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Program Verification: the very idea

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

require
true

ensure
Result >= a
Result >= b

P: a program S: a specification

Does           P  S               hold?⊧

The Program Verification problem:
● Given: a program P and a specification S
● Determine: if every execution of P, for every value of input parameters, satisfies S
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Real-time Verification

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

ensure
Result >= a
Result >= b

ensure  -- real-time
“max terminates no sooner
 than 3 ms and no later than
 10 ms after invocation”

P: a program S: a specification

Does           P  S               hold?⊧

The Real-time Verification problem:
● Given: program P (embedded in system E) and real-time specification S
● Determine: if every execution of P (within E) satisfies S
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Real-time Programs and Systems

● The timing of a piece of software is usually dependent on the environment 
where the computation takes place

● Hence, in real-time verification the focus shifts from programs to (software-
intensive) systems

– In a system, even the physical environment is often relevant

● The purely computational aspects can often be analyzed in isolation
● Real-time verification can then focus on real-time aspects of the system

– e.g., synchronization, deadlines, delays, ...

while abstracting away most of the rest

Def. Real-time specification: specification that includes 
exact timing information.

Def. Real-time computation: computation whose 
specification is real-time. In other words: computation 
whose correctness depends not only on the value of the 
result but also on when the result is available.
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Decidability vs. Expressiveness Trade-Off

● The classes for F(P) and N(S) should guarantee:
– enough expressiveness to include a quantitative notion of time
– decidability of the verification problem

The Real-time Verification problem:
● Given: program P (embedded in system E) and real-time specification S
● Determine: if every execution of P (within E) satisfies S

Does      F(P)  N(S)         hold?⊧

P: a system S: a real-time specification

F(P): some formal model of P N(S): some formal notation for S
⇕ ⇕
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Real-time Model-Checking

A: a timed automaton F: a metric temporal-logic formula

A  F⊧

The Real-time Model Checking problem:
● Given: a timed automaton A and a metric temporal-logic formula F
● Determine: if every run of A satisfies F or not

– if not, also provide a counterexample: a run of A where F does not hold

● The model-checking paradigm is naturally extended to real-time systems

● Different choices are possible for the family of automata and of formulae
● The linear vs. branching time dichotomy is usually not significant for real-time

– linear time is almost invariably preferred

● A different attribute of time that becomes relevant in quantitative models is discrete vs. dense time

?
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Discrete vs. dense (continuous) time

● merely dense vs. continuous is usually not as relevant
– e.g.: ℚ vs. ℝ

● Discrete time
● sequence of isolated “steps”
● every instant has a unique successor
● e.g.: the naturals  ℕ = {0, 1, 2, ...}

+ simple and intuitive

+ verification usually decidable (and 
acceptably complex)

+ robust and elegant theoretical 
framework

– cannot express true asynchrony
– unsuitable to model physical 

variables

● Dense time
● arbitrarily small distances
● the successor of an instant is not 

defined
● e.g.: the reals ℝ

+ can model true asynchrony

+ accurate modeling of physical 
variables

– tricky to understand
– verification easily undecidable (or 

highly complex)
– lacks a unifying framework
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Dense Real-time Model-Checking

Timed Automata and
Metric Temporal Logic
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Dense Real-time Model-Checking
Dense real-time model checking considers the same model as 
discrete real-time model checking but with ℝ≥0 as time 
domain:
● A dense Timed Automaton (TA) models the system
● Dense-time Metric Temporal Logic (MTL) models the 

property
● The syntax of TA and MTL need not be changed for dense time

– with the possible exception of allowing fractional time bounds

● The semantics of TA and MTL is also unchanged except that:
● ℝ≥0 replaces  ℕ as time domain
● Infinite words are considered by default: 

– This is a technicality that we will ignore in the presentation for 
simplicity, although it does affect some results.
See later for the details.
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Dense Real-time Model-Checking

A: a TA F: an MTL formula

A  F⊧

The Dense Real-time Model Checking problem:
● Given: a dense TA A and an MTL formula F
● Determine: if every run of A satisfies F or not

– if not, also provide a counterexample: a run of A where F does not hold

?

Dense real-time model checking extends standard “untimed” 
model checking:
● The Timed Automaton (TA) extends the Finite-State Automaton 

(FSA)
● Metric Temporal Logic (MTL) extends Linear Temporal Logic 

(LTL)



28

Timed Automata: Syntax
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Timed Automata: Syntax
Def. Nondeterministic Timed Automaton (TA):

 a tuple [Σ, S, C, I, E, F]:
● Σ: finite nonempty (input) alphabet
● S: finite nonempty set of locations

(i.e., discrete states)
● C: finite set of clocks
● I, F: set of initial/final states
● E: finite set of edges [s, σ, c, ρ, s']

– s  ∈ S: source location
– s'  ∈ S: target location
– σ  ∈ Σ: input character (also “label”)
– c: clock constraint in the form:

c ::= x ≈ k | x – y ≈ k | ¬ c | c1 ∧ c2
● x, y  ∈ C are clocks
● k  ∈ ℤ is an integer constant
● ≈ is a comparison operator among <, ≤, >, ≥, =

– ρ   C: set of clock that are ⊆ reset (to 0)



30

Timed Automata: Semantics
● Accepting run:

r = [off, (x=0, y=0)]
 [on, (x=0, y=3.2)]
 [cooking, (x=8.5, y=0)]
 [on, (x=81.7, y=73.2)]
 [off, (x=84.91, y=76.41)]

● Over input timed word:
w = [turn_on, 3.2]

 [start, 11.7]
 [stop, 84.9]
 [turn_off, 88.11]
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Timed Automata: Semantics

Def. An accepting run of a TA A=[Σ, S, C, I, E, F]
    over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)]  (∈ Σ x ℝ)* is a
    sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)]

                         (S x ∈ ℝ
| C| )* of (extended) states such that:

– it starts from an initial state and ends in an accepting state:   s(0)  ∈ I  and s(n) 
 

 ∈ F

– initially all clocks are reset to 0:   v(0,k) = 0  for all 1 ≤ k ≤ |C|
– for every transition (0 ≤ i < n):

[ s(i) v(i,1) ... v(i,|C|) ]  -->  [ s(i+1) v(i+1,1) ... v(i+1,|C|) ]
some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:

● the clock values v(i,1) + (t(i+1) - t(i)) ... v(i,|C|) + (t(i+1) - t(i)) satisfy the constraint c
● v(i+1,k) = if k-th clock is in ρ then 0 else v(i,k) + t(i+1) - t(i)

Def. A timed word w = w(1) w(2) ... w(n)  (∈ Σ x ℝ)* is a sequence
   of pairs [σ(i), t(i)] such that:

– the sequence of timestamps t(1), t(2), ..., t(n) is increasing
● [σ(i), t(i)] represents the i-th character σ(i) read at time t(i)
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Timed Automata: Semantics

Def. Any TA A=[Σ, S, C, I, E, F] defines
   a set of input timed words A⟨ ⟩:
  A⟨ ⟩  { w ≜  ∈ (Σ x )ℝ *  | there is an
                             accepting run of A
                               over w }

      ⟨A  is called the ⟩ language of A

With regular expressions and arithmetic:
A⟨ ⟩ = ( [turn_on, t

1
]

   ([start, t
2
] [stop, t

3
])*

   [turn_off, t
4
] )*

  with t
3
-t

2 
≤ 300 and t

4
-t

1 
> 1
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Metric (Linear) Temporal Logic
◊[2,4) stop

“there is an occurrence of stop between 2 (included) and 4 (excluded) time units 
in the future”

● [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...

● [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ...

□(2,4] start

“start holds between 2 (excluded) and 4 (included) time units in the future”

● [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ...

● [any, t ≤ 2] [start, 4] [any, t > 4] ...

● [stop, 0] [stop, 0.3] [stop, 0.7]
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Metric (Linear) Temporal Logic

□ ( start  ◊(⇒ 3,10] stop )
“every occurrence of start is followed by an occurrence 
of stop between 3 (excluded) and 10 (included) time units 
in the future”

cook U(3,10] stop
“stop occurs between 3 (excluded) and 10 (included) time 
units in the future, and cook holds until then”
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Metric (Linear) Temporal Logic: Syntax
Def. Propositional Metric Temporal Logic (MTL) formulae

 are defined by the grammar:
   F  ::=  p  |  ¬ F  |  F ∧ G  |  F U<a,b> G

with p  ∈ P any atomic proposition and <a,b> is an interval 
of the time domain (w.l.o.g. with integer endpoints).
Temporal (modal) operators:
● next:     X F ≜ True U[1,1] F
● bounded until:  F U<a,b> G
● bounded release:  F R<a,b> G  ≜ ¬ (¬F U<a,b> ¬G)
● bounded eventually: ◊<a,b> F  ≜ True U<a,b> F
● bounded always:  □<a,b> F  ≜ ¬ ◊<a,b> ¬F
● intervals can be unbounded; e.g., [3, ∞)
● intervals with pseudo-arithmetic expressions, e.g.:

● ≥ 3 for [3, ∞)
● = 1 for [1,1]
● [0, ∞) is simply omitted

□ ( start  ◊(⇒ 3,10] stop )
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Metric Temporal Logic: Semantics

Def. A timed word w =  [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)]  (∈ P x )*ℝ  satisfies
  an LTL formula F at position 1 ≤ i ≤ n, denoted w, i  F⊧ ,
  under the following conditions:

– w, i  p      ⊧     iff    p = σ(i)

– w, i  ⊧ ¬ F          iff    w, i ⊧ F does not hold

– w, i  ⊧ F ∧ G       iff    both w, i  ⊧ F and w, i  G⊧  hold

– w, i  F ⊧ U<a,b> G iff    for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b> it is:
           w, j  G ⊧ and for all i ≤ k < j it is w, k  ⊧ F

● i.e., F holds until G will hold within <a, b>

For derived operators:

– w, i  ⊧ ◊<a,b> F iff  for some i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
       it is: w, j  F⊧

● i.e., F holds eventually within <a,b>

– w, i  ⊧ □<a,b> F iff  for all i ≤ j ≤ n such that t(j) – t(i) ∈ <a,b>
       it is: w, j  F⊧

● i.e., F holds always within <a,b>
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Metric Temporal Logic: Semantics

Def. Satisfaction:
                 w  F    ⊧ ≜   w, 1   F⊧

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words F⟨ ⟩:
  F⟨ ⟩  { w ≜  (P x ∈ ℝ)*  | w  F }⊧

      ⟨F  is called the ⟩ language of F
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Dense Real-time Model-Checking

What's Decidable?
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TAs not Closed under Complement
A: a dense TA F: a dense-time MTL formula

A  F⊧
?

Fundamental problem:
● Dense timed automata are not closed under 

complement
– The complement of the language

of this TA isn't accepted by any TA:
● language of this TA:

“there exist two p's separated by one t.u.”
● complement language:

“no two p's are separated by one t.u.”
● intuition: need a clock for each p within

the past time unit, but there can be an
unbounded number of such p's because time is dense
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TAs not Closed under Complement

Fundamental problem:
● Dense TAs are not closed under complement
● MTL is clearly closed under complement

– Language of the TA:    ◊ ( p  ◊=1∧  p )
– Complement language of the TA:

¬ ◊ ( p  ◊=1 ∧ p ) = □ ( p  ¬ ◊=1 ⇒ p )
● Hence, automata-theoretic dense

real-time model-checking
is unfeasible
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Dense MTL Model Checking is Undecidable

An even more fundamental problem:

● The dense-time model-checking problem for MTL 
and TAs is undecidable (for infinite words)
– no approach is going to work, not just the automata-

theoretic one

● MTL and TAs are “too expressive” over dense time



42

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of 
automata-theoretic model checking:

● MTL2TA: given MTL formula F build TA
a(F) such that ⟨F  = ⟩ ⟨a(F)⟩

● undecidable problem (for infinite words)
● TA-Intersection: given TAs A, B build

TA C such that ⟨A  ⟩ ∩ ⟨B  = ⟩ ⟨C⟩
● decidable

● TA-Emptiness: given TA A check whether
⟨A  = ⟩ ∅ is the case

● decidable!
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Dense Real-time Model-Checking

Intersection of Timed Automata
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Given TAs A, B it is always possible to build automatically a TA 
C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed 
word is accepted if and only if both A and B would accept it. The 
construction is called “product automaton”.

TA-Intersection: running TAs in parallel



TA-Intersection: Example

x =
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Def. Given TAs A=[Σ, SA, CA, IA, EA, FA] and B=[Σ, SB, CB, IB, EB, FB]
  let     C  ≜ A x B ≜ [Σ, SC, CC, IC, EC, FC]      be defined as:
● SC ≜ SA  x SB

● CC ≜ CA   C∪ B  (assuming w.l.o.g. that they are disjoint sets)
● IC ≜ { (s, t) | s  I∈ A  and t  I∈ B }
● [(s, t), σ, cA ∧ cB, ρA  ∪ ρB, (s', t')]  ∈ EC   iff

   [s, σ, cA, ρA, s']  E∈ A    and     [t, σ, cB, ρB, t']  E∈ B

● FC ≜ { (s, t) | s  F∈ A  and t  F∈ B }

Theorem.
⟨A x B⟩

=
⟨A  ⟩ ∩ ⟨B⟩

TA-Intersection: running TAs in parallel
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Dense Real-time Model-Checking

Checking the Emptiness
of Timed Automata
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Given a TA A it is always possible to check automatically
if it accepts some timed word.

Outline of the algorithm:
● Assume that clock constraints involve integer constants only

●this is without loss of generality as it amounts to scaling
● Define an equivalence relation over extended states

●an extended state is a tuple [s, v(1), ..., v(|C|)]
with a location s and a value v(i) for every clock in C.

● All extended states in the same equivalence class are equivalent
w.r.t. satisfaction of clock constraints

● The equivalence relation is such that there is a finite number
of equivalence classes for any given TA

● Given a TA A, build an FSA reg(A) – the “region automaton”:

– the states of reg(A) represent the equivalence classes of
the extended states of any run of of A

– the edges of reg(A) represent evolution of any extended state
within the equivalence class over any run of A

● Checking the emptiness of reg(A) is equivalent to checking the emptiness of A

TA-Emptiness
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Integer vs. Rational vs. Irrational

● The domain for time is ℝ≥0

● What about the domain for time constraints?
– constants in clock constraints of TAs  (e.g.: x < k)

1. Same as the domain for time: ℝ≥0
● e.g.:   x < π
● emptiness becomes undecidable!

2.Discrete time domain: integers ℕ
● e.g.:   x < 5
● emptiness fully decidable (see algorithm next)

3.Dense but not continuous: rationals ℚ≥0
● e.g.:   x < 1/3
● emptiness is reducible to the integer case
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Integer vs. Rational

● Dense but not continuous: rationals ℚ≥0

● Let A be a TA with rational constants
● let m be the least common multiple of denominators of all 

constants appearing in the clock constraints of A
● let A*m be the TA obtained from A by multiplying every 

constants in the clock constraints by m
● A*m has only integers constants in its clock constraints

● A accepts any timed word
 [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)]

iff A*m accepts the “scaled” timed word
[σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)]

● Hence checking the emptiness of A*m is equivalent to checking the 
emptiness of A
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Equivalence Relation over Extended States

Let us fix a TA A = [Σ, S, C, I, E, F] with C = [x(1), ..., x(n)]
● For any clock x(i) in C let M(i) be the largest constant involving clock 

x(i) in any clock constraint in E

● Let [v(1), ..., v(n)] ∈ ℝ≥0
n denote a “clock evaluation” representing

any assignment of values to clocks
● Equivalence of two clock evaluations:

[v(1), ..., v(n)] ~ [v'(1), ..., v'(n)]   iff    all of the following hold:

1.For all 1 ≤ i ≤ n: int(v(i)) = int(v'(i))   or v(i), v'(i) > M(i)
2.For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j):

  frac(v(i)) ≤ frac(v(j))   iff   frac(v'(i)) ≤ frac(v'(j))
3.For all 1 ≤ i ≤ n such that v(i) ≤ M(i):

  frac(v(i)) = 0     iff    frac(v'(i)) = 0
● Note: int(x) is the integer part of x; frac(x) is the fractional part of x
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Clock Regions

● For a clock evaluation v = [v(1), ..., v(n)] ∈ ℝ≥0n,
[[v]] denotes the clock region v belongs to

● As a consequence of the definition of ~, any clock region 
can be uniquely characterized by a finite set of 
constraints on clocks
● v = [0.4;  0.9;  0.7; 0]  for 4 clocks w, x, y, z
● [[v]]   is   z = 0 < w < y < x < 1

● Fact: clock regions are always in finite number

Def. A clock region is an equivalence class
of clock evaluations induced by the equivalence relation ~
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Clock Regions (cont'd)

More systematically:
● given a set of clocks C = [x(1), ..., x(n)]
● with M(i) the largest constant appearing in constraints on clock x(i)

a clock region is uniquely characterized by
● For each clock x(i) a constraint in the form:

– x(i) = c   with c = 0, 1, ..., M(i); or
– c – 1 < x(i) < c with c = 1, ..., M(i);  or
– x(i) > M(i)

● For each pair of clocks x(i), x(j) a constraint in the form
– frac(x(i)) < frac(x(j))
– frac(x(i)) = frac(x(j))
– frac(x(i)) > frac(x(j))

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j) )
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Clock Regions: Example
● Clocks C = [x, y]
● M(x) = 2;  M(y) = 3
● All 60 possible clock regions:

● 12 corner points
● 30 open line segments
● 18 open regions
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Time-successors of Regions
● Fact: a clock evaluation v satisfies a clock constraint c iff any 

other clock evaluation in [[v]] satisfies c
– Hence, we can say that a “clock region satisfies a clock constraint”

Given a clock region R it is always possible to compute all other clock 
regions that can be reached from R by letting time pass (i.e., without 

resetting any clock)

● Graphically:
● the time-successors of a region R are the regions that can be reached 

by moving along a line parallel to the diagonal in the upward direction, 
starting from any point in R

( For a precise definition see e.g.: Alur & Dill, 1994 )

Def. The time successor time-succ(R) of a clock region R is the set of all clock regions (including R 
itself) that can be reached from R by letting time pass (i.e., without resetting any clock).
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Time-successors of Regions: Example
● Graphically:

● the time-successors of a region R are the regions that can be reached by moving along
a line parallel to the diagonal in the upward direction, starting from any point in R

● Example:
● successors of region

2 < y < 3; 1 < x < y-1
(other than the region itself):

● y > 3; 1 < x < 2
● y > 3; x = 2
● y = 3; 1 < x < 2
● y > 3; x > 2

● successors of region
y = 1; x = 2
(other than the region itself):

● 2 < y < 3; x > 2
● ...
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Region Automaton Construction
For a timed automaton A it is always possible to build an FSA 

reg(A) (the “region automaton” of A) such that:
⟨A⟩ = ∅ iff ⟨reg(A)⟩ = ∅

Def. Given a TA A = [Σ, S, C, I, E, F] its region automaton
  reg(A) ≜ [Σ, rS, rI, rE, rF] is defined as:
● rS ≜ { (s, r) |  s  S∈   and r is a clock region }
● rI ≜ { (s, [[0, 0, ..., 0]])  |  s  ∈ I }

–the clock region where all clocks are reset to 0
● rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s']  ∈ E

             and there exists a region r''  ∈ time-succ(r)
             such that r'' satisfies  c, and r' is obtained
             from r'' by resetting all clocks in ρ to 0 }

● rF ≜ { (s, r) | s  ∈ F }
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Region Automaton: Example


