Software Architecture Exam

Summer Semester 2007
Prof. Dr. Bertrand Meyer
Date: 19 June 2007

Family name, first Name:coooiiiiiiiiiieiiiiiiiee e
SEUAENt NUIMDET: ooiiiiiiiiiii e e e e e e

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

STGNATUTE! .evitiiiieiee et e e

Directions:
e Exam duration: 90 minutes.

e Except for a dictionary you are not allowed to use any supplementary
material.

e Use a pen (not a pencil)!
e Please write your student number onto each sheet.

e All solutions can be written directly onto the exam sheets. If you need
more space for your solution ask the supervisors for a sheet of official
paper. You are not allowed to use other paper.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Don’t forget to add comments to features.

e Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good luck!

ETHZ D-INFK

Prof. Dr. B. Meyer

Software Architecture — Exam

Question | Number of possible points | Points
1 10
2 10
3 11
4 18
5 17

1 Abstract Data Types (10 Points)

The MyMusic shop sells music CDs. The shop needs to keep track of the CD
titles they have, so for each CD title they need to know:

e the name of the artist

the title of the album
e the price
e how many copies they have on stock

It should also be possible to set a different price for a CD than it was created
with, to sell CDs (no more than there are on stock), and to order new copies of
a certain CD when there are none left on stock.

The following ADT should model this notion. Note that although it is
called “CD” it represents a CD title, not an individual CD (e.g. “Mozart’s
4oth Symphony, recorded by Karajan and published by Deutsche Gramophon”,
not one particular CD with that title). Types STRING and INTEGER are
considered given with the usual semantics and are opaque types (this means
their own properties are not visible and do not matter in the exercise).

TYPES
CD, STRING, INTEGER
FUNCTIONS
new_cd: STRING x STRING x INTEGER x INTEGER — CD
title: CD — STRING
artist: CD — STRING
price: CD — INTEGER
quantity: CD — INTEGER
set_price: CD x INTEGER — CD
sell: CD x INTEGER — CD
order new: CD x INTEGER — CD

The informal semantics of these functions is the following:

e “new_cd” yields a new CD with the data it receives as argument (in this
order): title, artist, price, quantity (the initial quantity on stock)

o “title”, “artist”, “price”, “quantity” return the corresponding character-
istics of a CD

e “set_price” sets the price of a CD to the given argument
e “sell” reduces the quantity of CDs on stock by the given number

e “order_new” increases the quantity of CDs on stock with the given number

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

The business model of the shop imposes the following constraints:
e The quantity on stock must always be non-negative.

e New copies of a CD can only be ordered when the shop does not have it
on stock anymore.

e The price of a CD must be strictly greater than 0.

e A new CD can only be created if there is at least one copy on stock.

To Do:
1. Which functions from the above list are (1 POINT):
() CTEALOTS: .\ttt e
(D) QUETIES: .ottt
() CommAands:iuiuniiii e

(you only need to specify the functions’ names)

2. Mark the functions that should be partial in the FUNCTIONS section
(by crossing the arrow in the function definition) (1 POINT).

3. Write the PRECONDITIONS section of the CD ADT (4 POINTS).

4. Write the AXIOMS section of the CD ADT so that this ADT is suf-
ficiently complete (you don’t need to prove sufficient completeness) (4
POINTS).

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

2 Design by Contract (10 Points)

The class COUNTER represents a natural counter with routines increment and
decrement. The counter is implemented as an INTEGER. The class STUDENT
represents students that take courses. The class COURSE represents courses. A
course consists of a name, a list of students that are registered in the course,
and a counter that stores the number of students registered in the course. In
the following classes implementing this notion, complete the contracts at the
locations marked by dotted lines. The first contract (the postcondition of fea-
ture make of class COUNTER) is done as an example. Part of the interface of
class LINKED_LIST is provided to help the development of the contracts of class
COURSE.

indexing
2 description: ”Objects that represent a natural counter.”
4 class
COUNTER
6 create
make
8
feature —— Initialization
10
make is
12 —— Create a counter initializing it with 0.
do
14 item := 0
ensure
16 initial_value_is_0 : item = 0
end
18
feature —— Element change
20 increment is
—— Increment the counter by 1.
22 do
item = item + 1
24 ensure
2
end
28
decrement is
30 —— Decrement the counter by 1.
require
32
34 do
item = item — 1
36 ensure
B8
end
40
feature —— Implementation

42 item: INTEGER

44 invariant

A
48 end

indexing

2 description: ”Objects that represent students. A student consists of a name.”
class

4 STUDENT

6 create
make
8
feature —— Initialization
10 make (n: STRING) is

ETHZ D-INFK
Prof. Dr. B. Meyer

Software Architecture — Exam

—— Create a student whose name is ‘n’.

12 require

14
do

16 name := n
ensure

18

20 end

22 feature —— Access

24 set_name (n: STRING) is
—— Set the name.

26 require

28
do

30 name :=n
ensure

32

34 end

36

feature —— Implementation

38 name: STRING

40 invariant

indexing
2 description: ”Objects that represent courses”
4 class
COURSE
6
create
8 make

10 feature { NONE} —— Initialization

12 make (n: STRING) is
—— Create a new course with name 'n’.

14 require
16
do
18 name := n
create count_students.make
20 create students.make
ensure

22
24 end
26
28 feature —— Basic operations
register (s: STUDENT) is
30 —— Register a student.
require
32
34
36 do
students. extend (s)
38 count_students. increment
ensure
40
42 end

44 delete (s: STUDENT) is

—— Delete a student from the course.

R

D0

46 require
do

52 students. start

students.prune (s)

54 count_students. decrement
ensure

56

58 end

60 feature —— Implementation

name: STRING
62 count_students: COUNTER
students: LINKED_LIST [STUDENT]
64
invariant
66

68

70

72 end

class interface

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

2 LINKED_LIST [G]

4 create
make
6
feature —— Access
8
cursor: LINKED_LIST_CURSOR |G
10 —— Current cursor position

12 first : like item
—— Item at first position
14
index: INTEGER_32
16 —— Index of current position

18 item: G
—— Current item

20

last: like item
22 —— Item at last position
24 feature —— Measurement

26 count: INTEGER_32
—— Number of items

28
feature —— Status report
30
after: BOOLEAN
32 —— Is there no valid cursor position to the right of cursor?

34 before: BOOLEAN
—— Is there no valid cursor position to the left of cursor?
36
full: BOOLEAN is False
38 —— Is structured filled to capacity? (Answer: no.)

40 is_inserted (v: G): BOOLEAN
—— Has ‘v’ been inserted at the end by the most recent put or
42 —— extend?

44 has (v: like item): BOOLEAN is
—— Does linked list include ‘v’?
46
isfirst : BOOLEAN
48 —— Is cursor at first position?

50 islast : BOOLEAN
—— Is cursor at last position?
52
off: BOOLEAN
54 —— Is there no current item?

56 readable: BOOLEAN
—— Is there a current item that may be read?

58

valid_cursor (p: CURSOR): BOOLEAN
60 —— Can the cursor be moved to position ‘p’?
62 feature —— Cursor movement

10

64 back
—— Move to previous item.
66
finish
68 —— Move cursor to last position.
—— (Go before if empty)
70
forth
72 —— Move cursor to next position.

74 go_to (p: CURSOR)
—— Move cursor to position ‘p’.

76
start

78 —— Move cursor to first position.
80 search (v: like item) is

—— Move to first position (at or after current
82 —— position) where ‘item’ and ‘v’ are equal.

—— If structure does not include ‘v’ ensure that
84 —— ‘exhausted’ will be true.
86 feature —— Element change

88 extend (v: like item)
—— Add ‘v’ to end.
90 —— Do not move cursor.

92 merge_left (other: like Current)
—— Merge ‘other’ into current structure before cursor
94 —— position. Do not move cursor. Empty ‘other’.

96 merge_right (other: like Current)
—— Merge ‘other’ into current structure after cursor
98 —— position. Do not move cursor. Empty ‘other’.

100 put_front (v: like item)
—— Add ‘v’ to beginning.
102 —— Do not move cursor.

104 replace (v: like item)
—— Replace current item by ‘v’.

106
feature —— Removal
108
remove
110 —— Remove current item.
—— Move cursor to right neighbor
112 —— (or after if no right neighbor).

114 prune (v: like item) is
—— Remove first occurrence of ‘v’, if any,

116 —— after cursor position.
—— If found, move cursor to right neighbor;
118 —— if not, make structure ‘exhausted’.

120 end —— class LINKED_LIST

11

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

3 Design Pattern Categories (11 Points)

Design patterns can be classified in terms of the underlying problem they are
solving. In the lecture, you have seen three categories of design patterns: cre-
ational design patterns, structural design patterns, and behavioral design pat-
terns. Assign each of the design patterns below to one of these three categories
by writing its name into the according list. For each of the three categories
choose one pattern and describe it in one or two sentences.

List: Composite, State, Abstract Factory, Singleton, Chain of Responsibility,
Builder, Bridge, Strategy, Decorator, Flyweight

Example

List: Memento, Iterator, Interpreter
1. Behavioral design patterns:

e Name: Iterator

Description: The iterator pattern provides a mechanism that allows
sequential access to the elements of an aggregate object without ex-
posing its underlying representation. In the iterator pattern each ef-
fective representation of the aggregate object has a corresponding ef-
fective iterator that provides operations start, forth, off, and item.

e Name: Interpreter

e Name: Memento

Fill in here:

Each correctly categorized pattern is worth 0.5 Point. For each correct pattern
description you get 2 Points.

1. Creational design patterns:

12

13

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

@ NI .
@ NI o
@ NI .
@ NI .

O N aIC: oo

4 Observer (18 Points)

Below you will find a possible implementation for an application using the Ob-
server design pattern:

deferred class
2 OBSERVER

feature —— Basic operations
4 update (a_subject: SUBJECT) is

—— Update subscribed observers because a subject’s state changed.
6 deferred
end

8 end —— class OBSERVER

10 class

CONCRETE_OBSERVER
12 inherit

OBSERVER
14 create

make
16

feature { NONE} —— Initialization
18 make is
—— Create subject_1 and subject_2.

20 do
create subject_1.make (Current)
22 create subject_2.make (Current)
end
24

feature —— Access
26 subject_1: SUBJECT-1
—— First subject of observer
28 subject_2: SUBJECT-2
—— Second subject of observer
30
feature —— Basic operations

14

32 update (a_subject: SUBJECT) is
—— Update subscribed observers because a subject’s state changed.
34 do

36 end
38 end —— class CONCRETE_OBSERVER

40 deferred class
SUBJECT
42
feature { NONE} —— Initialization
44 make (an_observer: like observer) is
—— Set observer to an_observer.

46 require

an-observer_not_void: an_observer /= Void
48 do

observer := an_observer
50 ensure

observer_set: observer = an_observer
52 end
54 feature —— Access

observer: OBSERVER

56 —— OBSERVER

58 feature —— Mediator pattern

notify is
60 —— Notify observer that current subject has changed.
do
62 observer.update (Current)
end
64
do_something is
66 —— Do something.
deferred
68 end

70 invariant
observer_not_void: observer /= Void

72

end —— class SUBJECT
74

class
76 SUBJECT_1

inherit
78 SUBJECT

80 create
make
82
feature — Basic elements
84 do_something is
—— Do something.

86 do
0. put_string (”This is the first subject”)
88 10.new_line
end

90 change is
—— Change the state of the object
92 do

15

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

94 notify
end
96
end —— class SUBJECT_1
98

100 class
SUBJECT_2
102 inherit
SUBJECT
104
create
106 make

108 feature — Basic elements
do_something is

110 —— Do something.
do
112 0. put_string (”This is the second subject”)
i0.new_line
114 end
change is
116 —— Change the state of the object
do
118 — ..
notify
120 end

122 end —— class SUBJECT 2

The Observer design pattern uses a notify-update mechanism. Replace this
notify-update mechanism by using the EVENT_TYPE class for the above appli-
cation. The interface of class EVENT_TYPE is given below:

class interface
2 EVENT_TYPE [EVENT_DATA —> TUPLE create default_create end]

4 feature —— Element change

6 subscribe (an-action: PROCEDURE [ANY, EVENT_DATA]) is
—— Add an_action to the subscription list.

8 require
an_action_not_void: an_action /= Void
10 an-action_not_already_subscribed : not has (an-action)
ensure
12 an-action_subscribed: count = old count + 1 and has (an_action)
index_at_same_position: index = old index
14
unsubscribe (an-action: PROCEDURE [ANY, EVENT_DATA]) is
16 —— Remove an_action from the subscription list.
require
18 an_action_not_void: an_action /= Void
an_action_already_subscribed : has (an_action)
20 ensure
an_action_unsubscribed: count = old count — 1 and not has (an_action)
22 indez_at_same_position: index = old index
end
24
feature —— Publication
26
publish (arguments: EVENT_DATA) is
28 —— Publish all actions from the subscription list .
require

16

30 arguments_not_void: arguments /= Void
32 feature —— Measurement

34 count: INTEGER
—— Number of items
36
index: INTEGER is
38 —— Index of current position in the list of actions

40 feature —— Access

42 has (v: PROCEDURE [ANY, EVENT,DATA]): BOOLEAN
—— Does the list of actions include v?
44
end —— class EVENT_TYPE

17

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

18

19

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

5 Concurrent Programming (17 Points)

5.1 True or false (3 Points)

Are the following statements true or false? Write “I” for true or “F” for false
in the corresponding box.

Answer | Statement
The exact execution path of a concurrent program is non-
deterministic in general, even with the same input.
Access to and modification of shared variables should always be
mutually exclusive.
The sequence of instructions protected by a semaphore (through
a “wait” operation) can be executed by at most one thread of
control at any time.

5.2 Busy waiting (3 points)

Explain what busy waiting is and how semaphores remove the need for busy
waiting.

20

5.3 Semaphores (3 points)

A semaphore has an associated integer variable. Explain under what conditions
the value of that variable can be: 1) Positive 2) Zero.

5.4 Programming (8 points)

Consider the following scenario. There is a printing server which puts print
tasks into a buffer, and a printer which gets printing tasks from the buffer, one
at a time. If there is no task in the buffer, the printer will wait. The buffer is
assumed to have infinite length and should be accessed exclusively.

Complete the following program using semaphore(s) or mutex(es) to make
sure the printing server and the printer can cooperate correctly. You can assume
that if S is a semaphore or a mutex, the calls wait (S) and signal (S) are available
with the usual semantics.

Semaphore(s) or mutex(es) definition:

Printing server program:

new_task := next_print_task —— Get a new print task.

store_task (new_task, buffer) —— Store the print task into buffer.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

Printer program:

print_task := task_from_buffer (buffer) —— Get a print task from buffer.

remove_task (print_task, buffer) —— Remove the print task from buffer.

print (print_task) —— Process the task.

22

	Abstract Data Types (10 Points)
	Design by Contract (10 Points)
	Design Pattern Categories (11 Points)
	Observer (18 Points)
	Concurrent Programming (17 Points)
	True or false (3 Points)
	Busy waiting (3 points)
	Semaphores (3 points)
	Programming (8 points)

