Software Architecture Exam

Summer Semester 2008
Prof. Dr. Bertrand Meyer
Date: 27 May 2008

Family name, first Name:coooiiiiiiiiiiieiiiiiiiee e
SEUAENt NUIMDET: Loiiiiiiei i e e e e e

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

STGNATUTE! ..ettiiiiieiee et e e et

Directions:
e Exam duration: 90 minutes.

e Except for a dictionary you are not allowed to use any supplementary
material.

e Use a pen (not a pencil)!
e Please write your student number onto each sheet.

e All solutions can be written directly onto the exam sheets. If you need
more space for your solution ask the supervisors for a sheet of official
paper. You are not allowed to use other paper.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Don’t forget to add comments to features.

e Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good luck!

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

Question | Number of possible points | Points
1 8
2 12
3 16
4 26
5

6

16
16

1 Modularity, ADT, Design by Contract and
Concurrency (8 points)

Put checkmarks in the checkboxes corresponding to the correct answers. Multi-
ple correct answers are possible; there is at least one correct answer per question.
A correctly set checkmark is worth 1 point, an incorrectly set checkmark is worth
-1 point. If the sum of your points is negative, you will receive 0 points.

Example:

1. Which of the following statements are true?
a. Classes exist only in the software text; objects exist only X
during the execution of the software.
b. Each object is an instance of its generic class. U
c. An object is deferred if it has at least one deferred feature. O

1. Modularity, reusablilty, ADT and design patterns.
a. Inheritance is a key mechanism to support the Open-Closed [
principle.
b. The Uniform Access principle allows a supplier to switch [
between storage and computation as the way to provide results
to the client.
¢. An ADT can be implemented as a deferred class or as an [
effective class.
d. Modular decomposability and modular composability imply [
each other.
e. It is easy to extend a composite-based design with new O
composite classes.
f. The visitor pattern violates the Information Hiding principle. [

2. Design by Contract.
a. Precondition violations reveal bugs in the supplier, while post-
condition violations reveal bugs in the client.
b. Class invariants can be strengthened in descendant classes.
c. During the execution of a feature, the invariant of the gener-
ating class may be violated.
d. To call a feature on an object, the client is responsible for
making sure that the invariants of that object and preconditions
of the feature are satisfied.

O

O oo

3. Concurrency with SCOOP,

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

a. When assertion monitoring is turned off, an unqualified call [J
f(a) with separate actual argument a can proceed when the ob-
ject attached to a is reserved by the current object.

b. A traitor is a separate reference attached to a non-separate [
object.

¢. Computation in a processor is sequential and will be performed [J
in the requested order.

d. Invocation of a command on a separate object is non-blocking [
while invocation of a query on a separate object is blocking.

2 Design by Contract (12 Points)

Figure [1] shows a BON diagram of bank accounts. The class BANK_ACCOUNT
models a bank account. This class contains a routine withdraw with an empty
implementation. The signature of withdraw is withdraw (v: INTEGER). The pre-
condition of this routine does not impose any restriction (any client can invoke
it because its precondition is always satisfied).

The class STUDENT-ACCOUNT defines a student bank account. The routine
withdraw is redefined in STUDENT_ACCOUNT and its precondition requires that
balance is greater than v». The class B_LA_NORMAL defines a normal bank ac-
count. It also redefines the routine withdraw and its precondition requires balance
is greater than v plus fee (where fee is a constant).

Finally, the class B_.A_BUSINESS defines a business bank account. This class
defines an attribute credit storing the credit of the bank account (a positive num-
ber). The routine withdraw is also redefined in B_A_BUSINESS and its precondition
requires balance plus credit is greater than v». In the following classes implement-
ing this notion, complete the contracts at the locations marked by dotted lines
(invariants are omitted). Furthermore, complete the redefine clauses marked by
dotted lines.

BANK ACCOUNT

STUDENT ACCOUNT B A NORMAL

+
B_A_BUSINESS

Figure 1: BON diagram of bank accounts.

indexing
2 description: ”Objects that represent a bank account.”

4 class
BANK_ACCOUNT
6
feature —— Element change

8 withdraw(v: INTEGER) is
—— withdraw v.
10 require

52
14 end

16

18

20

22

24
feature —— Implementation
26 balance: INTEGER
end

1 indexing

description: ”Objects that represent a student bank account.”
3 class

STUDENT_ACCOUNT inherit

5
BANK_ACCOUNT
7 redefine
O
end
11

feature —— Element change
13 withdraw(v: INTEGER) is

—— withdraw v.

15 require else
LT
do
19 balance := balance — v
ensure
21
23 end
2
2T s
20

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

S

33 end

1 indexing

description: ”Objects that represent a normal bank account.”
3 class

B_A_NORMAL inherit

5
BANK_ACCOUNT
7 redefine
O
end
11
feature —— Element change

13 withdraw(v: INTEGER) is
—— withdraw v.
15 require else

LT
do

19 balance := balance — v
ensure

21

23 end

D275 P

2

Bl

33 feature —— Implementation
fee: INTEGER
35 end

1 indexing

description: ”Objects that represent a business bank account.”
3 class

B_A_BUSINESS inherit

5
BANK_ACCOUNT
7 redefine
D
end
11
feature —— Element change

13 withdraw(v: INTEGER) is
—— withdraw v.

15 require else
LT
do
19 balance := balance — v
ensure
21
23 end
25
27
29
31
33
feature —— Implementation
35 credit: INTEGER
end

3 Abstract Data Types (16 Points)

3.1 Writing an ADT for CREDIT_CARD (7 Points)

The following list describes the requirements for the implementation of a CREDIT_CARD
class:

1. Every CREDIT_CARD has a limit and a debit balance.
2. The balance and the limit are recorded in "Rappen” (as INTEGERS).
3. The limit is always above 0.

4. Tt is always possible to retrieve the balance and the limit for any given
CREDIT_CARD.

5. It is possible to settle the credit card debts (reset the debit balance to
0) and to charge the credit card with an amount (add an amount to the
debit balance).

6. The balance of a CREDIT_CARD is adjusted accordingly.
7. The balance of a CREDIT_CARD should never be above the limit.
8. The amount that is charged on a credit card needs to be greater than 0.

Given is the following partial ADT description. Add type information for the
functions, preconditions and axioms to complete it. Make sure to meet the
requirements described above and to provide axioms that are sufficiently com-
plete.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

TYPES
CREDIT_CARD

FUNCTIONS
Creators:
@ NEW_CATA & v vttt et ettt e ettt e e et e
Queries:
L
© Dalance :
Commands:
O SELLlE i

O AT e & o

PRECONDITIONS

3.2 Proof of balance properties (6 Points)

Prove by structural induction of credit cards that the value returned by bal-
ance is non-negative and equal or below the value of its limit. So prove that:
balance(c) > 0 and balance(c) < limit(c) at all times.

3.3 Proof of sufficient completeness (3 Points)

Prove that your specification is sufficiently complete.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

4 Design Patterns I (26 Points)

Below you find code for an imaginary car factory. The factory builds cars that
consist of four wheels, a car body and an engine. The code makes use of several
design patterns.

1. Identify the patterns that are used in the code fragment (12 Points)
For each identified pattern do the following:

e List the classes which are part of the pattern.
e Categorize the pattern (Creational, Structural, Behavioral).

e Give a short description of the pattern and explain what it achieves.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

2. Now you also want to build Mercedes cars. Extend the existing code to
build Mercedes sedans, convertibles and also a Mercedes station wagon.
All Mercedes cars use MERCEDES_WHEELs and MERCEDES_ENGINEs.
The body is a MERCEDES_SEDAN_BODY, a
MERCEDES_CONVERTIBLE_BODY or a
MERCEDES_STATION_WAGON_BODY respectively. Also keep the open-
closed principle in mind, i.e. do not modify existing classes. (14 Points)

Note: The classes BMW_CONVERTIBLE_-WHEEL, BMW_SEDAN_WHEEL,
BMW_V6_ENGINE, BMW_V8_ENGINE, BMW_CONVERTIBLE_BODY and
BMW_SEDAN_BODY are direct descendants of WHEEL, ENGINE and BODY
respectively with no features added. For the second assignment you can also
assume that the classes MERCEDES_WHEEL, MERCEDES_ENGINE, MER-
CEDES_SEDAN_BODY,
MERCEDES_CONVERTIBLE_BODY and

MERCEDES_STATION_WAGON_BODY already exist.

indexing
2 description: ”System’s root class”
4 class
APPLICATION
6
create
8 make
10 feature —— Initialization
12 make is
—— Run application.
14 local
l_car_factory : CAR_FACTORY
16 do
create [_car_factory.make (create { BMW_FACTORY_IMP}.make)
18 l_car_factory . build_convertible
end
20

end —— class APPLICATION

1 indexing
description: ” Abstract car factory”

12

3
class
5 CAR_FACTORY

7 create
make
9
feature { NONE} —— Initialization
11
make (a_implementation: like implementation) is
13 —— Create car factory with implementation ‘a_implementation’
do
15 implementation := a_implementation
end
17
feature —— Access
19
last_car: CAR is
21 —— Get the last built car
do
23 Result := implementation.last_car
end
25
feature —— Operations
27
build_sedan is
29 —— Build a sedan (Limousine)
do
31 implementation.build_sedan
end
33
build_convertible is
35 —— Build a convertible (Cabriolet)
do
37 implementation. build_convertible
end
39
feature { NONE} —— Implementation
41
implementation: CAR_.FACTORY_IMP
43
end
indexing
2 description: ”Deferred implementation”

4 deferred class
CAR_FACTORY_IMP

6
feature —— Access
8
last_car: CAR
10 —— Get the last built car
12 feature —— Operations

14 build_sedan is
—— Build a sedan (Limousine)
16 deferred
end
18
build_convertible is
20 —— Build a convertible (Cabriolet)

13

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

deferred
22 end

24 end

indexing
2 description: "BMW factory implementation”

4 class
BMW_FACTORY_IMP
6
inherit
8 CAR_FACTORY_IMP

10 create
make
12
feature { NONE} —— Initialization
14
make is
16 —— Create a BMW Factory object
do
18 create sedan_builder
create convertible_builder
20 end
22 feature —— Operations

24 build_sedan is
—— Build a sedan (Limousine)

26 do
sedan_builder. build
28 last_car := sedan_builder. last_product
end
30
build_convertible is
32 —— Build a convertible (Cabriolet)
do
34 convertible_builder . build
last_car := convertible_builder . last_product
36 end
38 feature —— Implementation

40 sedan_builder: CAR_BUILDER[BMW_SEDAN_BODY, BMW_V8_ENGINE,
BMW_SEDAN_WHEEL]

42 convertible_builder : CAR_BUILDER[BMW_CONVERTIBLE_BODY,
BMW_V6_ENGINE, BMW_CONVERTIBLE_WHEEL]

44 end

indexing
2 description: ”Car builder”

4 class
CAR_BUILDER|G—>BODY, H->ENGINE, I->WHEEL]
6
feature —— Access
8
last_product: CAR
10

14

feature —— Build

12
build is
14 —— Build ‘last_product’
do

16 create last_product
build_body

18 build_engine
build_wheels

20 end

22 feature { NONE} —— Implementation

24 build_body is

—— Build body into car
26 do

last_product . set_car_body (body_factory.new)
28 end

30 build_engine is

—— Build engine into car
32 do

last_product . set_engine (engine_factory.new)
34 end

36 build_wheels is
—— Build wheels into car

38 do
last_product . set_front_left_wheel (wheel_factory.new)
40 last_product . set_front_right_wheel (wheel_factory.new)
last_product . set_rear_left_wheel (wheel_factory.new)
42 last_product . set_rear_right_wheel (wheel_factory.new)
end
44
feature { NONE} —— Factories
46
body_factory: FACTORY[G]
48
engine_factory: FACTORY|H)
50
wheel_factory: FACTORY]I]
52
end

1 indexing
description: ” Abstract Factory”
3
class
5 FACTORY[G —> ANY create default_create end]

7 feature —— Factory methods
9 new: G is
—— Create a new object
11 do
create Result

13 end

15 end

1 indexing
description: ”Objects that represent a car”

15

ETHZ D-INFK

Prof. Dr. B. Meyer Software Architecture — Exam
3

class
5 CAR
7 feature —— Access

9 front_left_wheel : WHEEL
front_right_wheel : WHEEL
11 rear_left_wheel : WHEEL
rear_right_wheel : WHEEL

13
car_body: BODY
15
engine: ENGINE
17
feature —— Setters
19
set_front_left_wheel (a-wheel: like front_left_wheel) is
21 —— Set the front left wheel
do
23 front_left_wheel := a_wheel
end
25
set_front_right_wheel (a-wheel: like front_right_wheel) is
27 —— Set the front right wheel
do
29 front_right_wheel := a_wheel
end
31
set_rear_right_wheel (a-wheel: like rear_right_wheel) is
33 —— Set the rear right wheel
do
35 rear_right_wheel := a_wheel
end
37
set_rear_left_wheel (a-wheel: like rear_left_wheel) is
39 —— Set the rear left wheel
do
41 rear_left_wheel := a_wheel
end
43
set_car_body (a_car_body: like car_body) is
45 —— Set ‘car_body’
do
47 car_body = a_car_body
end
49
set_engine (a-engine: like engine) is
51 —— Set ‘engine’
do
53 engine := a_engine
end
55
end
indexing

2 description: ”Objects that represent a car body”

4 deferred class
BODY
6
end

16

1 indexing
description: ”Objects that represent wheels”
3
deferred class
5 WHEEL

7 end

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

5 Web shop (16)

Assume you have written a web shop application to sell goods in Switzerland.
Now your company expands to Germany and you want to use the same shop
there. You have a class SALES_ORDER which provides the following func-

tions:
e Allow to fill out an order
e Handle tax calculation
e Process order and print sales recipe

Unfortunately the tax calculation in Germany differs from the one in Switzer-
land. In this question we discuss solutions to this problem.

5.1 Copy & Paste

The first approach is to copy the code of class SALES_ORDER to a new class
SALES_ORDER_GERMANY and to rewrite the the code for the the tax
calculation. Do you think this is a good solution (explain why/why not)?

21

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

5.2 Case distinction

In this solution you define a variable country which returns a code for every
country. Then in the tax calculation you insert a case distinction:

1 inspect country
when switzerland then

3 // Switzerland taz calculation
when germany then

5// Germany taz calculation
end

Is this in general a good solution (explain)?

5.3 A solution based on inheritance

Another (often used) solution would be to create two classes SALES_ORDER_GERMANY
and SALES_ORDER_SWITZERLAND which inherit from SALES_ORDER

and redefine the features used to calculate the taxes. What kind of problems

could arise with this approach? (Hint: Assume there are also other differences

like date format or shipping costs.)

22

5.4 A design pattern might help

There is a good solution based on a design pattern discussed in the lecture.
Which pattern is it? Describe how you would design such a solution by naming
all participants.

23

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

6 Visitor & Composite Pattern (16 points)

6.1 Theoretical Questions (6 Points)
6.1.1 Pattern Categories (2 Point)

Which pattern-category do the following patterns belong to?
Composite pattern: ...

Visitor pattern:o i

6.1.2 Visitor and Open-Closed Principle (2 Points)

Please analyze where the visitor pattern (as introduced in the lecture) observes
and/or violates the Open-Closed principle, and explain why.

6.2 Class Diagram (2 Points)

Draw the class-diagram of the (transparent) composite pattern, using either
BON or UML notation.

24

6.3 Pattern Implementation (10 Points)

We now consider a composite-model of a hierarchical filesystem consisting of
two types of components: COMPOSITE_FILE and COMPOSITE_.FOLDER, both
descendants of COMPONENT.

indexing
2 description: ” A generic visitable filesystem—component”

4 deferred class
COMPONENT
6
feature —— Status report
8 has_changed: BOOLEAN is deferred end
—— Have the file—contents changed, since the last check?
10
name: STRING is deferred end
12 —— The name of the component

14 feature —— Visitor
accept(a-visitor : VISITOR) is deferred end
16 —— Accept a visitor
end

To perform different operations on that filesystem we want to use the visitor
pattern, using the following abstract visitor.

1 indexing
description: ” Abstract visitor”
3
deferred class
5 VISITOR

7 feature —— Visit
visit_file (a-file: COMPOSITE_FILE) is

9 —— Visit a file
require

11 a-file_exists : a-file /= Void
deferred

13 end

15 visit_folder (a_folder: COMPOSITE_FOLDER) is
—— Visit a folder

17 require
a_folder_exists : a_folder /= Void
19 deferred
end
21 end

25

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

6.3.1 Accept (3 Points)

Fill in the the code for the accept feature of COMPOSITE_FILE and COMPOSITE_-FOLDER

class

2 COMPOSITE_FILE
inherit

4 COMPONENT
create

6 make

8 feature { NONE} —— Initialization
make(a-name: STRING) is

10 require

name_exists: a_name /= Void
12 do

create name.make_from_string (a_name)
14 end

16 feature —— Status
has-changed: BOOLEAN
18 name: STRING

20 feature —— Visitor
accept(a_visitor: VISITOR) is
22 —— Accept a visitor
—— TODO: Implement the accept feature, so it accepts visits
24 —— from concrete visitors .
do
26
28
30 end
end

26

1

3 clas:

9

S

COMPOSITE_FOLDER
5 inherit
COMPONENT
7 create

make

feature { NONE} —— Initialization
make(a-name: STRING) is
require
name_exists: a_-name /= Void

11

13

15

17

do

create children.make
create name.make_from_string (a-name)

end

19 feature —— Status Report
has_changed: BOOLEAN

21 —— Have the contents of the folder changed since the last check?
name: STRING
23
feature —— Composite
25 add(a-component: COMPONENT) is
—— Add a new child—component
27 require
a-component_exists: a_component /= Void
29 do
children . extend(a-component)
31 ensure
list_extended : children . count = old children.count + 1
33 end
35 remove(a-component: COMPONENT) is
—— Remove a child component
37 require
a_component_exists: a_component /= Void
39 do
children . prune(a_component)
41 end
43 children: LINKED_LIST[COMPONENT]
—— A list of all subcomponents of Current
45
feature —— Visitor
47
accept(a-visitor : VISITOR) is
49 —— Accept a visitor
—— TODO: Implement the accept feature, so it accepts visits
51 —— from concrete visitors .
do
53
55
57 end
end

27

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

ETHZ D-INFK
Prof. Dr. B. Meyer Software Architecture — Exam

6.3.2 Visit (7 Points)

Complete the code for the concrete visitor VISITOR.-CHECK_-CHANGE. You have
to implement a visitor that outputs the name of all COMPOSITE_FILEs of the
filesystem that have changed since the last check.

If a file has been changed, its feature has_changed will be set to true by the
underlying operating system.

Hint: You can use io. put_string (a_string: STRING) for printing a string to the
console.

indexing
description: ” A Visitor that outputs all files that have been changed”

class
VISITOR_-CHECK_-CHANGE
inherit
VISITOR

feature —— Visit
visit_folder (a_folder: COMPOSITE_FOLDER) is
—— Visit a folder
—— TODO: Implement this feature
do

visit_file (a_file: COMPOSITE_FILE) is
—— Visit a file
—— TODO: Implement this feature
do

28

42

44

46

48

50

52 end

54 end

29

	Modularity, ADT, Design by Contract and Concurrency (8 points)
	Design by Contract (12 Points)
	Abstract Data Types (16 Points)
	Writing an ADT for CREDIT_CARD (7 Points)
	Proof of balance properties (6 Points)
	Proof of sufficient completeness (3 Points)

	Design Patterns I (26 Points)
	Web shop (16)
	Copy & Paste
	Case distinction
	A solution based on inheritance
	A design pattern might help

	Visitor & Composite Pattern (16 points)
	Theoretical Questions (6 Points)
	Pattern Categories (2 Point)
	Visitor and Open-Closed Principle (2 Points)

	Class Diagram (2 Points)
	Pattern Implementation (10 Points)
	Accept (3 Points)
	Visit (7 Points)

