
Software Architecture

Abstract Data Types



Michela Pedroni, ETH Zurich 2

Mathematical description

An ADT is a mathematical specification

Describes the properties and the behavior of instances of this type

Doesn‘t describe implementation details (therefore it‘s abstract)

An example: STACK



Michela Pedroni, ETH Zurich 3

Stack

LIFO (last in, first-out) Queue

Operations:

put: Put something onto the STACK (Command)

remove: Remove the top element of the STACK (Command)

item: Return the value of the top item (Query)

empty: Is the STACK empty? (Query)



Michela Pedroni, ETH Zurich 4

Abstract data types 

count

representation

Variant 1: array up
capacity

representation [count] := x

Variant 2: array down

n
new

item item
next

item
next

next

“Push” x on stack representation:

count := count + 1

representation [free] := x
“Push” x on stack representation:

free := free - 1

“Push” operation:
new (n)
n.item := x
n.next := first
first := new

1

free

representation
1

Variant 3: linked list

One data type – many implementations. E.g. for STACK:



Michela Pedroni, ETH Zurich 5

Formal description of a STACK

Types: 

The type(s) that are described by the ADT.

Functions: 

The functions that can be applied to the ADT.

Preconditions:

Preconditions that need to be fulfilled to apply a feature.

Axioms:

Axioms that the ADT fulfills.



Michela Pedroni, ETH Zurich 6

Abstract data types

Creators: 

Create a new instance of an ADT.

{OTHERS} ADT
Queries: 

Functions that have a return value and do not change the instance.

ADT {x OTHERS} OTHERS
Commands: 

Functions without return value that change the instance.

ADT {x OTHERS} ADT

Partial function 
There are cases where no valid return value can be given for a function
e.g.. division by 0



Michela Pedroni, ETH Zurich 7

Abstract data types

Types

STACK [G] 

-- G: Formal generic parameter

Functions

put: STACK [G] G STACK [G] 

remove: STACK [G] STACK [G] 

item: STACK [G] G 

empty: STACK [G] BOOLEAN 

new: STACK [G]



Michela Pedroni, ETH Zurich 8

Abstract data types

Preconditions

remove (s: STACK [G]) require not empty (s) 

item (s: STACK [G]) require not empty (s)

Axioms For all x: G, s: STACK [G]

1. item (put (s, x)) = x 

2. remove (put (s, x)) = s 

3. empty (new) 

4. not empty (put (s, x)) 



9

Well-formed and correct terms

Well-formed: all functions get a right number of arguments of right types

Correct: preconditions of all functions are satisfied

empty (item (put (new, 3)))

item (put (new, 3)) 

item (remove (put (new, 3))) 

empty (remove (put (new, 7)))

item (put (put (remove (put (new, 4)), 3), 2))

ill-formed

incorrect

3

True

2



10

Structural induction

Goal: Prove that a property P is valid for all correct terms T of the ADT.

Induction basis (step 0):

Prove that P holds for all creators of the ADT.

Induction hypothesis (step n-1):

Assume that P holds for any correct term Tsub.

Induction step (step n):

Prove for all commands that can be applied correctly to Tsub that P will still hold 
afterwards.



11

Sufficient completeness

An ADT is sufficiently complete if and only if:

1. For every term you can determine whether it is correct or not using the 

axioms of the ADT.

2. Every correct term where the outermost function is a query of the ADT 

can be reduced, using the axioms of the ADT, into a term not using any 

function of the ADT.



12

Your turn: Design an ADT (types, functions, preconditions, axioms)

We have the following requirements for a BANK_ACCOUNT class:

1. Every BANK_ACCOUNT has an owner and a balance.

2. The balance is recorded in “Rappen” (as an INTEGER).

3. The owner is recorded with his/her name (as a STRING).

4. It should always be possible to retrieve the balance and owner for any 

given BANK_ACCOUNT.

5. It is possible to deposit money to and withdraw money from the 

BANK_ACCOUNT.

6. The balance on the BANK_ACCOUNT is adjusted accordingly.

7. The balance of any BANK_ACCOUNT should never become negative.



ADT BANK_ACCOUNT

TYPES

BANK_ACCOUNT

FUNCTIONS

new_account: STRING BANK_ACCOUNT

owner: BANK_ACCOUNT STRING

balance: BANK_ACCOUNT INTEGER

deposit: BANK_ACCOUNT INTEGER BANK_ACCOUNT

withdraw: BANK_ACCOUNT INTEGER BANK_ACCOUNT

13



ADT BANK_ACCOUNT (cont’d)

PRECONDITIONS (with v INTEGER, a BANK_ACCOUNT)

withdraw (a, v) require balance (a) v and v 0

deposit (a, v) require v 0

AXIOMS (with o STRING, v INTEGER, a BANK_ACCOUNT)

A1: balance (new_account (o)) = 0

A2: owner (new_account (o)) = o

A3: balance (deposit (a, v)) = balance (a) + v

A4: balance (withdraw (a, v)) = balance (a) – v

14



To Do

Prove by structural induction of bank accounts that the value returned by 

“balance” is never negative.

The specification is not sufficiently complete; show why. Add axiom(s) to 

make it sufficiently complete, and prove that, with such an extension, it is 

sufficiently complete.

15



Proof: balance non-negative

We prove this by induction over the structure of correct bank accounts:

• Base case: The bank account is of the form new_account(o), and we know 

balance(new_account(o)) = 0 and that 0 >= 0.

• Step case: The bank account can have one of two forms, where a is a 

correct bank account with balance(a) >= 0:

• Form deposit(a,i) where i >= 0. By axiom A3, we know that 

balance(deposit(a,i)) = balance(a) + i which is non-negative because of the 

induction hypothesis and i >= 0

• Form withdraw(a,i) where balance(a) >= i >= 0. From axiom A4 it follows 

that balance(withdraw(a,i)) >= 0.



Proof: sufficient completeness (1)

The ADT is not sufficiently complete, since we cannot determine the owner 

of an account if a deposit or withdrawal was made.

To make it sufficiently complete, we have to add the axioms:

A5: owner(deposit(a,v)) = owner(a)

A6: owner(withdraw(a,v)) = owner(a)



Proof: sufficient completeness (2)

Let P(n) be the property “for all terms a of type BANK_ACCOUNT with at 

most n applications of deposit and withdraw, it can be proven 1) whether a is 

correct or not and 2) whether balance(a) and owner(a) are correct or not and 

if correct, whether they can be reduced to terms not involving new_account, 

owner, balance, deposit and withdraw”

Base case n=0: a is new_account(o), which is correct, and balance(a) = 0 and 

owner(a) = o. Thus P(0) holds.



Proof: sufficient completeness (3)

Step case: We assume the induction hypothesis (IH) P(n-1) and have to 
prove P(n). 
First case: a is deposit(b,i) and the IH applies to terms b and i. 

1. Term a is correct iff b and i are correct, which we can determine by IH, 
and i > 0, which we can determine (since we can reduce i to a term not 
using functions of BANK_ACCOUNT by IH).

2. * balance(a) is correct iff a is correct, which we can determine (see 1). If 
balance(a) is correct, then balance(a) = balance(b) + i, which can be 
reduced to a term not using functions of BANK_ACCOUNT by IH.
* owner(a) is correct iff a is correct, which we can determine (see 1). If 
owner(a) is correct, then owner(a) = owner(b), which can be reduced to a 
term not using functions of BANK_ACCOUNT by IH.



Proof: sufficient completeness (4)

Step case (continued)
Second case: a is withdraw(b,i) and the IH applies to terms b and i. 

1. Term a is correct iff b and i are correct, which we can determine by IH, 
and balance(b) >= i >= 0, which we can determine (since we can reduce 
balance(b) and i to terms not using functions of BANK_ACCOUNT by 
IH).

2. * balance(a) is correct iff a is correct, which we can determine (see 1). If 
balance(a) is correct, then balance(a) = balance(b) - i, which can be 
reduced to a term not using functions of BANK_ACCOUNT by IH.
* owner(a) is correct iff a is correct, which we can determine (see 1). If 
owner(a) is correct, then owner(a) = owner(b), which can be reduced to a 
term not using functions of BANK_ACCOUNT by IH. QED

20



Supplementary reading

Object-oriented Software Construction, Second Edition, by Bertrand Meyer, 

pp. 148-159

21


