
Software Verification 
Bertrand Meyer 

Carlo Furia 
Sebastian Nanz 

Chair of Software Engineering 

Testing basics 



Verification techniques 

A priori techniques 
  Build system for quality; e.g.: process approaches, 

proof-guided construction, Design by Contract 
A posteriori techniques 

 Static: from software text only 
 Proofs 
 Static analysis 
 Abstract interpretation 

 Dynamic: execute software 
  Mixed: 

 Symbolic execution 
 Model checking 

2 



3 

Failures, faults, mistakes 

Quality is the absence of “deficiencies” (or “bugs”). 

IEEE standard terminology: 

Mistakes 

Faults 

Failures 

result from 

caused by 



4 

What is a failure? 

A failure is any event of system execution that violates a 
stated quality objective 

Typical examples: 
  Wrong result 
  Crash 



- 1 – 

Overview of the 
requirements task 

Testing basics 

5 



6 

Definition: testing 

To test a software system is to try to make it fail 

Testing is none of: 
 Ensuring software quality 
 Assessing software quality 
 Debugging 

“Ich bin der Geist, der stets verneint” 
 Goethe, Faust, Act I 



7 

1.  To test a program is to try to 
make it fail 

2.  Tests are no substitute for 
specifications 

3.  Any failed execution must yield a test case, to remain 
forever remain part of the regression test base 

4.  Determining success or failure (oracles) must be automatic 

 4’: Oracles should be part of the program, as contracts 

5.  A test suite must include both manual and automated cases 

6.  Don’t believe your testing insights: evaluate any testing 
strategy through objective criteria 

7.  The most important criterion is number of faults found 
against time:  fc (t) 

Seven principles of software testing 

Bertrand Meyer, Seven 
Principles of Software Testing, 
IEEE Computer, August 2008 



8 

Exercise* 

Scenario: 
  A program reads three integers representing the 
lengths of a triangle’s sides, and  prints a message stating 
whether the triangle is scalene, isosceles or equilateral. 

Task: 
  Devise inputs to test the program as thoroughly as 
possible  

*After Yuri Gurevich, LASER summer school 2009. Exercise originally from 
Glen Myers, “The Art of Software Testing”, Wiley, 1979   



9 

Myers: Do you have these? 

1.  A scalene triangle 
2.  An isosceles triangle 
3.  An equilateral triangle 
4.  3 permutations of 2 
5.  A zero-length side 
6.  A negative-length side 
7.  Three positive sides,  

sum of two = third 
8.  Three permutations of 7 

9.  Three positive sides,  
sum of two < third 

10.  Three permutations of 9 
13.  (0,0,0) 
14.   Noninteger values 
15.  Wrong number of initial 

values 
16.  The expected output in 

each case 



- 1 – 

Overview of the 
requirements task 

- Intermezzo - 

Test-Driven 

Development 

10 



“The agile manifesto” 

We are uncovering better ways of developing software by 
doing it and helping others do it.  Through this work we 
have come to value: 

  Individuals and interactions over processes and tools  
 Working software over comprehensive documentation 
  Customer collaboration over contract negotiation 
  Responding to change over following a plan  

That is, while there is value in the items on  
the right, we value the items on the left more.  

agilemanifesto.org 



Agile methods: basic concepts 

Principles: 
 Iterative development 
 Customer involvement 
 Support for change 
 Primacy of code 
 Self-organizing teams 
 Technical excellence 
 Search for simplicity 

Practices: 
 Evolutionary requirements 
 Customer on site 
 User stories 
 Pair programming 
 Design & code standards 
 Test-driven development 
 Continuous refactoring 
 Continuous integration 
 Timeboxing 
 Risk-driven development 
 Daily tracking 
 Servant-style manager 

Shunned: “big upfront 
requirements”; plans; 
binding documents; 
diagrams (e.g. UML); non-
deliverable products 



Evolutionary approach to development 
Combines  

 Test-first development  
 Refactoring 

Primarily a method of software design 
 Not just a method of testing 

Test-Driven Development 

13 



TDD1: Test-First Development 

1. Add a test 
2. Run all tests and check the new 

one fails 
3. Implement code to satisfy 

functionality 
4. Check that new test succeeds 
5. Run all tests again to avoid 

regression 
6. Refactor code 

After Kent Beck* 

*Test Driven Development: By Example, Addison-Wesley 



A change to the system that leaves its behavior 
unchanged, but enhances some non-functional quality: 
 Simplicity 
 Understandability 
 Performance 

Refactoring does not fix bugs or add new functionality. 

TDD 2: Refactoring 

15 



Change the name of a variable, class, ... 
Convert local variable to attribute 
Generalize type 
Introduce argument  
Turn a block of code into a routine 
Replace a conditional with polymorphism 
Break down large routine 

Examples of refactoring 

16 



Apply test-first development 

Refactor whenever you see fit (before next functional 
modification) 

TDD = TFD + Refactoring  

17 



Developers must learn to write good unit tests: 
 Run fast (short setup, run, and tear-down) 
 Run in isolation (reordering is possible) 
 Use data that makes test cases easy to read 
 Use real data when needed 
 Each test case is one step towards overall goal 

TDD: consequences on unit tests 

18 



TDD assessment 

For: 
  Reclaims central role of tests  
  Continuous execution: reduce gap between 

decision and feedback 
  Encourage developers to write code that is easily 

tested 
  Yields extensive test repository 
  Requires that all tests pass 

But: 
  Tests are not specs 
  Some code difficult to test 
  Risk that program pass tests 

and nothing else 



- 1 – 

Overview of the 
requirements task 

-End of Intermezzo - 

Test-Driven 

Development 

20 



21 

What does testing involve? 

  Determine system parts & properties to be tested 

  Determine appropriate input values 

  Determine expected outputs (oracles) 

  Run system on selected input values 

  Compare results to oracles 

  Measure other execution characteristics: time, space… 



22 

Components of a test 

Test case specifies: 
 The state of the implementation under test (IUT) 

and its environment before test execution 
 The test inputs 
 The expected result 

Oracles define: 
 Expected returned values 
 Expected messages 
 Expected exceptions 
 Resulting state of IUT and environment 
  Possibly: pass/no pass evaluation 



23 

Test execution 

Test suite: collection of test cases 

Test driver: class or utility program that applies test 
cases to an IUT 

Stub: partial, temporary implementation of a component 
 May serve as a placeholder for an incomplete 

component or implement testing support code 

Test harness : a system of test drivers and other tools to 
support test execution 



24 

Types of tests: scope 

Unit test  
 Scope: program module, e.g. routine, class, cluster 

Integration test  
 Scope: subsystem or entire system, possibly including hardware 
  Exercises interfaces between units to demonstrate that they 

are collectively operable 
System test 

 Scope: Complete, integrated application 
  Focuses on characteristics that are present only at the level of 

the entire system 
  Categories: 

  Functional 
  Performance 
  Stress or load 



V-shaped lifecycle model 

FEASIBILITY STUDY 

REQUIREMENTS 
ANALYSIS 

GLOBAL DESIGN 

DETAILED DESIGN 

DISTRIBUTION 

IMPLEMENTATION 

UNIT TEST 

INTEGRATION TEST 

SYSTEM TEST 



26 

Types of tests: intent 

Fault-directed testing 
 Intent: reveal faults through failures 
 Unit and integration testing 

Conformance-directed testing 
 Intent: demonstrate conformance to required 

capabilities 
 System testing 

Acceptance testing 
 Intent: enable customer to decide whether to accept 

software 



27 

Types of tests: intent 

Regression testing 
 After a change., re-test program to find out if 

change has not introduced, re-introduced or 
uncovered faults 

Mutation testing  
  Purposely introducing faults to assess quality of test 

suite 



28 

Black box vs white box testing (1)  

Black box testing White box testing 
Uses no knowledge of the 
internals of the SUT 

Uses knowledge of the internal 
structure and implementation of 
the SUT 

Also known as responsibility-based 
testing and functional testing 

Also known as implementation-
based testing or structural 
testing 

Goal: to test how well the SUT 
conforms to its requirements 
(Cover all the requirements) 

Goal: to test that all paths in the 
code run correctly  
(Cover all the code) 



29 

Black box vs white box testing (2) 

Black box testing White box testing 
Uses no knowledge of the program 
except its specification 

Relies on source code analysis to 
design test cases 

Typically used in integration and 
system testing 

Typically used in unit testing 

Can also be done by user Typically done by programmer 


