E'H Ziirich

Chair of Software Engineering

Software Verification

Bertrand Meyer
Carlo Furia
Sebastian Nanz

Testing, part 2

©

Mutation testing

How do you
count the
Eggli in the

Zlrichsee?

Mutation testing

Purpose: estimate quality of a test suite

Principle: make small changes to the program source code
(so that the modified versions still compile) and see if
successful test cases still succeed

If they do, the test suite is not good enough!

Terminology

Mutant: a modified version of the program, obtained by
injecting a fault
» We only consider mutants that are not equivalent to
the original program

Killed mutant: At least one test case detects the injected
fault

Alive mutant: no test case detects the injected fault

Mutation score : measurement of effectiveness of test,
defined next

Mutation operators

Mutation operator: a rule that specifies a syntactic
variation of the program text so that the modified
program still compiles

A mutant is the result of an application of a mutation
operator

The quality of the mutation operators determines the
quality of the mutation testing process

Mutation operator coverage (MOC): For each mutation
operator o, there is at leas one mutant using o

Examples of mutants

©

Original program:

if (a < b)

else

Mutants:

if (a <b)

if (a <= D)

if (a>b)

if (c <b)
b:=b- a
b:=Db+a;
b:=x- a

else
b:=0;
b:=1;

0
OO mutation operators

Polymorphism- and dynamic binding-related:

» Change creation type
create x. make > create {T} x.make

> Redefinition
Replace inherited routine or attribute
by redefined version

Various:

» Argument order change
If types match, e.g. f (x, y: INTEGER)

» Replace assignment by copy
listl := list2.twin > listl := list2

©
System test quality (STQ)

S: system composed of n components, denoted C,
d;: number of killed mutants after applying test sequence to C,
m:: total number of mutants

Mutation score for C; and test sequence T;: MS(C, T)) = d, / m,

System test quality:

>d

STQ(S) - I=1,n

i=1,n

STQ provides a measure of test suite quality

If contracts are used as oracles, STQ is a combined measure of
test and contract quality

Mutation tools

muJava - http://ise.gmu.edu/~ofut/mujava/

Test Coverage

Coverage

How extensive is a test?

Coverage measures a percentage of elements of a certain
kind exercised by a test suite.

"Achieving coverage” means reaching 100% for the chosen
criterion

. o)
Purposes of measuring code coverage

Code coverage analysis makes it possible to:

» Find sections of code not exercised by test cases

» Create additional test cases that exercise properties
not previously tested

» Obtained a (hoped for) estimate of test suite quality

Code coverage analyzer

A code coverage analyzer is a tool that automatically
computes the coverage achieved by a test suite

Steps involved:

1. Instrument source code by inserting trace
instructions that write to a trace file

2. Run tests
3. Parse trace file to produce a coverage report

Standard measures of coverage

Instruction coverage, branch coverage etc.

Instruction (statement) coverage

Percentage of instructions (executable statements) executed
» Disadvantage: insensitive to control structures

Branch (or “decision”) coverage

Percentage of conditionals whose boolean expression has evaluated to
both true and false

» Disadvantage: insensitive to individual components of boolean
expression

» The most commonly used in practice (easy to achieve)

Condition coverage

Percentage of elementary boolean conditions that have evaluated to
both true and false

» Disadvantage: Not all combinations

Example:

if a and b then ...

Multiple-condition coverage

©

Percentage of combinations of true and false values of elementary
boolean conditions

» Disadvantage: difficult to achieve, widely different number of
tests for similar expressions

Examples™
a and b and (c or (d and ¢)) ((aorb)and (cor d)) and e

fa S YN OV R X

HHHA4

i I N

T

= =

I I N
P T T w R I L, RS SV R %
HHAAAS == 5 =
I A e e e e B
HHS ==
T R R B (RS e B
I T T (RS R R I I

o

*From Steve Cornett 18

Modified Condition/Decision coverage (MC/DC)

Percentage of combinations of elementary conditions that have
evaluated to both true and false value for one of the conditions, with
all the other conditions unchanged, leading to both true and false for
the overall expression (decision)

/

(a or b) and (c or not d)

Example:

» Advantage: easier to achieve than multiple condition
» The standard at Boeing

Generalization: predicate coverage

A predicate is covered if at least one test run makes it
true and at least one makes it false

Example:
a b O(f(x) dx>0)
is covered by the following two test cases:

= {a=true; b=false; f(x)=false; x=1}
= {a=false; b=false; f(x)=true; x=-1}

Clause coverage (CQC)

Satisfied if for every clause of the predicate at least one
test run makes the clause true and at least one to false

Example:
x>0 Oy<0
Clause coverage is achieved by:
= {x=-1; y=-1}
= {x=1; y=1}

Does clause coverage imply predicate coverage?

No: consider following variant:
= {x=-1; y=2}
= {x=1; y=1}

Combinatorial coverage (CoC)

The test runs must include all possible combination of
clause values

Example:
((ADB)LC)
A|B|C| (AB)X)

1| T |T|T T
2| T |T|F F
3| T |F|T T
4| T |F|F F
5| F |[T|T T
6| F | T|F F
7| F |F|T F
8| F |F|F F

Determination

A clause ¢y, (called major clause) of a predicate p
determines p if the remaining clauses c,[0p, mzM (called
minor clauses) have such values that changing the value
of ¢y changes the value of p. ¢y will be the active clause.

Example:
p=alb
a b
Cp = a T f
F f
cm=b f T
f F

Correlated Active Clause Coverage (CACC)*

For each p0P and each major clause cy0C,, choose minor clauses c,
mzM so that ¢, determines p

The test runs must include at least one that makes ¢, true and one
that makes it false

The values chosen for the minor clauses do not need to be the same
for these two runs

Example: a | b |cjaO(bOc)
1 T | T | T T
p=al(bbc) 5 | v+ | 1 |F T
We satisfy CACC for a if 3 | T |F | T T
we choose one test case 5 F T | T F
out of rows 1, 2, or 3, and 6 | F| TI|F F
one out of rows 5, 6, or 7. 7 F F T F

24

*Variant of "MCDC"

©
Restricted Active Clause Coverage (RACC)

For each p0P and each major clause cy0C,, choose minor clauses c,
m#M so that c, determines p.

The test runs must include one that makes ¢, true and and one that
makes it false

The values chosen for the minor clauses must be the same for these
two runs

Example:
a b c lal(b0Oc)
p=al(blc)
1 T T | T T
5 F | T | T F
We satisfy RACC for a if 2 | T | T I|F T
we choose (1,5), or (2,6), 6 F | T |F F
or (3,7). 3 | T | F | T T
7 F F | T F

25

Path coverage

©

Percentage of paths taken

A path is a unique sequence of branches from routine entry to exit

» Disadvantage: exponential
» Does not take loops into account

Can be impossible to achieve 100%

if c then a end
other_instructions
if c then b end

(if other_instructions do not affect c.)

26

Limits of coverage measures

ACTIVE_LIST ARRAY ARRAYED LIST ARRAYED SET ARAAYED _STACK
1 1 1r 11 1 10 1 1
' I'/_
08 108 08 OB 08 {08 OB 08
06 106 05 106 04 106 DE 05
a4 104 04 104 04 q04 04 o4
oz 102 0z 102 02 103 02 oz
a o a] a a a a a a
1] 100 ot il 3060 i] 100 0 300 i} 100 0 300 o 100 X0 Lo o 100 200 0
Tine {minurtes) Tome {(rminurbes) Tarmee { minubess) Tarmee {minubes) Tirmee {minubes)
BIMARY_SEARCH_TREE BINARY _SEARCH_TREE_SET BINARY_THEE FIXED_LIET HASH_TABLE
Tt 11 11 1 1 11 1 11 1 1
LE] II;— Jos o jes o8 (fi o8 osf Tog 08 I/-H_ 0§
06 J0f 06 {106 06 0 06 {06 06 06
il { 104 04 {4 04 104 04 404 04 o4
az 102 02 103 02 103 02 403 @32 03
o L L L o a 1 L 1 | a L L L o a L L L o il L 1 L o
L] oo Hl 300 o 100 i) 300 o 100 00 200 o 100 X0 300 o 100 200 =0
Time {minustes) Tome (mimutes) Tomee { mimLibess} T §mimrtes) Timee {mimubesh
HEAD PRICRITY QUEUE LINKED: CIRCULAR LINKED LIST PAST SORTED TWO WAY LIST
1 1 11
—
a3 dpn o — Normadized branch caverage
m ommadired number of faults
Q& 46 10k
il 4104 404
az 4102 4103
o] a a a
1] 00 Hl 300 o 100 0 300 o 100 00 200 o 100 X0 300
Tine (minurtes) Time (manistes) Tirmee | rrinbess) Timee §rmimrtes}

Figure 8: Median of the branch coverage level and median of the normalized number of faults for each class over time

27

Yi Wei, M. Oriol, B. Meyer (2009)

Code coverage tools

Emma

> Java

» Open-source

» http://emma.sourceforge.net/
JCoverage

> Java

» Commercial tool

> http://www.jcoverage.com/
NCover

> CH

» Open-source

» http://ncover.sourceforge.net/
Clover, Clover.NET

> Java, CH

» Commercial tools

» http://www.cenqua.com/clover/

See also http://www.codecoveragetools.com/

28

Dataflow-oriented testing

Focuses on how variables are defined, modified,
and accessed throughout the run of the program

Looks for faults resulting from wrong paths
between a definition of a variable in the code and
certain uses of that variable

Access-related potential bugs

Examples:
» Using an uninitialized variable

» Assigning to a variable more than once without an
infermediate access

» (C++) Deallocating a variable before it is initialized
» (C++) Deallocating a variable before it is used

» Modifying an object more than once without
accessing it

Types of access to variables

Definition (def) : change value of variable (constructor,
assignment, procedure)

Use: read value of variable
» Computational use (c-use): in a computation
» Predicative uses (p-use): in a test

» Kill: instruction that results in a variable being
deallocated, undefined, released or no longer visible

Examples:
>z = x [y // c-use of y; c-use of x; def of z
»>if x>0Othen ... // p-use of x

Data flow graph

All measures of dataflow coverage are defined in terms of
the data flow graph

» Sub-path: sequence of consecutive nodes

» Path: sub-path starting at entry node and ending at
exit node

Path properties:
> A sub-path is def-clear for a variable vif it contains
no definition of v

» A sub-path p starting with a def of variable vis a au-
path for vif pis def-clear for vexcept for the
first node, and vencounters either a c-use in the
last node or a p-use along the last edge of p

Example: source code

class ACCOUNT feature
balance: INTEGER

withdraw (sum: INTEGER)

do
if balance >= sum then
balance = balance - sum
if balance = O then
io.put_string ("There were only " + sum +
"CHF in the account. The account is now empty.%N")
end
else
io.put_string ("There is less than " + sum + "CHF in the account.”)
end
end

end

33

Control flow graph for withdraw

©

{Tru S

Definition of sum

balance =
balance — sum

(2)

True

v
print(sum)

(4)

|
False

v

False

i

print(sum)

)

34

Data flow graph for sum in withdraw

©

{Tru e

Definition of sum

(0)

balance =
balance — sum

(2)

True
v

print(sum)

(4)

1
False

print(sum)

(9)

def
(0)
{Tru False
c-use
c-use (5)
(2)
(3) w
False
True
v
c-use

35

Data flow graph for balance in withdraw

(0)

Definition of sum

(0)

True False
{Tru Falfe { i
sellies = print(sum) ¢ “S(Z’)def (5)
balance — sum (5)
(2)
p-use
| (3) Faise
False
True
True v
it (4)
print(sum)
(4)

36

Dataflow coverage criteria

all-defs: execute at /east one def-clear sub-path between
every definition of every variable and at /east one
reachable use of that variable.

all-p-uses: execute at /east one def-clear sub-path from
every definition of every variable to every reachable p-use
of that variable.

all-c-uses: execute at /east one def-clear sub-path from
every definition of every variable to every reachable c-use
of the respective variable.

Dataflow coverage criteria (continued)

all-c-uses/some-p-uses: apply all-c-uses; then if any
definition of a variable is not covered, use p-use

all-p-uses/some-c-uses: symmetrical to all-c-uses/some-p-
uses

all-uses: execute at /east one def-clear sub-path from
every definition of every variable to every reachable use
of that variable

Dataflow coverage criteria for sum in withdraw

def
(0)

c-use

(2)

3)

True

- @

c-use

(4)

1
False

False

i

c-use

)

all-defs: at /east one def-clear sub-path
between every definition and at /east
one reachable use

(0.1)

all-p-uses: at /east one def-clear sub-
path from every definition to every
reachable p-use

(0.1)

all-c-uses: at /east one def-clear sub-
path from every definition to every
reachable c-use

(0,12).(01,2,3,4): (0,15)

39

L S ©
Dataflow coverage criteria for sum in withdraw (cont.)

def all-c-uses/some-p-uses: apply all-c-uses;
(0) . Ce : .

then if any definition of a variable is
hot covered, use p-use

[Tm 0 Falce (0,1,2); (0,1,2,3,4); (0,1,5)
!

c-use e all-p-uses/some-c-uses: symmetrical to

@) all-c-uses/some-p-uses

(0.1)
3) |
False
all-uses: at /east one def-clear sub-path

Tre from every definition to every
c-use reachable use

(4)

(0,1): (0,1,2):(01,2,3,4).(01,5)

40

Specification coverage

Predicate: an expression that evaluates to a boolean value
»eqg.albO(f(x) Ox>0)

Clause: a predicate that does not contain any logical
operator

»>eg.. x>0
Notation:
> P = set of predicates
> C, = set of clauses of predicate p

If specification expressed as predicates on the state,
specification coverage translates to predicate coverage

Partition testing

If we cannot test every value of the input domain, how do
we choose inputs?

A partition divides input space into
subsets (equivalence classes) satisfying:
» Completeness (covers all input)

> Disjointness

Expectation (hope) behind partition testing:

» If any value in the subset produces a failure, any
other value in the subset does too

Examples of partition testing

Boundary value analysis

Special values testing

Choosing values

Each Choice (EC):

» Test suite includes at least one test case from every
equivalence class for every input

All Combinations (AC):

» Test suite includes at least one test case from every
combination of equivalence classes for all inputs

Partition testing

Applicable to a// /evels of testing: unit, class, integration,
system, etc.

Based only on the /nput space of the program, not the
implementation (i.e. black box concept)

Many testers intuitively apply a similar concept

©

-9 -

Contract-based &
random testing

Test automation

Testing is so difficult and time consuming...
So why not do it automatically?

What is most commonly meant by "automated testing”
currently is automatic test execution

But actually...

What can we automate?

Test execution

» Run test suite without step-by-step actions

» Should be parameterizable

» Recover from failures (multi-process architecture)
Test management

» Let user adapt process to needs and preferences

» Save tests for regression testing
Test result evaluation (applying oracles)

» Classifying tests as pass/no pass

» Other info about test results

What can we automate?

Regression testing
> Re-run previous tests
> May require minimization
Estimation of test suite quality
» Report a measure of code coverage
» Other measures of test quality
» Feed this estimation back to the test generator

Test generation

> Generation of test data (objects used as targets or
parameters for feature calls)

> Procedure for selecting the objects used at runtime

» Generation of test code (code for calling the
features under test)

“Push-button testing”

Never write a test case, a test suite, a test oracle, or a
test driver

Automatically generate
> Objects
» Feature calls
» Evaluation and saving of results

The user must only specify the system under test and the
tool does the rest (test generation, execution and result
evaluation)

Testing strategy

How do we plan and structure the testing of a large
program?
» Who is testing?
= Developers / special testing teams / customer
= Tt is hard to test your own code
» What test levels do we need?

= Unit, integration, system, acceptance, regression
test

» How do we do it in practice?
= Manual testing
= Testing tools
= Automatic testing

Xunit

The generic name for any test automation framework for
unit testing

> Test automation framework - provides all the
mechanisms needed to run tests so that only the
test-specific logic needs to be provided by the test
writer

Implemented in all the major programming languages:
» JUnit - for Java
> cppunit - for C++
> SUnit - for Smalltalk (the first one)
» PyUnit - for Python
» vbUnit - for Visual Basic

JUnit: resources

Unit testing framework for Java

Written by Erich Gamma and Kent Beck

Open source (CPL 1.0), hosted on SourceForge
Current version: 4.0

Available at: www.junit.org

Very good introduction for JUnit 3.8: Erich Gamma, Kent Beck,
JUnit Test Infected. Programmers Love Writing Tests,
available at
http://junit.sourceforge.net/doc/testinfected/testing.htm

For JUnit 4.0: Erich Gamma, Kent Beck, JUnit Cookbook,
available at
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

JUnit: Overview

Provides a framework for running test cases
Test cases

» Written manually

> Normal classes, with annotated methods

Input values and expected results defined by the ftester

Execution is the only automated step

How to use JUnit

Requires JDK 5

Annotations:
> @Test for every method that represents a test case

> @Before for every method that will be executed before every
@Test method

> @After for every method that will be executed after every
@Test method

Every @Test method must contain some check that the
actual result matches the expected one - use asserts for
this

» assertTrue, assertFalse, assertEquals,

assertNull, assertNotNull, assertSame,
assertNotSame

55

. ©
Example: basics

package unittests;

import org.junit.Test; // for the Test annotation
import org.junit.Assert; // for using asserts
import junit.framework.JUnit4TestAdapter; // for running

To declare a routine as]

import ch.ethz.inf.se.bank.*; a test case

public class Acco

@Test|public void initialBalance() {

Account a = new Account("Joh

Assert.assertEquals(
"Initial balance must be the one set through the

To compare the actual
result to the expected one

constructor”,
1000, _ Required to run JUnit4
a.getBalance()): tests with the old JUnit
} runner

public static junit.framework.Test suite() {
return new JUnit4TestAdapter(Account Test.class);

]
J

0
Example: set up and tear down 7

package unittests;

import org.junit.Before; // for the Before annotation
import org.junit.After; // for the After annotation
// other imports as before...

Must make account an
attribute of the class now

public class AccountTestWithSetUpTear (. » o bef
0 run this routine before any]

private Account acu\ @Test method

@Before public void setUp() {
account = new Account("John Doe", 30, 1, IOOO):(To run this method after]

}

@After|public void tearDown() {
account = null;

}

@Test public void initialBalance() {
Assert.assertEquals("Initial balance must be the one set through the

1000,
account.getBalance());

any @ Test method

L

constructor",

}

public static junit.framework.Test suite() {
return new JUnit4TestAdapter(Account TestWithSetUpTearDown.class);
}

} 57

@BeforeClass, @AfterClass

A routine annotated with @RBeforeClass will be executed
once, before any of the tests in that class is executed.

A routine annotated with @AfterClass will be executed
once, after all of the tests in that class have been
executed.

Can have several @Before and @After routines, but only
one @BeforeClass and @AfterClass routine respectively.

Checking for exceptions

Pass an argument to the @Test annotation stating the

type of exception expected:

@Test(expected=AmountNotAvailableException.class)

) public void overdraft ()

throws AmountNotAvailableException {
Account a = new Account("John Doe"
a.withdraw(1001);

, 30, 1, 1000);

The test will fail if a different exception is thrown or if

no exception is thrown.

59

Setting a timeout

Pass an argument to the @Test annotation setting a
timeout period in milliseconds. The test fails if it takes
longer than the given timeout.

@ Test{timeout=1000)|public void testTimeout () {
Account a = new Account("John Doe", 30, 1, 1000);
a.infiniteLoop():

0
Testing is tedious!

From a survey of 240 software companies in
North America and Europe:

> 8% of companies release software to beta
sites without any testing.

> 83% of organiza’rions' software developers
don't like To test code.

> 53% of or%aniza’rionsi software developers
don't like To test their own code because they
find it tedious.

> 30% don't like to test because they find
testing tools inadequate.

Parts of a test case

Create input

» Instructions
» Data
Execute tests
Evaluate result (Oracle)
» Compare
» Compute
(Tear down)

Degress of automation

No automation
Automated execution
Automated input generation

Automated oracle

Challenges of automated testing

Vast input space

Is this input good?
> Precondition

Is this output good?

> Postcondition

The quality of the test is only as good as the quality of the
assertions

Vast input space

Input space typically
unbounded

Even when finite, very large

Exhaustive testing
impossible

Number of test cases
increases exponentially
with number of input
variables

foo (c: CHARACTER)
do

end
bar (c1l: CHARACTER,;
c2: CHARACTER)
do

end

Automatic testing tools

» TestEra (MIT)
» Korat (MIT)
> AutoTest (ETH)

AutoTest

Fully automated testing framework

> Actual strategies are extensions
Based on Design By Contract

Robust execution

Integration of manual unit tests

AutoTest: three parts

1. Generated tests

2. Extracted tests

3. Manual tests

AutoTest: strategies

Random Strategy

> Use random input
Planning Strategy

> Employ information from postcondition o satisfy
preconditions

AutoTest: automatic test framework
Ilinca Ciupa

o Andreas Leitner
> Input: set of classes + testing time Vi Wei

» Generates instances, calls routines with automatically
selected arguments

» Oracles are contracts:
> Direct precondition violation: skip
> Postcondition/invariant violation: bingo!

» Value selection: Random+ (use special values such as O,
+/-1,+/-10, max and min)

> Add manual tests if desired

» Any test (manual or automated) that fails becomes
part of the test suite

Minimization through dynamic slicing

auto_test

create {STRING} v1
vl.wipe_out

vl.append_character ('c’)

vl.aiiend double i2.45)

vl.append_string (v2)
v2.fill (g', 254343)

v3.deposit (15)
v3.deposit (100)

XYy

system.ace —t 120

(class N

ACCOUNT
create
make
feature
make (n: STRING)
require
n/=Void
do
name = n
balance = O
ensure
name = n
balance = 0

kend /

ACCOUNT CUSTOVER

mame . STRING

balance : INTEGER
do

ensure
balance =

end
invariant

balance >= 0

name /= Void

deposit (v: INTEGER)

balance = balance + v

old balance + v

~

/

AutoTest strategies

» Object pool

= Get objects through creation procedures (constructors)
= Diversify through procedures

» Routine arguments
= Basic values: heuristics for each type

= Objects: get from pool

» Test all routines, including inherited ones ("Fragile base
class” issue)

Adaptive Random Testing (Chen et al.)

©

Conjecture:
Random testing may find
faults faster if inputs evenly
spread

So far: basic types

Our contribution: extend
this to objects

Need to define notion of
distance between objects

Object distance ”

Ilinca Ciupa
(ICSE 2007)

Epm— osLPET STORE E=
pet_store=psi == pet_store=ps1
name="Steve" name="Mary" name="Jenna" name="Kelly"
A animal=bird1 animal=dog animal="Yoid animal=bird2
p <> q spouse—p2 spouse=pi spouse=p2 spouse=\/oid
[]
: ps2:PET_STORE
age=10 - —
. . name="Store?
52
combination (pet_store=p

fype_distance (p.type, q.type),
field _distance (p, q),
recursive_distance (

{lp.reqgrllr
Reference_attributes})

74

ART vs pure random

Results so far:

> Does not find more faults
> Does not find faults faster
> Finds other faults!

Random testing: example bug found 7

Bernd Schoeller

Test: @ *
sl s2: SET *
sZ2 0 s/ \

*. Deferred
*. Effective

The testbed: EiffelBase

» Version of September 2005

» 20-year history

» Showcase of Eiffel technology

> About 1800 classes, 20,000 SLOC

» Extensive (but not complete) contracts
» Widely used in production applications
» Significant faults remained

Some AutoTest results (random strategy)

TESTS ROUTINES
Library Total Failed | Total Failed
e s 2005) | 40,000 2000

Gobo Math 1500 140

Testing results and strategy “

"Smart” ideas not always better Class STRING
Don't believe your intuition | g)
Measure and assess objectively e
J =l |
Time

Define good assessment criteria:
» Number of faults found

> Time Yo find all faults .
Experimental law:
| fc(t)=a / (1 + b[lf)l

Fault categories

Specification faults -- examples:
> Precondition:
= Missing non-voidness precondition (will go away)
= Missing min-max precondition
= Too strong precondition
» Postcondition:
= Missing
= Wrong
Implementation faults -- examples:
> Faulty supplier
> Missing implementation
> Case hot treated
> Violating a routine’s precondition
» Infinite loop

: ?
Who finds what faults: " e, O, L,

M.Oriol, A. Pretschner

On a small EiffelBase subset, (submitted)
we compared:
> AutoTest
» Manual testing (students) (3 classes, 2 with bugs
seeded)

> User reports from the field

AutoTest: 62% specification, 38% implementation
User reports: 36% specification, 64% implementation

AutoTest vs manual testers

On three classes (two with seeded bugs):
» Humans found 14 faults, AutoTest 9 of them

» AutoTest found 2 faults that humans did not (in large
class)

» 3 faults not found by AutoTest found by 60% of
humans (one is infinite loop)

» 2 faults not found by AutoTest are missing
preconditions (void, min-max)

AutoTest vs user reports

On 39 EiffelBase classes:
> AutoTest found 85 faults,
Plus 183 related fo RAW_FILE,
PLAIN_TEXT_FILE, DIRECTORY (total 268)
» 4 of these also reported by users
» 21 faults solely reported by users
» 30% of AutoTest-found bugs related to extreme values;

users never report them

AutoTest finds only 1 out of 18 (5%) of implementation faults
and 3 out of 7 specification faults

AutoTest bad at over-strong preconditions, wrong operator
semantics, infinite loops, missing implementations

Users never find faulty suppliers (blame on client)

AutoTest developments

» Large-scale extensive tests, empirical assessment of
criteria & strategies

» Comparison with manual efforts

» Complete integration with EiffelStudio IDE

» Background, unobtrusive, continuous testing

» Distributed cooperative testing (" Testi@home")

Test Extraction ©

Andreas Leitner, Arno Fiva

Like Test-Driven Development, but
» Tests derived from spec (contracts)
» Not the other way around!

Record every failed execution, make it reproducible by
retaining objects

Turn it into a regression test

Specified but unimplemented routine

ix BANKIACCODNT Th clUSter Tt clistar Iocated i yhome) aleitner eclpse) cad ee/sre/examples/cd /b ank. accotntybanka|

File Edit View Favorites Project Debug Refactoring Tools Window Help
Compile & W G GFEFIES S D bstert | H E

Clusters & i @ X | S = [0 i !Editnr

deposit (an_amount: INTEGER) is
do

ensure
balance_increased: balance > old balance

deposited: balance = old balance + an_amount
end

end

withdraw (an_amount: INTEGER) is
do
ansure
balance decreased: balance = old balance
withdrawn: balance = old balance + an_amount
end

invariant
] TF) balance not negativ: balance == 0

class =
v [dClusters BANK_ACCOUNT |
= | _droot_cluster
inherit
@ APPLICATION ANY F
. redefine
@ BANK_ACCOUNT default_create
@ INTERFACE_MAMES end

Running the system and entering input

My Banic ACCount
(erroneous)

Current Balance: 300

withdraw

Error caught at run time as contract violation

©

O MAIN_WINDOW in cluster root_cluster loca

T Fle Edit Wiew Favorites Project Debug Refac

@ dicompile @ O @& & @ | =
Testing & 3 ¥ = [%.;Editor V|O|C(Ted 2
et x| (Context & oEE
ast Cases
= [Sroot_cluster _ = |2

SEEEEER Flat view of SIt of class BANK_ACCOUNT —
—— — n_amount: INTEGER 32) (<]
Zall Stack W O B =0 K| do]

ensure

Status = Implicit exception pending blcres inconaeer boineer

Code; 4 (Postcondition viclated.] Tag| G

oo

Postcondition

Iesfcddfbank_accaunt_.-'.,fmain_wilE/E|E|

= gid balance

Current BEalance: 300

The violated clause:

balance > old balance

withdraw

. end
In Feature in Class From €
B deposit* BANK_ACCO... -
> deposit_amo... MAIN WINDOW 141
[= fast_call PROCEDURE
= call FROCEDURE Ei) ’
> call EV_MNOTIFY_A... ACTIOF 1‘|§| Outputlg Diagram |'i Class |.|.=- Featu
= button_select.. EV_GTK_CAL... EV_INT . . =
& fast_call A E e |Debugging x Ry O 0w {BANK_ACT
[> call PROCEDURE Marme MName Value
= marshal EV_GTE_CAL... ! _LTI_EE Exceptic! Eﬁ Current object <0xB
B> gtk_main_do... EV_APPLICAT... EV_GTI | = [SgArgume é—.'.!,ﬂ.ttributés
[» process_butt... EV_APPLICAT... | L s an ar | L 8 balance 300
> process _gdk ... EV_APPLICAT... ! @& Once routines
= event_loop_it... EV_APPLICAT... |
= launch EV_APPLICAT... |
> launch APPLICATION EV_APRI
= rmake_and la... APPLICATION PF

(oT0)

7] | O Objects | Watch #1 |

mplu:lt excep".c.i-on pena.i-rE Code: ¢ ﬂ;-f.Po_s-tcnna-if.i-cF \-.Eiua-tga-.]I-"FIéEIE_a'iance_increased

I_ =] _::_.Enk:accoun'.c I_ll Ig"ﬁ'll

@ [ﬁ MAIN WINDOW in cluster root_cluster |ocated in jhome/aleitnerfe. .,]| M) ry Bank Account

I&

This has become a test case

I MANOATNDOW 1 claster Toot clister Iocated inyhome alEiner) eclipse)ca i es/5rc) examples) cd o)/ Dank_accotnT) /e Wil =1 ey [x]

File Edit Wiew Favarites Project Debug Refactoring Tools Window Help

= ccompie @ D | FERE | = = = b dstart|l 1 @

Clusters & @ % x | % = 0O % ‘Start application and stosﬁat breakpoints I{FS)! = O 33_,
= |[&clusters i b=
P [Ecdd tests withdraw_amount is
= [droot_cluster local
@@ APPLICATION o 1_amount: INTEGER
@ BANK_ACCOUNT read amount
if last_amount /= O then
@ INTERFACE_NAMES bank_account.withdraw (last_amount)
ﬁMNN_WINDOW | nrdata halanca Tahkal :
I |l Libraries end TEEtil"'lg ' 'x E - D E:g
(®) bank_account feature {NoOl- . 5
window | TEST Ca525
.-.I_:' e o R
 vindow{ B Léroot_cluster =
cotex 4| = @ BANK ACCOUNT -0
System = ; -
; = a
o = - deposit
Testing b ¥ = 0% kil il
Test case #01 F
Testing B 3 E = O E:;|

Test Cases | /

= [&root_cluster
= @ BAMK_ACCOUNT
= de deposit
Test case #01 F

-

:I% output || # Diagram | @ Class |4 Feature | Testing J Metric Ifﬁl External Dutpr’it‘ C Output I o Er‘furs]}
Application is not running |||:|i| bank_account ” 111 ”E@D

Correctmg and recompllmg

Eile Edit View Favarites Project- Debug Refactorlng Tools Wmdow Help

@A MComlle & D Qﬁ@ﬁ (= &= & D pstat | 0 B

Compile current project (f7)|_= O % | [editor : ;
= [elClusters ! dEpnzlllt (an_amount: INTEGER) is
P [dcdd tests balance := balance + an_amount]
ensure
~ [droot_cluster balance_increased: balance = old balance
@ APPLICATION - deposited: balance = old balance + an_amount
@ BANK _ACCOUNT
withdraw (an_amount: INTEGER) is
@ INTERFACE_MAMES do
@ MA NDO! i
L8, ELE balance_decreased: balance = old balance
P> [mi|Libraries withdrawn: balance = old balance + an_amount
end
(®)bank_account
invariant
balance not negativ: balance == @
end
Context < B root cluster BAMNK_ACCOUNT withdraw
" Dagraz &: Exam:';-r’a_ing Systen
Degree 5; Parsing Classes
Degree 4: Apalyzing Ipheritfance
Testing B K E = [0 52 Degree 3: Checking Types
- Degree 2: Generstiilng Byte c“:;rje
Test Cases Degr 1: Generating Metadata
= Laroot cluster Melting System Cf“'mqm ’ _ _
= Therse ware 12 warnings during compilation,
= @ BANK_ACCOUNT / Eiffel Compilation Succesdsd

= g deposit
Test case #01
= gewithdraw
Test case #032

-Comp-:il.i.ng_ Interpreter -

—I- =] output ||§ Diagram |ﬂ Class |-|-' Feature | 4= Testmg]ij Me

Eiffel Compilation Succeeded

B |G {BANK_ACCOUNT}.deposit (located in fhomefa|eitner,fe::lipse}cdd_esfﬁrc;exampleEfcdd;'bank_'eccm

One fault corrected the other not

File Edit \iew Favorites Project Debug Refactarmg Tcols Wmdaw Help

aE]

@ Zcompile & (@ Qﬁ@@ [; = ;_’E W et

s ﬁShDW}HIdE information aboﬁt breakpo
= [dclusters epoz;t {an, TEStIng p K EI o
P [scdd tests bali
— | droot_cluster ensu;:l: TEEt CEEEE
dep =
@ APPLICATION P F
end =
T = [aroot_cluster
withdraw (al
@ INTERFACE_MNAMES do [=l i BANK ACCGUHT
@ MAIN_WINDOW E"SU;:L o - _
b |mi Libraries witl =] + 'jEF”JE:Lt
end
(®)bank_account . . TEEt case #Gl K
invariant
balance_not - f
. = g wlithdraw
end
Test case #0Z F
\Context <« @ r
| Degree 6: Exam]
Degree 5: Pp#fing Classes
nalyzing Inheritance

éTesting P E B = O 33| 3: Checking Types
il 2: Generating Byte Code
Test Cases _(Degree 1: Generating Metadata
Melting System Changes
= t clust . . .
& [liroot_cluster / There were 12 warnings during compilation,

] @ BANK_ACCOUNT Eiffel Compilation Succeeded

B - deposit

Test case #01 Ok
= g withdraw

Test case #02 F

|
Done AP T‘% Output |# Diagram | @ Class |-|-=' Feature | g Testing IG Metric |E| Externa
é_E_i_FFel Compilation Succeeded i”:'”

. [{BANK_ACCOUNT}.deposit (located in jhomefaleitnerjeclipsefcdd_es/Srcfexamplesjeddibank_account//bank_accor

©

AutoTest: robust execution
Test Driver Interpreter
(Master) (Slave)
i :
start _ i
invoke routine
_ status

invoke routine

stop

x fatal error

start

92

©

Hands-on!

Automated Testing:

A session with AutoTest

Hands-on with AutoTest: overview

©

> Tool: AutoTest
> Implements Contract Based Testing
> Chair of Software Engineering
> Framework

Hands-on with AutoTest: resources

> Home page: se.inf.ethz.ch/people/leitner/auto_test/

> Documentation:
se.inf.ethz.ch/people/leitner/auto_test/toc.himl

Automatic test case generation: assessment

Testing is tedious
Automation can help
Challenges involved

Tools are getting therel

o)
Automatic test case generation: bibliography

TestEra

D. Marinov and S. Khurshid: TestEra: A Novel Framework for
Automated Testing of Java Programs. 16th TEEE Conference on

Automated Software Engineering (ASE 2001), San Diego, CA. Nov
2001.

Korat

C. Boyapati, S. Khurshid and D. Marinov. Korat: Automated Testing
Based on Java Predicates ACM/SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA 2002), Rome, Italy, July
2002. See: mulsaw.lcs.mit.edu/

AutoTest

Several articles and online descriptions available from
se.ethz.ch/research/tests.html

