
Software Verification

Bertrand Meyer

Carlo Furia

Sebastian Nanz

Chair of Software Engineering

Testing, part 2

Mutation testing

2

How do you

count the

Eggli in the

Zürichsee?

Mutation testing

Purpose: estimate quality of a test suite

Principle: make small changes to the program source code
(so that the modified versions still compile) and see if

3

(so that the modified versions still compile) and see if
successful test cases still succeed

If they do, the test suite is not good enough!

Terminology

Mutant: a modified version of the program, obtained by
injecting a fault

�We only consider mutants that are not equivalent to
the original program

Killed mutant: At least one test case detects the injected

4

Killed mutant: At least one test case detects the injected
fault

Alive mutant: no test case detects the injected fault

Mutation score : measurement of effectiveness of test,
defined next

Mutation operators

Mutation operator: a rule that specifies a syntactic
variation of the program text so that the modified
program still compiles

A mutant is the result of an application of a mutation
operator

5

The quality of the mutation operators determines the
quality of the mutation testing process

Mutation operator coverage (MOC): For each mutation
operator o, there is at leas one mutant using o

Examples of mutants

Original program:

if (a < b)

b := b – a;

else

b := 0;

Mutants:

if (a < b)

if (a <= b)

if (a > b)

if (c < b)

6

b := 0; if (c < b)

b := b – a;

b := b + a;

b := x – a;

else

b := 0;

b := 1;

a := 0;

OO mutation operators

Polymorphism- and dynamic binding-related:
�Change creation type

create x.make � create {T} x.make
�Redefinition

Replace inherited routine or attribute
by redefined version

Various:

7

Various:
�Argument order change

If types match, e.g. f (x, y: INTEGER)
�Replace assignment by copy

list1 := list2.twin � list1 := list2

System test quality (STQ)

S: system composed of n components, denoted Ci

di: number of killed mutants after applying test sequence to Ci

mi: total number of mutants

Mutation score for Ci and test sequence Ti: MS(Ci, Ti) = di / mi

System test quality:

8

STQ(S) =

STQ provides a measure of test suite quality

If contracts are used as oracles, STQ is a combined measure of
test and contract quality

∑

∑

=

=

ni
i

ni
i

m

d

,1

,1

Mutation tools

muJava - http://ise.gmu.edu/~ofut/mujava/

9

- 1 –

Overview of the Test CoverageOverview of the
requirements task

Test Coverage

10

Coverage

How extensive is a test?

Coverage measures a percentage of elements of a certain
kind exercised by a test suite.

“Achieving coverage” means reaching 100% for the chosen

11

“Achieving coverage” means reaching 100% for the chosen
criterion

Purposes of measuring code coverage

Code coverage analysis makes it possible to:

�Find sections of code not exercised by test cases

�Create additional test cases that exercise properties
not previously tested

�Obtained a (hoped for) estimate of test suite quality

12

�Obtained a (hoped for) estimate of test suite quality

Code coverage analyzer

A code coverage analyzer is a tool that automatically
computes the coverage achieved by a test suite

Steps involved:

1. Instrument source code by inserting trace
instructions that write to a trace file

13

instructions that write to a trace file

2. Run tests

3. Parse trace file to produce a coverage report

Standard measures of coverage

Instruction coverage, branch coverage etc.

14

Instruction (statement) coverage

Percentage of instructions (executable statements) executed

� Disadvantage: insensitive to control structures

15

Branch (or “decision”) coverage

Percentage of conditionals whose boolean expression has evaluated to
both true and false

� Disadvantage: insensitive to individual components of boolean
expression

� The most commonly used in practice (easy to achieve)

16

Condition coverage

Percentage of elementary boolean conditions that have evaluated to
both true and false

� Disadvantage: Not all combinations

17

Example:

if a and b then …

Multiple-condition coverage

Percentage of combinations of true and false values of elementary
boolean conditions

� Disadvantage: difficult to achieve, widely different number of
tests for similar expressions

Examples*

a and b and (c or (d and e)) ((a or b) and (c or d)) and e

18

a and b and (c or (d and e)) ((a or b) and (c or d)) and e

*From Steve Cornett

Modified Condition/Decision coverage (MC/DC)

Percentage of combinations of elementary conditions that have
evaluated to both true and false value for one of the conditions, with
all the other conditions unchanged, leading to both true and false for
the overall expression (decision)

Example:

(a or b) and (c or not d)

19

(a or b) and (c or not d)

� Advantage: easier to achieve than multiple condition

� The standard at Boeing

Generalization: predicate coverage

A predicate is covered if at least one test run makes it
true and at least one makes it false

Example:

a ∨ b ∨ (f(x) ∧ x > 0)

is covered by the following two test cases:

20

is covered by the following two test cases:

� {a=true; b=false; f(x)=false; x=1}

� {a=false; b=false; f(x)=true; x=-1}

Clause coverage (CC)

Satisfied if for every clause of the predicate at least one
test run makes the clause true and at least one to false

Example:

x > 0 ∨ y<0

Clause coverage is achieved by:
� {x=-1; y=-1}

21

� {x=-1; y=-1}

� {x=1; y=1}

Does clause coverage imply predicate coverage?

No: consider following variant:

� {x=-1; y=2}

� {x=1; y=1}

Combinatorial coverage (CoC)

The test runs must include all possible combination of
clause values

Example:

((A∨∨∨∨B)∧∧∧∧C)

A B C ((A∨∨∨∨B)∧∧∧∧C)

22

1
2
3
4
5
6
7
8

T
T
T
T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

T
F
T
F
T
F
F
F

Determination

A clause cM (called major clause) of a predicate p
determines p if the remaining clauses cm∈p, m≠M (called
minor clauses) have such values that changing the value
of cM changes the value of p. cM will be the active clause.

Example:

p = a b

23

p = a ∨ b
a b

cM = a T
F

f
f

cM = b f
f

T
F

Correlated Active Clause Coverage (CACC)*

For each p∈P and each major clause cM∈Cp, choose minor clauses cm,
m≠M so that cM determines p

The test runs must include at least one that makes cM true and one
that makes it false

The values chosen for the minor clauses do not need to be the same
for these two runs

24

Example:

p = a ∧ (b ∨ c)

a b c a ∧∧∧∧ (b ∨∨∨∨ c)

1
2
3

T
T
T

T
T
F

T
F
T

T
T
T

5
6
7

F
F
F

T
T
F

T
F
T

F
F
F

We satisfy CACC for a if
we choose one test case
out of rows 1, 2, or 3, and
one out of rows 5, 6, or 7.

*Variant of “MCDC”

Restricted Active Clause Coverage (RACC)

For each p∈P and each major clause cM∈Cp, choose minor clauses cm,
m≠M so that cM determines p.

The test runs must include one that makes cM true and and one that
makes it false

The values chosen for the minor clauses must be the same for these
two runs

Example:

25

Example:

p = a ∧ (b ∨ c)
a b c a ∧∧∧∧ (b ∨∨∨∨ c)

1
5

T
F

T
T

T
T

T
F

2
6

T
F

T
T

F
F

T
F

3
7

T
F

F
F

T
T

T
F

We satisfy RACC for a if
we choose (1,5), or (2,6),
or (3,7).

Path coverage

Percentage of paths taken

A path is a unique sequence of branches from routine entry to exit

� Disadvantage: exponential

� Does not take loops into account

26

Can be impossible to achieve 100%

if c then a end

other_instructions

if c then b end

(if other_instructions do not affect c.)

Limits of coverage measures

27

Yi Wei, M. Oriol, B. Meyer (2009)

Code coverage tools

Emma
� Java
� Open-source
� http://emma.sourceforge.net/

JCoverage
� Java
� Commercial tool
� http://www.jcoverage.com/

NCover

28

http://www.jcoverage.com/
NCover

� C#
� Open-source
� http://ncover.sourceforge.net/

Clover, Clover.NET
� Java, C#
� Commercial tools
� http://www.cenqua.com/clover/

See also http://www.codecoveragetools.com/

Dataflow-oriented testing

Focuses on how variables are defined, modified,
and accessed throughout the run of the program

Looks for faults resulting from wrong paths

29

Looks for faults resulting from wrong paths
between a definition of a variable in the code and
certain uses of that variable

Access-related potential bugs

Examples:

�Using an uninitialized variable

�Assigning to a variable more than once without an
intermediate access

� (C++) Deallocating a variable before it is initialized

� (C++) Deallocating a variable before it is used

30

� (C++) Deallocating a variable before it is used

�Modifying an object more than once without
accessing it

Types of access to variables

Definition (def) : change value of variable (constructor,
assignment, procedure)

Use: read value of variable

�Computational use (c-use): in a computation

�Predicative uses (p-use): in a test

�Kill: instruction that results in a variable being

31

�Kill: instruction that results in a variable being
deallocated, undefined, released or no longer visible

Examples:

�z := x ∗ y // c-use of y; c-use of x; def of z

� if x > 0 then … // p-use of x

Data flow graph

All measures of dataflow coverage are defined in terms of
the data flow graph

�Sub-path: sequence of consecutive nodes

�Path: sub-path starting at entry node and ending at
exit node

Path properties:

32

Path properties:

�A sub-path is def-clear for a variable v if it contains
no definition of v

�A sub-path p starting with a def of variable v is a du-
path for v if p is def-clear for v except for the
first node, and v encounters either a c-use in the
last node or a p-use along the last edge of p

Example: source code

class ACCOUNT feature

balance: INTEGER

withdraw (sum: INTEGER)

do

if balance >= sum then

balance = balance - sum

if balance = 0 then

33

if balance = 0 then

io.put_string (“There were only " + sum +

"CHF in the account. The account is now empty.%N")

end

else

io.put_string (“There is less than ” + sum + “CHF in the account.”)

end

end

end

Control flow graph for withdraw

Definition of sum

(0)

if

balance >=

sum

(1)

balance =

balance – sum

True

print(sum)

(5)

False

34

balance sum

(2)

if

balance == 0

(3)

print(sum)

(4)

True

(5)

False

Data flow graph for sum in withdraw

Definition of sum

(0)

if

balance >=

sum

(1)

balance =

balance

True

print(sum)

False

35

balance – sum

(2)

if

balance == 0

(3)

print(sum)

(4)

True

(5)

False

Data flow graph for balance in withdraw

Definition of sum

(0)

if

balance >=

sum

(1)

balance =

balance

True

print(sum)

False

36

balance – sum

(2)

if

balance == 0

(3)

print(sum)

(4)

True

(5)

False

Dataflow coverage criteria

all-defs: execute at least one def-clear sub-path between
every definition of every variable and at least one
reachable use of that variable.

all-p-uses: execute at least one def-clear sub-path from
every definition of every variable to every reachable p-use
of that variable.

37

of that variable.

all-c-uses: execute at least one def-clear sub-path from
every definition of every variable to every reachable c-use
of the respective variable.

Dataflow coverage criteria (continued)

all-c-uses/some-p-uses: apply all-c-uses; then if any
definition of a variable is not covered, use p-use

all-p-uses/some-c-uses: symmetrical to all-c-uses/some-p-
uses

38

all-uses: execute at least one def-clear sub-path from
every definition of every variable to every reachable use
of that variable

Dataflow coverage criteria for sum in withdraw

all-defs: at least one def-clear sub-path
between every definition and at least
one reachable use
(0,1)

all-p-uses: at least one def-clear sub-
path from every definition to every

39

path from every definition to every
reachable p-use

(0,1)

all-c-uses: at least one def-clear sub-
path from every definition to every
reachable c-use

(0,1,2); (0,1,2,3,4); (0,1,5)

Dataflow coverage criteria for sum in withdraw (cont.)

all-c-uses/some-p-uses: apply all-c-uses;
then if any definition of a variable is
not covered, use p-use

(0,1,2); (0,1,2,3,4); (0,1,5)

all-p-uses/some-c-uses: symmetrical to
all-c-uses/some-p-uses

40

all-c-uses/some-p-uses

(0,1)

all-uses: at least one def-clear sub-path
from every definition to every
reachable use

(0,1); (0,1,2);(0,1,2,3,4);(0,1,5)

Specification coverage

Predicate: an expression that evaluates to a boolean value

�e.g.: a ∨ b ∨ (f(x) ∧ x > 0)

Clause: a predicate that does not contain any logical
operator

�e.g.: x > 0

41

�e.g.: x > 0

Notation:

�P = set of predicates

�Cp = set of clauses of predicate p

If specification expressed as predicates on the state,
specification coverage translates to predicate coverage

Partition testing

If we cannot test every value of the input domain, how do
we choose inputs?

A partition divides input space into

subsets (equivalence classes) satisfying:

42

subsets (equivalence classes) satisfying:

� Completeness (covers all input)

� Disjointness

Expectation (hope) behind partition testing:

�If any value in the subset produces a failure, any
other value in the subset does too

Examples of partition testing

Boundary value analysis

Special values testing

43

Choosing values

Each Choice (EC):

�Test suite includes at least one test case from every
equivalence class for every input

44

All Combinations (AC):

�Test suite includes at least one test case from every
combination of equivalence classes for all inputs

Partition testing

Applicable to all levels of testing: unit, class, integration,
system, etc.

Based only on the input space of the program, not the
implementation (i.e. black box concept)

45

implementation (i.e. black box concept)

Many testers intuitively apply a similar concept

Part 8 :

Measuring test quality

- 9 -

Contract-based &
random testingMeasuring test qualityrandom testing

Test automation

Testing is so difficult and time consuming…

So why not do it automatically?

What is most commonly meant by “automated testing”

47

What is most commonly meant by “automated testing”
currently is automatic test execution

But actually…

What can we automate?

Test execution
�Run test suite without step-by-step actions
�Should be parameterizable
� Recover from failures (multi-process architecture)

Test management
�Let user adapt process to needs and preferences
�Save tests for regression testing

48

�Save tests for regression testing
Test result evaluation (applying oracles)

�Classifying tests as pass/no pass
�Other info about test results

What can we automate?

Regression testing

�Re-run previous tests

�May require minimization
Estimation of test suite quality

�Report a measure of code coverage
�Other measures of test quality

49

�Other measures of test quality
�Feed this estimation back to the test generator

Test generation

�Generation of test data (objects used as targets or
parameters for feature calls)

�Procedure for selecting the objects used at runtime

�Generation of test code (code for calling the
features under test)

“Push-button testing”

Never write a test case, a test suite, a test oracle, or a
test driver

Automatically generate

�Objects

�Feature calls

�Evaluation and saving of results

50

�Evaluation and saving of results

The user must only specify the system under test and the
tool does the rest (test generation, execution and result
evaluation)

Testing strategy

How do we plan and structure the testing of a large
program?

�Who is testing?
� Developers / special testing teams / customer
� It is hard to test your own code

�What test levels do we need?
� Unit, integration, system, acceptance, regression

51

� Unit, integration, system, acceptance, regression
test

�How do we do it in practice?
� Manual testing
� Testing tools
� Automatic testing

xunit

The generic name for any test automation framework for
unit testing

�Test automation framework – provides all the
mechanisms needed to run tests so that only the
test-specific logic needs to be provided by the test
writer

Implemented in all the major programming languages:

52

Implemented in all the major programming languages:
�JUnit – for Java
�cppunit – for C++
�SUnit – for Smalltalk (the first one)
�PyUnit – for Python
� vbUnit – for Visual Basic

JUnit: resources

Unit testing framework for Java

Written by Erich Gamma and Kent Beck

Open source (CPL 1.0), hosted on SourceForge

Current version: 4.0

Available at: www.junit.org

Very good introduction for JUnit 3.8: Erich Gamma, Kent Beck,
JUnit Test Infected: Programmers Love Writing Tests,

53

Very good introduction for JUnit 3.8: Erich Gamma, Kent Beck,
JUnit Test Infected: Programmers Love Writing Tests,
available at
http://junit.sourceforge.net/doc/testinfected/testing.htm

For JUnit 4.0: Erich Gamma, Kent Beck, JUnit Cookbook,
available at
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

JUnit: Overview

Provides a framework for running test cases

Test cases

�Written manually

�Normal classes, with annotated methods

54

Input values and expected results defined by the tester

Execution is the only automated step

How to use JUnit

Requires JDK 5

Annotations:
� @Test for every method that represents a test case
� @Before for every method that will be executed before every

@Test method
� @After for every method that will be executed after every

method

55

� @After for every method that will be executed after every
@Test method

Every @Test method must contain some check that the
actual result matches the expected one – use asserts for
this

� assertTrue, assertFalse, assertEquals,
assertNull, assertNotNull, assertSame,
assertNotSame

Example: basics

package unittests;

import org.junit.Test; // for the Test annotation
import org.junit.Assert; // for using asserts
import junit.framework.JUnit4TestAdapter; // for running

import ch.ethz.inf.se.bank.*;

public class AccountTest {
@Test public void initialBalance() {

To declare a routine as
a test case

To compare the actual

56

@Test public void initialBalance() {
Account a = new Account("John Doe", 30, 1, 1000);
Assert.assertEquals(

"Initial balance must be the one set through the
constructor",

1000,
a.getBalance());

}

public static junit.framework.Test suite() {
return new JUnit4TestAdapter(AccountTest.class);

}
}

result to the expected one

Required to run JUnit4
tests with the old JUnit

runner

Example: set up and tear down

package unittests;

import org.junit.Before; // for the Before annotation
import org.junit.After; // for the After annotation
// other imports as before…

public class AccountTestWithSetUpTearDown {

private Account account;

@Before public void setUp() {
account = new Account("John Doe", 30, 1, 1000);

To run this routine before any
@Test method

To run this method after

Must make account an
attribute of the class now

57

account = new Account("John Doe", 30, 1, 1000);
}
@After public void tearDown() {

account = null;
}
@Test public void initialBalance() {

Assert.assertEquals("Initial balance must be the one set through the
constructor",

1000,
account.getBalance());

}
public static junit.framework.Test suite() {

return new JUnit4TestAdapter(AccountTestWithSetUpTearDown.class);
}

}

To run this method after
any @Test method

@BeforeClass, @AfterClass

A routine annotated with @BeforeClass will be executed
once, before any of the tests in that class is executed.

A routine annotated with @AfterClass will be executed
once, after all of the tests in that class have been
executed.

Can have several @Before and @After routines, but only
one @BeforeClass and @AfterClass routine respectively.

58

one @BeforeClass and @AfterClass routine respectively.

Checking for exceptions

Pass an argument to the @Test annotation stating the
type of exception expected:

@Test(expected=AmountNotAvailableException.class) public void overdraft ()
throws AmountNotAvailableException {

Account a = new Account("John Doe", 30, 1, 1000);

59

Account a = new Account("John Doe", 30, 1, 1000);

a.withdraw(1001);

}

The test will fail if a different exception is thrown or if
no exception is thrown.

Pass an argument to the @Test annotation setting a
timeout period in milliseconds. The test fails if it takes
longer than the given timeout.

@Test(timeout=1000) public void testTimeout () {

Account a = new Account("John Doe", 30, 1, 1000);

a.infiniteLoop();

Setting a timeout

60

a.infiniteLoop();

}

From a survey of 240 software companies in
North America and Europe:

� 8% of companies release software to beta
sites without any testing.

� 83% of organizations' software developers
don't like to test code.

Testing is tedious!

� 83% of organizations' software developers
don't like to test code.

� 53% of organizations' software developers
don't like to test their own code because they
find it tedious.

� 30% don't like to test because they find
testing tools inadequate.

61

Create input

�Instructions

�Data

Execute tests

Evaluate result (Oracle)

Parts of a test case

�Compare

�Compute

(Tear down)

62

No automation

Automated execution

Automated input generation

Automated oracle

Degress of automation

63

Challenges of automated testing

Vast input space

Is this input good?

� Precondition

Is this output good?

� Postcondition� Postcondition

The quality of the test is only as good as the quality of the
assertions

64

Vast input space

Input space typically
unbounded

Even when finite, very large

Exhaustive testing
impossible

Number of test cases

foo (c: CHARACTER)

do

...

end

bar (c1: CHARACTER;

c2: CHARACTER)
Number of test cases
increases exponentially
with number of input
variables

c2: CHARACTER)

do

...

end

65

Automatic testing tools

�TestEra (MIT)

�Korat (MIT)

�AutoTest (ETH)

66

AutoTest

Fully automated testing framework

� Actual strategies are extensions

Based on Design By Contract

Robust execution

Integration of manual unit testsIntegration of manual unit tests

67

AutoTest: three parts

1. Generated tests

2. Extracted tests

3. Manual tests

68

AutoTest: strategies

Random Strategy

� Use random input

Planning Strategy

� Employ information from postcondition to satisfy
preconditions

......

69

AutoTest: automatic test framework

� Input: set of classes + testing time

� Generates instances, calls routines with automatically
selected arguments

� Oracles are contracts:

� Direct precondition violation: skip

Ilinca Ciupa
Andreas Leitner

Yi Wei

� Direct precondition violation: skip

� Postcondition/invariant violation: bingo!

� Value selection: Random+ (use special values such as 0,
+/-1, +/-10, max and min)

� Add manual tests if desired

� Any test (manual or automated) that fails becomes
part of the test suite

Minimization through dynamic slicing

auto_test system.ace –t 120 ACCOUNT CUSTOMER

create {STRING} v1

v1.wipe_out
v1.append_character (’c’)
v1.append_double (2.45)

class
ACCOUNT

create
make

name : STRING

balance : INTEGER
deposit (v : INTEGER)v1.append_double (2.45)

create {STRING} v2

v1.append_string (v2)
v2.fill (’g’, 254343)
...
create {ACCOUNT} v3.make (v2)

v3.deposit (15)
v3.deposit (100)
v3.deposit (-8901)
...

make
feature
make (n : STRING)

require
n /= Void

do
name := n
balance := 0

ensure
name = n
balance = 0

end

do

balance := balance + v
ensure

balance =

old balance + v
end

invariant

name /= Void

balance >= 0

end

AutoTest strategies

�Object pool
� Get objects through creation procedures (constructors)

� Diversify through procedures

�Routine arguments

� Basic values: heuristics for each type

� Objects: get from pool

72

� Objects: get from pool

�Test all routines, including inherited ones (“Fragile base
class” issue)

Conjecture:
Random testing may find
faults faster if inputs evenly
spread

So far: basic types
m

n

Adaptive Random Testing (Chen et al.)

73

Our contribution: extend
this to objects

Need to define notion of
distance between objects

Object distance

p↔ q =∆

Ilinca Ciupa
(ICSE 2007)

74

combination (

type_distance (p.type, q.type),
field_distance (p, q),
recursive_distance (

{[p.r↔ q.r] | r ∈∈∈∈
Reference_attributes })

ART vs pure random

Results so far:

�Does not find more faults

�Does not find faults faster

�Finds other faults!

Random testing: example bug found

*
SET

⊆*
⊇*

+ +

Test:

s1, s2 : SET
s2 ⊆ s1

Bernd Schoeller

+
SET1

+
SET2⊆+ ⊇+

*: Deferred
+: Effective

The testbed: EiffelBase

�Version of September 2005

�20-year history

�Showcase of Eiffel technology

�About 1800 classes, 20,000 SLOC

�Extensive (but not complete) contracts

�Widely used in production applications�Widely used in production applications

�Significant faults remained

Some AutoTest results (random strategy)

Library Total Failed Total Failed

TESTS ROUTINES

78

EiffelBase
(Sep 2005) 40,000 3% 2000 6%

Gobo Math 1500 1% 140 6%

Testing results and strategy

“Smart” ideas not always better

Don’t believe your intuition

Measure and assess objectively
fc (t)

Class STRING

Define good assessment criteria:

� Number of faults found

� Time to find all faults

Time

Experimental law:

fc (t) = a / (1 + b ∗ t)

Fault categories

Specification faults -- examples:

� Precondition:

� Missing non-voidness precondition (will go away)

� Missing min-max precondition

� Too strong precondition

� Postcondition:

� Missing� Missing

� Wrong

Implementation faults -- examples:

� Faulty supplier

� Missing implementation

� Case not treated

� Violating a routine’s precondition

� Infinite loop

Who finds what faults?

On a small EiffelBase subset,
we compared:

� AutoTest

�Manual testing (students) (3 classes, 2 with bugs
seeded)

�User reports from the field

I.Ciupa, A. Leitner,
M.Oriol, A. Pretschner

(submitted)

�User reports from the field

AutoTest: 62% specification, 38% implementation

User reports: 36% specification, 64% implementation

AutoTest vs manual testers

On three classes (two with seeded bugs):

�Humans found 14 faults, AutoTest 9 of them

�AutoTest found 2 faults that humans did not (in large
class)

�3 faults not found by AutoTest found by 60% of
humans (one is infinite loop)humans (one is infinite loop)

�2 faults not found by AutoTest are missing
preconditions (void, min-max)

AutoTest vs user reports

On 39 EiffelBase classes:
� AutoTest found 85 faults,

Plus 183 related to RAW_FILE,
PLAIN_TEXT_FILE, DIRECTORY (total 268)

� 4 of these also reported by users
� 21 faults solely reported by users
� 30% of AutoTest-found bugs related to extreme values;
users never report themusers never report them

AutoTest finds only 1 out of 18 (5%) of implementation faults
and 3 out of 7 specification faults

AutoTest bad at over-strong preconditions, wrong operator
semantics, infinite loops, missing implementations

Users never find faulty suppliers (blame on client)

AutoTest developments

�Large-scale extensive tests, empirical assessment of
criteria & strategies

�Comparison with manual efforts

�Complete integration with EiffelStudio IDE

�Background, unobtrusive, continuous testing

�Distributed cooperative testing (“Testi@home”)

Test Extraction

Like Test-Driven Development, but

�Tests derived from spec (contracts)

� Not the other way around!

Andreas Leitner, Arno Fiva

Record every failed execution, make it reproducible by
retaining objects

Turn it into a regression test

Specified but unimplemented routine

Running the system and entering input

(erroneous)

20

Postcondition
violated

Error caught at run time as contract violation

The violated clause:

balance > old balance

This has become a test case

89

Correcting and recompiling

One fault corrected, the other not

AutoTest: robust execution

92

Automated Testing:

Hands-on!

Automated Testing:

A session with AutoTest

� Tool: AutoTest

� Implements Contract Based Testing

� Chair of Software Engineering

� Framework

Hands-on with AutoTest: overview

� Framework

94

� Home page: se.inf.ethz.ch/people/leitner/auto_test/

� Documentation:
se.inf.ethz.ch/people/leitner/auto_test/toc.html

Hands-on with AutoTest: resources

95

Automatic test case generation: assessment

Testing is tedious

Automation can help

Challenges involved

Tools are getting there!

96

Automatic test case generation: bibliography

TestEra

D. Marinov and S. Khurshid: TestEra: A Novel Framework for
Automated Testing of Java Programs. 16th IEEE Conference on
Automated Software Engineering (ASE 2001), San Diego, CA. Nov
2001.

Korat

C. Boyapati, S. Khurshid and D. Marinov. Korat: Automated Testing C. Boyapati, S. Khurshid and D. Marinov. Korat: Automated Testing
Based on Java Predicates ACM/SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2002), Rome, Italy, July
2002. See: mulsaw.lcs.mit.edu/

AutoTest

Several articles and online descriptions available from
se.ethz.ch/research/tests.html

97

