Requirements Specification

Exercise Session

References)

A Most SRS snippets shown are taken from

I SRS for Project Management System
by l.YevgeniyDOSE course 07

I SRS fofschausepplLogic Subcomponent
by A.Dima, O.Clerg A. Garcia, DOSE course 09

A You can find these two documents on the
course website (Docl, Doc3)

Quality Goals ()

A Justified A Traceable

A Correct A Delimited

A Complete A Interfaced

A Consistent A Readable

A Unambiguous A Modifiable

A Feasible A Testable

A Abstract A Prioritized

A Endorsed

Recommended document structure (<)

Title
Revision History
1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies
3. Specific requirements
Appendixes
Index

Section: Title and Revision History ()

A Title page
I Title of document
I Date, Version
I Group members

A Revision history
I When

Tschau Sepp
LOGIC Sub-Component

Software Requirements Specification

e Authors:
Alexandru Dima !
Olivier Clerc 2

Alejandro Garcia *

e Document number:
TS-LOGIC-SRS-001

e Total number of pages:
30

e Date:
Tuesday 3¢ November, 2009

e Location:
Ziirich, Switzerland

Date Author | Version | Change Reference
| W "]O 2009-10-17 | Alejandro Garcia 0.1 Adding structure

2009-10-18

Olivier Clerc 0.2 Writing first dratt

2009-10-18 | Alexandru Dima 0.3 Writing first dratt

I What 2000-10-26

Olivier Clerc 0.4 Review and Rewriting
2009-10-26 | Alexandru Dima 0.5 Adding requirements

2009-10-26 | Alejandro Garcia 0.6 Rewriting Overall description

2009-10-27 | Alexandru Dima 1.0 Final version

2009-11-03 | Alejandro Garcia 1.1 Appendix

Section: Purpose ()

A Define the purpose of the SRS
A Specify intended audience

1.1 Purpose

This document specifies the Software Requirements Specification (SRS) for the Project Management
System (PMS). It describes scope of the system, both functional and non-functional requirements for
the software, design constraints and system interfaces.

1.1 Purpose

This document represents the Software Requirements Specification (SRS) for
the LOGIC sub-component of the Tschau Sepp Game Component. It is designed
and written for the stake holders, such as the teaching assistants, professors and
developers involved in the project. Its purpose is to describe the scope, both
the functional and non-functional software requirements, as well as the design
constraints of the whole LOGIC sub-component. Furthermore, this document
shows how the system’s interfaces are designed in detail.

Section: Scope)

A Identify software product to be produced by
name (e.g. Host DBMS, Report Generator, etc

A Explain what the product will and will not do

A Describe application of the software: goals
and benefits

A Establish relation with highdevel system
requirements If any

Scope examples ()

1.2 Scope

The Project Management System addresses the management of software projects. It provides the
framework for organizing and managing resources in such a way that these resources deliver all the
work required to complete a software project within defined scope, time and cost constraints.

The system applies only to the management of software projects and is a tool that facilitates decision
making; the PMS does not make decisions.

This SRS describes only required functionality of PMS, not the functionality of external systems like
data storage, change management or version control systems.

This document does not divide the PMS into subsystems; it describes only requirements for the whole-
system functionality which is defined in the use case model.

1.2 Scope

The Tschau Sepp Game Component is an implementation of the Swiss card
game Tschau Sepp to be used by the overall Multiplayer Card Games system.
For a better description of the scope of the system, the Tschau Sepp Game
Component Scope Document should be consulted.

The scope of the LOGIC sub-component is to simulate a Tschau Sepp game
between multiple players by maintaining the game state and by enforcing the
rules of the game. Issues related to how the game is shown on the screen or
how the involved computers communicate in detall via network lie outside of
the scope of this sub-component.

Section: Definitions, Acronyms, Abbreviaifens

A Define all terms, acronyms, and abbreviations
required to properly interpret the SRS.

1.3 Definitions, Acronyms and Abbreviations

The following table explains the terms and abbreviations used in the document.

Term/Abbreviation Explanation

PMS Project Management System

CMS Change Management System (Bug tracking tool)
CVS Concurrent Versions System

VSS Microsoft Visual SourceSafe

PERT Program Evaluation and Review Technique

GUI Graphical User Interface

LAMP A server that is running Linux, Apache, My-SQL and PHP
DBMS Database Management System

DSS Data Storage System

RBAC Role Based Access Control

Definitions example ()

Term Definition

Player A person who can interact with the game application that has
been started and is not terminated.

User A potential player of the game.

Server Refers to the Multiplayer Card Games server.

Client Refers to the whole Tschau Sepp Game Component that is con-
nected to the Multiplayer Card Games server.

LOGIC A sub-component of the Tschau Sepp Game Component that is
responsible for maintaining the game’s logic.

GUI A sub-component of the Tschau Sepp Game Component that is

responsible for displaying all the relevant information to the player
and receiving his/her actions. For this, graphical icons, text boxes
and buttons are used. Furthermore, this sub-component may con-
tain plugins, such as a chat system.

NET A sub-component of the Tschau Sepp Game Component that is
responsible for sending and receiving messages between the NET
sub-components that are situated on the other player’s computers.

Master A mode in which the LOGIC sub-component can operate. In this
mode it is the one who hosts the binding game state and changes
it according to the received players’ actions. It also informs the
other LOGIC sub-components about the current game state.

Slave A mode in which the LOGIC sub-component can operate. In this
mode it merely forwards the associated player’s actions that it re-

B - B —

Section: product perspective)

A Describe relation with other products if any.

A Examples:
I System interfaces
I User interfaces
I Hardware interfaces
| Software interfaces
I Communications interfaces
I Memory
I Operations
| Site adaptation requirements

Product perspective example 1 (<)

2.2 Product perspective

PMS it a standalone system that provides functionality described in the Product functions section. It
includes all subsystems needed to fulfil these software requirements. In addition, the PMS has
interfaces to the external systems, such Version Control System, Change Management and Bug
Tracking System and Payroll System. These interfaces shall be implemented according to available
industry standards and shall be independent from a specific external system.

Any detailed definition of an external system is out of scope of this document.

The figure 1 shows the decomposition of PMS on the functionality areas and the supported external
systems.

We have to distinguish a Data Storage System (DSS) from all other external systems in that way, that
Data Storage System enables normal functioning of PMS and is therefore essential. PMS stores all its
data in the DSS and hence has to maintain the connection to it. PMS shall access the data storage
system through standard interface (JDBC, ODBS, ADO etc). See Data storage system section for
more information.

Product perspective example 2

0.

2.1 Product perspective

The LOGIC sub-component cannot work on its own but requires both the GUI and
NET sub-components. However, the LOGIC sub-component represents the central
part of the all the three sub-components that make up the entire Tschau Sepp
Game Component.

The LOGIC sub-component does not directly have an interface that connects
two running LOGIC instances. Instead each LOGIC sub-component is connected
to a NET sub-component that is responsible to exchange messages between com-
puters. The LOGIC sub-component, on its own, has two interfaces: one to the
GUI sub-component and another one to the NET sub-component.

Any detailed definition of the other sub-components is out of scope of this
document.

Figure 1 presents an overall view of the application architecture. With this
we want to present the eight different interfaces provided for the four different
components that form the Tschau Sepp Game Component. This are named
starting with the letter I (standing for interface).

There are no interfaces between the Tschau Sepp Game Component and the
Multiplayer Card Games server.

Section: constraints ()

A5SaONAROGS |yé LINRPLISNUASA |
options

A Examples:

I Regulatory policies

| Hardware limitations (e.g., signal timing requirements)

| Interfaces to other applications

| Parallel operation

I Audit functions

I Control functions

| Higherorder language requirements

| Reliability requirements

I Criticality of the application

I Safety and security considerations

Specific requirements ()

A This section brings requirements to a level of
detail making them usable by designers and
testers.

A Examples:

I Detalls on external interfaces

I Precise specification of each function
I Responses to abnormal situations

| Detailed performance requirements

I Database requirements

I Design constraints

|

I Specific attributes such as reliability, availabllity,
security, portability

Possible structures

3. Specific requirements

3.1 External interfaces
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communication interfaces

3.2 Functional requirements

3.3 Performance requirements

3.4 Design constraints

3.5 Quality requirements

3.6 Other requirements

3. Specific requirements
3.1 Functional requirements
3.2 Non-functional requirements

Quality Goals ()

A Justified A Traceable

A Correct A Delimited

A Complete A Interfaced

A Consistent A Readable

A Unambiguous A Modifiable

A Feasible A Testable

A Abstract A Prioritized

A Endorsed

Functional Requirements: Bad Exampl@e)

3 SPECIFIC REQUIREMENTS

3.1 Functionality
3.1.1 Component

3.1.1.1 Component Priority: 3

The system shall known the concept of components which represent the actual content on a page
respectively the content pane of a page or the panes of the template of a page. A component
15 an instance ol one ol the existing components in eHTML listed in table 1. Each component
refers slightly to one or arbitrarv many HTML tags (table 1) however this association is only a
puideline. That 1s the HTML tags mav or mayv not be used to create the components in HTMIL.

3.1.1.2 Associating components with component-styles Priority: 3
The user shall be able to associate anv component with zero or one component-stvles ot the
corresponding component-stvle-tvpe. The semantics of that association are delined in section

3.1.16.

Functional Requirements: Bad Exampl@e)

3.1.1.3 Appearance Priority: 3

A component has a appearance on a HTML-site respectively in a HT ML browser specified i the
appearance requirement ot a component. Note that there mayv be slightly different appearance
on varions HTML browsers.

Table 1: Components

COMPONENT element HTML tag
LINK-COMPONENT link <a href=" 00" e s
HEADLINE-COMPONENT headline ~hl-... < /hl
SUBHEADLINE-COMPONENT subheadline ~h2-. .. < /h2
TEXTBLOCK-COMPONENT text block P p
INMAGE-COMPONENT mage <img sre—"o 0"
ENUMERATION-COMPONENT crmneration ...</ol
itenms e [
LISTING COMPONENT listing ...</ul
items e [
table < table ... < /table
TABLE-COMPONENT TOW o T 1t
cell ctd oo

SNIPPET-COMPONENT
HORIZONTAL-LINE-COMPONENT horizontal line < hr

3 SPECIFIC REQUIREMENTS 1

\M{:‘“

3.1 Functionality

Lo (AP
Loh Joe>
3.1.1 Component Sl

3.1.1.1 Component Priorityf 3

o
W

The system shall known the concept of components which represent the actual content on a page

respectively the content-pane of a page or the panes of the template of a page. A component

is an instance of one of the existing components in eHTML listed in table 1. Each component

refers@ to one or arbitrary many HTML tags (fable 1), However this association is only a

guide]ine,l_,T—ha’tJisr the HTML tags may or may not be used to create tfﬂe components in HTML.

3.1.1.2 Associating components with component-styles Priority: 3

The user shall be able to associate any component with zero or one component-styles of the
/" corresponding component-style-type. The semantics of that association are defined in section
3.1.16.

3.1.1.3 Appearance Priority: 3
A component has afappearance on a HTML-site res ectively in a HTML browser specified in the

a

rance requirement of a component. Note that there may be slightly different appearance

on various HTML browsers.
bbb 5 e

—_—

o 30 Y

s WG, S

[1
=D f Oy

~GOMPONENT- { ¥lement~, HTML tag
LINK-COMPONENT NLuk— -ahref="...">...
HEADLINE-COMPONENT headline <hl>...</hl>
SUBHEADLINE-COMPONENT subheadline <h2>...</h2>
TEXTBLOCK-COMPONENT textblock <p... < /p>
IMAGE-COMPONENT image
ENUMERATION COMPONENT ~ “MIieration ...
items <lize, .=/l
LISTING-COMPONENT listing ...
items R
table <tablex. .. < /table>
TABLE-COMPONENT TOW L T o
cell <td=, .. < /td
SNIPPET-COMPONENT e
/< hr>

™~ - HORIZONTAL LINE-COMPONENT horizontal line

T
-
——
5
i, i .

©oopaeiney 5 T
LY

Lom Gae TG

e

v A

) . -) .
Table 1: (:mn;[mﬁ@‘ﬁ“t? Tl in iy A weh 1 et .

R ‘;-@uMalf i_ﬂ;’um W e D5 g

Functional Requirements example 1 (+)

3 Specific requirements

In the following, the LOGIC sub-component is referred to as the system.

Property | Description
Requirement ID | Defines a unique symbolic name for the requirement. It
also reflects which functional group it belongs to.

Title | A descriptive title for the requirement.

Priority | Defines the order in which requirements should be imple-
mented. Priorities are designated (highest to lowest) 1, 2,
and 3 ... Requirements of priority 1 are mandatory for
the First Implementation: requirements of priority 2 are
mandatory for the Final Implementation. A priority greater
or equal than 3 represents optional features.

Risk | Specifies the risk of not implementing the requirement. It
shows how critical the requirement is to the system as a
whole. The following risk levels are defined over the impact
of not being implemented correctly.

e Critical (C) It will break the main functionality of
the system. The system cannot be used if this re-
quirement 1s not implemented.

e High (H) It will impact the main functionality of the
system. Some function of the system could be inac-
cessible, but the system can be generally used.

Functional Requirements example 1 (+)

Req. 1D
Title

Description

R 3.1.2.004

Validate players actions

It in Master mode, the system shall validate any player action that
has been received, in order to enforce the rules of the game.

Priority | 2
Risk | H
References | R 3.1.5.001 -R 3.1.5.012
Req. ID | R 3.1.2.005
Title | Update game state
Description | If in Master mode, the system shall change the game state if a
recelved player action has been successtully validated, as to reflect
what the action entails.
Priority | 1
Risk | C
References | R 3.1.1.002, R 3.1.2.004
Req. ID | R 3.1.2.006
Title | Distribute game state
Description | If in Master mode, when the game state has been changed, the sys-
tem shall inform all connected systems, which are in Slave mode,
about the new game state, and thereby confirm that the action
was valid.
Priority | 1
Risk | C
References | R 3.1.1.004, R 3.1.3.005

Functional Requirements example 2 (v)

