
Chair of Software Engineering

Software Verification

Lecture 11: Verification of
Real-time Systems

Carlo A. Furia

2

Program Verification: the very idea

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

require
true

ensure
Result >= a
Result >= b

P: a program S: a specification

Does P S hold?⊧

The Program Verification problem:
● Given: a program P and a specification S
● Determine: if every execution of P, for every value of input parameters, satisfies S

3

Real-time Verification

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

ensure
Result >= a
Result >= b

ensure -- real-time
“max terminates no sooner
 than 3 ms and no later than
 10 ms after invocation”

P: a program S: a specification

Does P S hold?⊧

The Real-time Verification problem:
● Given: program P (embedded in system E) and real-time specification S
● Determine: if every execution of P (within E) satisfies S

4

Real-time Programs and Systems

● The timing of a piece of software is usually dependent on the environment
where the computation takes place

● Hence, in real-time verification the focus shifts from programs to (software-
intensive) systems

– In a system, even the physical environment is often relevant

● The purely computational aspects can often be analyzed in isolation
● Real-time verification can then focus on real-time aspects of the system

– e.g., synchronization, deadlines, delays, ...

while abstracting away most of the rest

Def. Real-time specification: specification that includes
exact timing information.

Def. Real-time computation: computation whose
specification is real-time. In other words: computation
whose correctness depends not only on the value of the
result but also on when the result is available.

5

Decidability vs. Expressiveness Trade-Off

● The classes for F(P) and N(S) should guarantee:
– enough expressiveness to include a quantitative notion of time
– decidability of the verification problem

The Real-time Verification problem:
● Given: program P (embedded in system E) and real-time specification S
● Determine: if every execution of P (within E) satisfies S

Does F(P) N(S) hold?⊧

P: a system S: a real-time specification

F(P): some formal model of P N(S): some formal notation for S
⇕ ⇕

6

Real-time Model-Checking

A: a timed automaton F: a metric temporal-logic formula

A F⊧

The Real-time Model Checking problem:
● Given: a timed automaton A and a metric temporal-logic formula F
● Determine: if every run of A satisfies F or not

– if not, also provide a counterexample: a run of A where F does not hold

● The model-checking paradigm is naturally extended to real-time systems

● Different choices are possible for the family of automata and of formulae
● The linear vs. branching time dichotomy is usually not significant for real-time

– linear time is almost invariably preferred

● A different attribute of time that becomes relevant in quantitative models is discrete vs. dense time

?

7

Discrete vs. dense (continuous) time

● merely dense vs. continuous is usually not as relevant
– e.g.: ℚ vs. ℝ

● Discrete time
● sequence of isolated “steps”
● every instant has a unique successor
● e.g.: the naturals ℕ = {0, 1, 2, ...}

+ simple and intuitive

+ verification usually decidable (and
acceptably complex)

+ robust and elegant theoretical
framework

– cannot express true asynchrony
– unsuitable to model physical

variables

● Dense time
● arbitrarily small distances
● the successor of an instant is not

defined
● e.g.: the reals ℝ

+ can model true asynchrony

+ accurate modeling of physical
variables

– tricky to understand
– verification easily undecidable (or

highly complex)
– lacks a unifying framework

25

Dense Real-time Model-Checking

Timed Automata and
Metric Temporal Logic

26

Dense Real-time Model-Checking
Dense real-time model checking considers the same model as
discrete real-time model checking but with ℝ≥0 as time
domain:
● A dense Timed Automaton (TA) models the system
● Dense-time Metric Temporal Logic (MTL) models the

property
● The syntax of TA and MTL need not be changed for dense time

– with the possible exception of allowing fractional time bounds

● The semantics of TA and MTL is also unchanged except that:
● ℝ≥0 replaces ℕ as time domain
● Infinite words are considered by default:

– This is a technicality that we will ignore in the presentation for
simplicity, although it does affect some results.
See later for the details.

27

Dense Real-time Model-Checking

A: a TA F: an MTL formula

A F⊧

The Dense Real-time Model Checking problem:
● Given: a dense TA A and an MTL formula F
● Determine: if every run of A satisfies F or not

– if not, also provide a counterexample: a run of A where F does not hold

?

Dense real-time model checking extends standard “untimed”
model checking:
● The Timed Automaton (TA) extends the Finite-State Automaton

(FSA)
● Metric Temporal Logic (MTL) extends Linear Temporal Logic

(LTL)

28

Timed Automata: Syntax

29

Timed Automata: Syntax
Def. Nondeterministic Timed Automaton (TA):

 a tuple [Σ, S, C, I, E, F]:
● Σ: finite nonempty (input) alphabet
● S: finite nonempty set of locations

(i.e., discrete states)
● C: finite set of clocks
● I, F: set of initial/final states
● E: finite set of edges [s, σ, c, ρ, s']

– s ∈ S: source location
– s' ∈ S: target location
– σ ∈ Σ: input character (also “label”)
– c: clock constraint in the form:

c ::= x ≈ k | x – y ≈ k | ¬ c | c1 ∧ c2
● x, y ∈ C are clocks
● k ∈ ℤ is an integer constant
● ≈ is a comparison operator among <, ≤, >, ≥, =

– ρ C: set of clock that are ⊆ reset (to 0)

30

Timed Automata: Semantics
● Accepting run:

r = [off, (x=0, y=0)]
 [on, (x=0, y=3.2)]
 [cooking, (x=8.5, y=0)]
 [on, (x=81.7, y=73.2)]
 [off, (x=84.91, y=76.41)]

● Over input timed word:
w = [turn_on, 3.2]

 [start, 11.7]
 [stop, 84.9]
 [turn_off, 88.11]

31

Timed Automata: Semantics

Def. An accepting run of a TA A=[Σ, S, C, I, E, F]
 over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] (∈ Σ x ℝ)* is a
 sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]

 (S x ∈ ℝ
| C|)* of (extended) states such that:

– it starts from an initial state and ends in an accepting state: s(0) ∈ I and s(n)

 ∈ F

– initially all clocks are reset to 0: v(0,k) = 0 for all 1 ≤ k ≤ |C|
– for every transition (0 ≤ i < n):

[s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:

● the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i)) satisfy the constraint c
● v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i)

Def. A timed word w = w(1) w(2) ... w(n) (∈ Σ x ℝ)* is a sequence
 of pairs [σ(i), t(i)] such that:

– the sequence of timestamps t(1), t(2), ..., t(n) is increasing
● [σ(i), t(i)] represents the i-th character σ(i) read at time t(i)

32

Timed Automata: Semantics

Def. Any TA A=[Σ, S, C, I, E, F] defines
 a set of input timed words A⟨ ⟩:
 A⟨ ⟩ { w ≜ ∈ (Σ x)ℝ * | there is an
 accepting run of A
 over w }

 ⟨A is called the ⟩ language of A

With regular expressions and arithmetic:
A⟨ ⟩ = ([turn_on, t

1
]

 ([start, t
2
] [stop, t

3
])*

 [turn_off, t
4
])*

 with t
3
-t

2
≤ 300 and t

4
-t

1
> 1

33

Metric (Linear) Temporal Logic
◊[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) time units
in the future”

● [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...

● [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ...

□(2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

● [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ...

● [any, t ≤ 2] [start, 4] [any, t > 4] ...

● [stop, 0] [stop, 0.3] [stop, 0.7]

34

Metric (Linear) Temporal Logic

□ (start ◊(⇒ 3,10] stop)
“every occurrence of start is followed by an occurrence
of stop between 3 (excluded) and 10 (included) time units
in the future”

cook U(3,10] stop
“stop occurs between 3 (excluded) and 10 (included) time
units in the future, and cook holds until then”

35

Metric (Linear) Temporal Logic: Syntax
Def. Propositional Metric Temporal Logic (MTL) formulae

 are defined by the grammar:
 F ::= p | ¬ F | F ∧ G | F U<a,b> G

with p ∈ P any atomic proposition and <a,b> is an interval
of the time domain (w.l.o.g. with integer endpoints).
Temporal (modal) operators:
● next: X F ≜ True U[1,1] F
● bounded until: F U<a,b> G
● bounded release: F R<a,b> G ≜ ¬ (¬F U<a,b> ¬G)
● bounded eventually: ◊<a,b> F ≜ True U<a,b> F
● bounded always: □<a,b> F ≜ ¬ ◊<a,b> ¬F
● intervals can be unbounded; e.g., [3, ∞)
● intervals with pseudo-arithmetic expressions, e.g.:

● ≥ 3 for [3, ∞)
● = 1 for [1,1]
● [0, ∞) is simply omitted

□ (start ◊(⇒ 3,10] stop)

36

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] (∈ P x)*ℝ satisfies
 an LTL formula F at position 1 ≤ i ≤ n, denoted w, i F⊧ ,
 under the following conditions:

– w, i p ⊧ iff p = σ(i)

– w, i ⊧ ¬ F iff w, i ⊧ F does not hold

– w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i G⊧ hold

– w, i F ⊧ U<a,b> G iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> it is:
 w, j G ⊧ and for all i ≤ k < j it is w, k ⊧ F

● i.e., F holds until G will hold within <a, b>

For derived operators:

– w, i ⊧ ◊<a,b> F iff for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j F⊧

● i.e., F holds eventually within <a,b>

– w, i ⊧ □<a,b> F iff for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
 it is: w, j F⊧

● i.e., F holds always within <a,b>

37

Metric Temporal Logic: Semantics

Def. Satisfaction:
 w F ⊧ ≜ w, 1 F⊧

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words F⟨ ⟩:
 F⟨ ⟩ { w ≜ (P x ∈ ℝ)* | w F }⊧

 ⟨F is called the ⟩ language of F

38

Dense Real-time Model-Checking

What's Decidable?

39

TAs not Closed under Complement
A: a dense TA F: a dense-time MTL formula

A F⊧
?

Fundamental problem:
● Dense timed automata are not closed under

complement
– The complement of the language

of this TA isn't accepted by any TA:
● language of this TA:

“there exist two p's separated by one t.u.”
● complement language:

“no two p's are separated by one t.u.”
● intuition: need a clock for each p within

the past time unit, but there can be an
unbounded number of such p's because time is dense

40

TAs not Closed under Complement

Fundamental problem:
● Dense TAs are not closed under complement
● MTL is clearly closed under complement

– Language of the TA: ◊ (p ◊=1∧ p)
– Complement language of the TA:

¬ ◊ (p ◊=1 ∧ p) = □ (p ¬ ◊=1 ⇒ p)
● Hence, automata-theoretic dense

real-time model-checking
is unfeasible

41

Dense MTL Model Checking is Undecidable

An even more fundamental problem:

● The dense-time model-checking problem for MTL
and TAs is undecidable (for infinite words)
– no approach is going to work, not just the automata-

theoretic one

● MTL and TAs are “too expressive” over dense time

42

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of
automata-theoretic model checking:

● MTL2TA: given MTL formula F build TA
a(F) such that ⟨F = ⟩ ⟨a(F)⟩

● undecidable problem (for infinite words)
● TA-Intersection: given TAs A, B build

TA C such that ⟨A ⟩ ∩ ⟨B = ⟩ ⟨C⟩
● decidable

● TA-Emptiness: given TA A check whether
⟨A = ⟩ ∅ is the case

● decidable!

43

Dense Real-time Model-Checking

Intersection of Timed Automata

44

Given TAs A, B it is always possible to build automatically a TA
C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed
word is accepted if and only if both A and B would accept it. The
construction is called “product automaton”.

TA-Intersection: running TAs in parallel

TA-Intersection: Example

x =

46

Def. Given TAs A=[Σ, SA, CA, IA, EA, FA] and B=[Σ, SB, CB, IB, EB, FB]
 let C ≜ A x B ≜ [Σ, SC, CC, IC, EC, FC] be defined as:
● SC ≜ SA x SB

● CC ≜ CA C∪ B (assuming w.l.o.g. that they are disjoint sets)
● IC ≜ { (s, t) | s I∈ A and t I∈ B }
● [(s, t), σ, cA ∧ cB, ρA ∪ ρB, (s', t')] ∈ EC iff

 [s, σ, cA, ρA, s'] E∈ A and [t, σ, cB, ρB, t'] E∈ B

● FC ≜ { (s, t) | s F∈ A and t F∈ B }

Theorem.
⟨A x B⟩

=
⟨A ⟩ ∩ ⟨B⟩

TA-Intersection: running TAs in parallel

47

Dense Real-time Model-Checking

Checking the Emptiness
of Timed Automata

48

Given a TA A it is always possible to check automatically
if it accepts some timed word.

Outline of the algorithm:
● Assume that clock constraints involve integer constants only

●this is without loss of generality as it amounts to scaling
● Define an equivalence relation over extended states

●an extended state is a tuple [s, v(1), ..., v(|C|)]
with a location s and a value v(i) for every clock in C.

● All extended states in the same equivalence class are equivalent
w.r.t. satisfaction of clock constraints

● The equivalence relation is such that there is a finite number
of equivalence classes for any given TA

● Given a TA A, build an FSA reg(A) – the “region automaton”:

– the states of reg(A) represent the equivalence classes of
the extended states of any run of of A

– the edges of reg(A) represent evolution of any extended state
within the equivalence class over any run of A

● Checking the emptiness of reg(A) is equivalent to checking the emptiness of A

TA-Emptiness

49

Integer vs. Rational vs. Irrational

● The domain for time is ℝ≥0

● What about the domain for time constraints?
– constants in clock constraints of TAs (e.g.: x < k)

1. Same as the domain for time: ℝ≥0
● e.g.: x < π
● emptiness becomes undecidable!

2.Discrete time domain: integers ℕ
● e.g.: x < 5
● emptiness fully decidable (see algorithm next)

3.Dense but not continuous: rationals ℚ≥0
● e.g.: x < 1/3
● emptiness is reducible to the integer case

50

Integer vs. Rational

● Dense but not continuous: rationals ℚ≥0

● Let A be a TA with rational constants
● let m be the least common multiple of denominators of all

constants appearing in the clock constraints of A
● let A*m be the TA obtained from A by multiplying every

constants in the clock constraints by m
● A*m has only integers constants in its clock constraints

● A accepts any timed word
 [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)]

iff A*m accepts the “scaled” timed word
[σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)]

● Hence checking the emptiness of A*m is equivalent to checking the
emptiness of A

51

Equivalence Relation over Extended States

Let us fix a TA A = [Σ, S, C, I, E, F] with C = [x(1), ..., x(n)]
● For any clock x(i) in C let M(i) be the largest constant involving clock

x(i) in any clock constraint in E

● Let [v(1), ..., v(n)] ∈ ℝ≥0
n denote a “clock evaluation” representing

any assignment of values to clocks
● Equivalence of two clock evaluations:

[v(1), ..., v(n)] ~ [v'(1), ..., v'(n)] iff all of the following hold:

1.For all 1 ≤ i ≤ n: int(v(i)) = int(v'(i)) or v(i), v'(i) > M(i)
2.For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j):

 frac(v(i)) ≤ frac(v(j)) iff frac(v'(i)) ≤ frac(v'(j))
3.For all 1 ≤ i ≤ n such that v(i) ≤ M(i):

 frac(v(i)) = 0 iff frac(v'(i)) = 0
● Note: int(x) is the integer part of x; frac(x) is the fractional part of x

52

Clock Regions

● For a clock evaluation v = [v(1), ..., v(n)] ∈ ℝ≥0n,
[[v]] denotes the clock region v belongs to

● As a consequence of the definition of ~, any clock region
can be uniquely characterized by a finite set of
constraints on clocks
● v = [0.4; 0.9; 0.7; 0] for 4 clocks w, x, y, z
● [[v]] is z = 0 < w < y < x < 1

● Fact: clock regions are always in finite number

Def. A clock region is an equivalence class
of clock evaluations induced by the equivalence relation ~

53

Clock Regions (cont'd)

More systematically:
● given a set of clocks C = [x(1), ..., x(n)]
● with M(i) the largest constant appearing in constraints on clock x(i)

a clock region is uniquely characterized by
● For each clock x(i) a constraint in the form:

– x(i) = c with c = 0, 1, ..., M(i); or
– c – 1 < x(i) < c with c = 1, ..., M(i); or
– x(i) > M(i)

● For each pair of clocks x(i), x(j) a constraint in the form
– frac(x(i)) < frac(x(j))
– frac(x(i)) = frac(x(j))
– frac(x(i)) > frac(x(j))

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j))

54

Clock Regions: Example
● Clocks C = [x, y]
● M(x) = 2; M(y) = 3
● All 60 possible clock regions:

● 12 corner points
● 30 open line segments
● 18 open regions

55

Time-successors of Regions
● Fact: a clock evaluation v satisfies a clock constraint c iff any

other clock evaluation in [[v]] satisfies c
– Hence, we can say that a “clock region satisfies a clock constraint”

Given a clock region R it is always possible to compute all other clock
regions that can be reached from R by letting time pass (i.e., without

resetting any clock)

● Graphically:
● the time-successors of a region R are the regions that can be reached

by moving along a line parallel to the diagonal in the upward direction,
starting from any point in R

(For a precise definition see e.g.: Alur & Dill, 1994)

Def. The time successor time-succ(R) of a clock region R is the set of all clock regions (including R
itself) that can be reached from R by letting time pass (i.e., without resetting any clock).

56

Time-successors of Regions: Example
● Graphically:

● the time-successors of a region R are the regions that can be reached by moving along
a line parallel to the diagonal in the upward direction, starting from any point in R

● Example:
● successors of region

2 < y < 3; 1 < x < y-1
(other than the region itself):

● y > 3; 1 < x < 2
● y > 3; x = 2
● y = 3; 1 < x < 2
● y > 3; x > 2

● successors of region
y = 1; x = 2
(other than the region itself):

● 2 < y < 3; x > 2
● ...

57

Region Automaton Construction
For a timed automaton A it is always possible to build an FSA

reg(A) (the “region automaton” of A) such that:
⟨A⟩ = ∅ iff ⟨reg(A)⟩ = ∅

Def. Given a TA A = [Σ, S, C, I, E, F] its region automaton
 reg(A) ≜ [Σ, rS, rI, rE, rF] is defined as:
● rS ≜ { (s, r) | s S∈ and r is a clock region }
● rI ≜ { (s, [[0, 0, ..., 0]]) | s ∈ I }

–the clock region where all clocks are reset to 0
● rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s'] ∈ E

 and there exists a region r'' ∈ time-succ(r)
 such that r'' satisfies c, and r' is obtained
 from r'' by resetting all clocks in ρ to 0 }

● rF ≜ { (s, r) | s ∈ F }

58

Region Automaton: Example

