
Legi-Nr.:...

1 Abstract Data Types (11 Points)

In this task you will write an abstract data type for a simple tree structure that stores
integers in its nodes and whose nodes always have either no children (leaves) or two children
(inner nodes). The ADT for TREE should contain the following six functions:

• make: Creation function that given an INTEGER argument i returns a TREE with i

stored in the root node.

• merge: Given two arguments t1 and t2 of type TREE and a third argument i of type
INTEGER, this function connects the two trees by adding a new root node containing
i and storing t1 as left subtree and t2 as right subtree.

• root: Returns the INTEGER stored in the root node of a TREE.

• left : Returns the left subtree of a TREE.

• right : Returns the right subtree of a TREE.

• has children: Returns True if the TREE has left and right subtrees, False otherwise.

Example 1

t
3

t = make (3)
root (t) = 3
has children (t) = False
left (t) −−> not allowed
right (t) −−> not allowed

Example 2

t

right (t)

left (t)

4 3

5

1 2

t = merge (make (4), merge (make (1), make (2), 3), 5)
root (t) = 5
has children (t) = True
left (t) −−> see Figure
right (t) −−> see Figure
root(left (t)) = 4

Example 3

t = merge (merge (make (6), make (7), 8), right (merge (make (4), merge (make (1), make (2), 3), 5)) , 9)

right (t)

8 3

9

1 26 7

left (t)

t

root (t) = 9
has children (t) = True
left (t) −−> see Figure
right (t) −−> see Figure
root (left (right (t))) = 1

1

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture – Exam

TYPES

TREE

FUNCTIONS

• make: INTEGER → TREE

• merge: TREE × TREE × INTEGER → TREE

• root: TREE → INTEGER

• left: TREE 6→ TREE

• right: TREE 6→ TREE

• has children: TREE → BOOLEAN

PRECONDITIONS

• P1: left (t) require has children (t)

• P2: right (t) require has children (t)

AXIOMS

• A1: root (make (i)) = i

• A2: root (merge (t1, t2, i)) = i

• A3: left (merge (t1, t2, i)) = t1

• A4: right (merge (t1, t2, i)) = t2

• A5: has children (make (i)) = False

• A6: has children (merge (t1, t2, i)) = True

2

Legi-Nr.:...

2 System Architecture (20 Points)

For the following two problems, describe the system architecture in the following form:

• Name one architectural pattern that you will use (not design pattern).

• Draw a diagram that describes your system architecture.

• Quickly explain in words how the system works.

• State the three most important advantages of using this architecture.

• State the two most important disadvantages of using this architecture.

2.1 E-mail Filter

An e-mail system filters incoming e-mails with a whitelist (e-mails from senders on the
whitelist are accepted), a blacklist (e-mails from senders on the blacklist are deleted), and
the Spamassassin tool (e-mails that do not pass this check are marked as spam). The system
will run on a single-core server machine, but may be moved to a multi-core server if the load
gets too high.

Solution

Architectural Pattern Name: (1 point)

Pipe-and-Filter.

Diagram: (2 points)

Description: (2 points)

The system consists of multiple filters which are linked in sequence. An incoming email is
given to the first filter. Then, each filter either moves the Email to a destination (inbox,
trash, spam), or hands it off to the next filter. The emails that are left at the end will go to
the inbox.

Three Most Important Advantages: (3 points)

• Scalability: Individual filters can be run in parallel when the system moves to a multi-
core machine.

• Extendibility: Filters can be added or removed without affecting the overall system.

3

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture – Exam

Two Most Important Disadvantages: (2 points)

• Integrity: Order of filters affects result.

2.2 Airplane Monitoring

In an airplane, there are many sensors: speed, altitude, cabin pressure, fuel level, etc. The
monitoring system performs different checks on the sensor data. If a problem is noticed, the
system either shows a warning to the pilot (e.g. low on fuel), or in a dangerous situation may
react automatically (e.g. by dropping oxygen masks). The system will run on a multi-core
machine and should do the checks in near real-time when new sensor data comes in.

Solution

Architectural Pattern Name: (1 point)

Event-based.

Diagram: (2 points)

Description: (2 points)

The system consists of a data repository, which stores the current values of all sensor
data. Different checkers can subscribe for changes in different data types. When the data
sources generate new data, the data repository informs the subscribed checkers that new
data is available. The data checkers are individual modules and thus can perform their
checks in parallel as soon as new data is available.

Three Most Important Advantages: (3 points)

• Response time: Checks are performed as soon as new data is available.

• Performance: Checks can be performed in parallel.

• Extendibility: New checks can be added without changes in the system.

4

Legi-Nr.:...

Two Most Important Disadvantages: (2 points)

• Integrity of checks: The checks are done independent of each other, so they could
possibly launch contradicting actions as a result of the check.

• Data repository is single point of failure.

5

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture – Exam

3 Testing (17 Points)

The feature extend of class LINKED LIST is shown in the following listing, along with some
of the features used in extend.

class LINKED LIST [G]
create make

feature

make
−− Create an empty list.

ensure
count = 0
index = 1

first element : like new cell
−− Head of list

last element : like first element
−− Tail of list

new cell (v: like item): LINKABLE [like item]
−− A newly created instance of the same type as ‘first element ’.

active : like first element
−− Element at cursor position

count: INTEGER
−− Number of items in the list

index: INTEGER
−− Index of current cursor position (is between 1...(count+1))

after : BOOLEAN
−− Is there no valid cursor position to the right of cursor?

ensure
Result = (index = count + 1)

is empty: BOOLEAN
−− Is structure empty?

ensure
is empty = (count = 0)

start
−− Move cursor to first position .

ensure
index = 1

forth
−− Move cursor to next position.

require
not after

ensure
index = old index + 1

put right (v: like item)
−− Add ‘v’ to the right of cursor position .
−− Do not move cursor.

ensure
count = old count + 1
index = old index

[1] extend (v: like item)
−− Add ‘v’ to end.
−− Do not move cursor.

local
p: like first element
l : like last element

6

Legi-Nr.:...

do
[2] p := new cell (v)
[3] if is empty then
[4] first element := p
[5] active := p

else
[6] l := last element
[7] if l /= Void then
[8] l . put right (p)
[9] if after then
[10] active := p

end
end

end
[11] count := count + 1

ensure
count = old count + 1
index = old index

end

extend adds an element to the end of a LINKED LIST. first element and last element point to
the first and the last element in the list, respectively. If the list is empty, first element and
last element are Void. active points to the element at the current cursor position. If the cursor
is off the list, active is Void.

In program analysis:

• A definition of a variable x (a local variable, argument or class attribute) consists of
statements performing creation, initialization, assignment of a value to x or actual
argument substitution if x is an argument of a feature.

• A use of variable x consists of statements using x without changing its value. There
are two kinds of uses:

– P-use: use in the predicate (decision) of an if- or loop-statement
– C-use: all other uses

In the above listing, v is a passed-in argument, so line [1] is a definition of v, denoted by
v [1] , that is, the variable name followed by line number of the definition.

In the statement p := new cell (v), v is C-used, so line [2] is a C-use of v, whose value is
defined in line [1]. In other words, line [1] and [2] form a def-use pair for variable v. This
def-use pair is denoted by v[1−2]C, that is, the variable name, followed by two dash-separated
numbers representing the definition and use location of that variable, followed by the type
of use, either C or P.

7

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture – Exam

Questions

(1) Please find all definitions of variables in the above listing. (1 point each)
p[2]
first element[4]
active[5]
l[6]
active[10]
count[11]

(2) Please find all def-use pairs for the definitions listed in question (1). For each def-use
pair, use the described notation io indicate it is a P-use or a C-use. (1 point each)
p[2-4]C
p[2-5]C
l[6-7]P
l[6-8]C
p[2-8]C
p[2-10]C
count[11-11]C

(3) In software testing, the All def-use criterion is a data-flow coverage criterion, it is
satisfied if all def-use pairs are examined by at least one test case. Please construct a test
suite which satisfies all def-use criterion for local variable p.

Test case No.1 (2 points)

create l.make
l .extend (Void)

Test case No.2 (2 points)

create l.make
l .extend (Void)
l . start
l . forth
l .extend (Void)

8

	Abstract Data Types (11 Points)
	System Architecture (20 Points)
	E-mail Filter
	Airplane Monitoring

	Testing (17 Points)

