
Tic-Tac-Toe ADT

1 Abstract Data Types and Design by Contract

1.1 Incompleteness in contracts

Tic-Tac-Toe game is played on a 3-by-3 board, which is initially empty. There
are two players: a “cross” player and a “circle” player. They take turns; each
turn changes exactly one cell on the board from empty to the symbol of the
current player (cross or circle). The “cross” player always starts the game. The
rules that define when the game ends and which player wins are omitted from
the task for simplicity.

Below you will find an interface view of GAME class representing Tic-Tac-Toe
games.

class GAME

create make

feature −− Initialization
make

−− Create an empty 3−by−3 board
ensure
cross turn : next turn = Cross

end

feature −− Constants
Empty: INTEGER is 0
Cross: INTEGER is 1
Circle : INTEGER is 2

−− Symbolic constants for players and states of board cells

feature −− Access
next turn: INTEGER

−− Player that will do the next turn

item (i , j : INTEGER): INTEGER
−− Value in the board cell (i , j)

require
i in bounds : i >= 1 and i <= 3
j in bounds : j >= 1 and j <= 3

ensure
valid value : Result = Empty or Result = Cross or Result = Circle

end

feature −− Basic operations
put cross (i , j : INTEGER)

−− Put cross into the cell (i , j)
require
cross turn : next turn = Cross
i in bounds : i >= 1 and i <= 3

1

j in bounds : j >= 1 and j <= 3
empty: item (i , j) = Empty

ensure
cross put : item (i , j) = Cross
circle turn : next turn = Circle

end

put circle (i , j : INTEGER)
−− Put circle into the cell (i , j)

require
circle turn : next turn = Circle
i in bounds : i >= 1 and i <= 3
j in bounds : j >= 1 and j <= 3
empty: item (i , j) = Empty

ensure
circle put : item (i , j) = Circle
cross turn : next turn = Cross

end
invariant

valid player : next turn = Cross or next turn = Circle
end

The contract of this class is incomplete with respect to the game description
given above. In which contract elements does the incompleteness reside? Ex-
press in natural language what the missing parts of the specification are. Give
an example of a scenario that is allowed by the above contract, but should not
happen in Tic-Tac-Toe:

The postcondition of make doesn not describe the board cell values. Post-
conditions of put cross (i , j) and put circle (i , j) do not describe what happens
with board cells other than (i, j). For example, after a sequence of calls

create game.make
game.put cross (2, 2)
game.put circle (1, 1)

we expect game.item (2, 2) = Cross, but according to the contracts also game.item

(2, 2) = Empty and game.item (2, 2) = Circle are possible.

1.2 ADT GAME

Create an ADT that describes Tic-Tac-Toe games. The ADT functions should
correspond one-to-one to the features of the GAME class above. The axioms of
the ADT should be sufficiently complete, overcoming the incompleteness of the
class contracts.

2

TYPES

GAME

FUNCTIONS

• make : GAME

• next turn : GAME → INTEGER

• item : GAME × INTEGER× INTEGER 6→ INTEGER

• put cross : GAME × INTEGER× INTEGER 6→ GAME

• put circle : GAME × INTEGER× INTEGER 6→ GAME

• Empty : INTEGER

• Cross : INTEGER

• Circle : INTEGER

PRECONDITIONS

P1 item(g, i, j) require 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3

P2 put cross(g, i, j) require next turn(g) = Cross and 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3
and item(g, i, j) = Empty

P3 put circle(g, i, j) require next turn(g) = Circle and 1 ≤ i ≤ 3 and 1 ≤ j ≤
3 and item(g, i, j) = Empty

AXIOMS

We assume 1 ≤ i, j, k, l ≤ 3.

A1 next turn(make) = Cross

A2 next turn(put cross(g, i, j)) = Circle

A3 next turn(put circle(g, i, j)) = Cross

A4 item(make, i, j) = Empty

A5 item(put cross(g, i, j), i, j) = Cross

A6 (k 6= i ∨ l 6= j) =⇒ item(put cross(g, i, j), k, l) = item(g, k, l)

A7 item(put circle(g, i, j), i, j) = Circle

A8 (k 6= i ∨ l 6= j) =⇒ item(put circle(g, i, j), k, l) = item(g, k, l)

A9 Empty = 0

A10 Cross = 1

A11 Circle = 2

3

1.3 Proof of sufficient completeness

Prove that your specification is sufficiently complete.

For all terms T there exist resulting terms not involving any functions of the
ADT when evaluating next turn(T) and item(T).

Once again we assume 1 ≤ i, j, k, l ≤ 3.

Induction basis

For all creators above holds.

• next turn(make)
A1
= Cross

A10
= 1

• item(make, i, j)
A4
= Empty

A9
= 0

Induction hypothesis

Assume for Tsub being a subterm of T that this is true.

Induction step

• For put cross:

– next turn(put cross(g, i, j))
A2
= Circle

A11
= 2

–

item(put cross(g, i, j), k, l) =

{
A5
= Cross

A10
= 1 if i = k ∧ l = j

A6
= item(g, k, l) otherwise

• For put circle:

– next turn(put circle(g, i, j))
A3
= Cross

A10
= 1

–

item(put circle(g, i, j), k, l) =

{
A7
= Circle

A11
= 2 if i = k ∧ l = j

A8
= item(g, k, l) otherwise

4

