexample
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Abstract Counterexamples: Example
max (x, y: INTEGER): INTEGER do

if x > y

then Result := x

else Result := y

end

ensure Result ≥ x and Result ≥ y end

Aqr_max (q, r: BOOLEAN) do

if  ?

then q := True ; r := ?

else  r := True ; q := ?

end

ensure q and r end

Predicates:
● q: Result ≥ x
● r: Result ≥ y
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Abstract Counterexamples: Example

● Error states: 
including ¬q or ¬r  
and without 
outgoing edges

● An abstract 
counterexample 
trace in green

Aqr_max (q, r: BOOLEAN) do

if  ?

then q := True ; r := ?

else  r := True ; q := ?

end

ensure q and r end
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Concrete Run of Abstract C.E.

Because of how A_P has been built, there exists a statement in 
P for every (possibly compound) statement in A_P

Abstract run:     Concrete run:

{ Pred(0) }     
Stmt(1)      Concrete-stmt(1)

{ Pred(1) }     
Stmt(2)       Concrete-stmt(2)
...         ...
Stmt(N)      Concrete-stmt(N)

{ Pred(N) }     

Let us check whether the concrete run is infeasible, according 
to the semantics of P.
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Feasibility of a Concrete Run
Compute the weakest precondition of True over the concrete run with 
conditions (assume, conditionals, or exit conditions) interpreted as assert 
(this is doable automatically because there are no loops):

Abstract run:     Concrete run:

{ Pred(0) }      { WP(0) }
Stmt(1)      Concrete-stmt(1)

{ Pred(1) }      { WP(1) }
Stmt(2)     Concrete-stmt(2)
...         ...
Stmt(N)      Concrete-stmt(N)

{ Pred(N) }     { True }

Every formula WP(i) characterizes the states of P reaching a final state 
where Pred(N) holds and hence where the postcondition fails.
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Feasibility of a Concrete Run

The concrete run is infeasible if WP(i) and 
Pred(i) is unsatisfiable for some 1 ≤ i ≤ N.

Concrete run:

{ Pred(0)  and  WP(0) }
Concrete-stmt(1)

{ Pred(1)  and  WP(1) }
Concrete-stmt(2)
...
Concrete-stmt(N)

{ Pred(N)  and  True }
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Spurious Counterexamples: Example

Abstract c.e. trace:
{q, ¬r}

[?]
{q, ¬r}

q := True ; r := ?
{q, ¬r}

Concrete trace:
{x > y}

assert x > y end
{True}

Result := x
{True}

The counterexample is infeasible because:
{x > y and q and ¬r}  is inconsistent
as {x > y and q} implies {r}
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Sufficient condition for infeasibility

The condition for infeasibility is only sufficient: 
● If WP(i) and Pred(i) is satisfiable for all 1 ≤ i ≤ N, 

further analysis may be needed, in general, to 
determine if the run is feasible.

● There are additional techniques to decide feasibility 
automatically (assuming satisfiability is decidable for 
the first-order fragment used in the annotations).

● In our examples, we will simply determine by manual 
inspection if a run that passes the infeasibility test is 
feasible or not.
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Abstract Counterexamples: Example
neg_pow (x, y: INTEGER): INTEGER do
require x < 0 and y > 0

from Result := 1
until y ≤ 0
loop

Result := Result * x
y := y - 1

end

ensure Result > 0 end

Apqr_neg_pow (p, q, r: BOOLEAN) do

require p and q 

from r := True
until ¬q
loop

if p and r then r := False else r := ? end
q := ?

end

ensure r end

Predicates:
● p: x < 0
● q: y > 0
● r: Result > 0
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Abstract Counterexamples: Example

Predicates:
● p: x < 0
● q: y > 0
● r: Result > 0

Abstract c.e. trace:
{p, q, ¬r}

r := True
{p, q, r}

[q]
{p, q, r}

[p and r]
{p, q, r}

r := False
{p, q, ¬r}

q := ?
{p, ¬q, ¬r}

[¬q]
{p, ¬q, ¬r}

Apqr_neg_pow (p, q, r: BOOLEAN) do

require p and q 

from r := True
until ¬q
loop

if p and r then r := False else r := ? end
q := ?

end

ensure r end
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Abstract Counterexamples: Example
Abstract c.e. trace:
{p, q, ¬r}

r := True
{p, q, r}

[q]
{p, q, r}

[p and r]
{p, q, r}

r := False
{p, q, ¬r}

q := ?
{p, ¬q, ¬r}

[¬q]
{p, ¬q, ¬r}

Concrete trace:
{y = 1}

Result := 1
{y = 1}

assert y > 0 end
{y ≤ 1}

Result := Result * x
{y ≤ 1}

y := y - 1
{y ≤ 0}

assert y ≤ 0 end
{True}
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Abstract Counterexamples: Example

Concrete trace:
{y = 1}

Result := 1
{y = 1}

assert y > 0 end
{y ≤ 1}

Result := Result * x
{y ≤ 1}

y := y - 1
{y ≤ 0}

assert y ≤ 0 end
{True}

Predicates:
● p: x < 0
● q: y > 0
● r: Result > 0

The counterexample is feasible. 
We have found a real bug in the 
concrete program occurring for 
input y = 1 (and any x < 0).
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Predicate Discovery and Refinement
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Predicate Discovery

A spurious counterexample shows that the used 
abstraction is too coarse.

We build a finer abstraction by adding new 
predicates to the set pred.

These new predicates must be chosen so that the 
spurious counterexample is not allowed in the new 
abstraction.
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Syntax-based Predicate Discovery

The simplest way to find new predicates is syntactic:

Concrete run:

{ Pred(0)   and   WP(0) }     { WP(0) } \ { Pred(0) } 
Concrete-stmt(1)

{ Pred(1)   and   WP(1) }     { WP(1) } \ { Pred(1) }
Concrete-stmt(2)

...
Concrete-stmt(N)

{ Pred(N)   and   True }     { True } \ { Pred(N) }

Look for predicates that:
● hold in the concrete run
● are not traced by any predicate in the abstract run
● contradict the predicates in the abstract run
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Syntax-based Predicate Discovery: Example
Concrete trace:
{x > y} \ {q, ¬r}

assert x > y end
{True} \ {q, ¬r}

Result := x
{True} \ {q, ¬r}

The predicate from the concrete run that is not 
traced in the abstract run is:
● p = x > y
Predicate p contradicts {q, ¬r}. It is enough to 
verify the program with the new abstraction.

Predicates:
● q: Result >= x
● ¬r: Result < y



73

Summary, Tools, and Extensions



74

CEGAR: Summary

● Finite-state predicate abstraction of real programs
– Static analysis & abstract interpretation

● Automated verification of finite-state programs
– Model checking of reachability properties

● Detection of spurious counterexamples
– Axiomatic semantics & automated theorem proving

● Automated counterexample-based refinement
– Symbolic model-checking techniques
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Software Model-Checking Tools
CEGAR software model-checkers
● SLAM  -- Ball and Rajamani, ~2001

– first full implementation of CEGAR software m-c
– used at Microsoft for device driver verification

● BLAST -- Henzinger et al., ~2002
– does lazy abstraction: partial refinement of abstract program
– several extensions for arrays, recursive routines, etc.

● Magic -- Clarke et al., ~2003
– modular verification of concurrent programs

● F-Soft -- Gupta et al., ~2005
– Combines software model-checking with abstract interpretation 

techniques
● CBMC & SATABS -- Kroening et al., ~2005

– Use bounded model-checking techniques
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Software Model-Checking Tools
Other (non CEGAR) software model-checking tools 
● Verisoft -- Godefroid et al. ~2001
● Java PathFinder -- Visser et al., ~2000
● Bandera -- Hatcliff, Dwyers, et al., ~2000
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Software Model-Checking: Extensions
● Inter-procedural analysis
● Complex data structures
● Concurrent programs
● Recursive routines
● Heap-based languages
● Termination analysis
● Integration with other verification techniques

– Static analysis
– Testing

● ...

None of these directions is exclusive domain of software 
model-checking, of course...
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