Software Architecture Exam

Summer Semester 2008 Prof. Dr. Bertrand Meyer Date: 27 May 2008

v
Family name, first name:
Student number:
I confirm with my signature, that I was able to take this exam under regular circumstances and that I have read and understood the directions below.
Signature:
Directions:

- Exam duration: 90 minutes.
- Except for a dictionary you are not allowed to use any supplementary material.
- Use a pen (**not** a pencil)!
- Please write your student number onto each sheet.
- All solutions can be written directly onto the exam sheets. If you need more space for your solution ask the supervisors for a sheet of official paper. You are **not** allowed to use other paper.
- Only one solution can be handed in per question. Invalid solutions need to be crossed out clearly.
- Please write legibly! We will only correct solutions that we can read.
- Manage your time carefully (take into account the number of points for each question).
- Don't forget to add comments to features.
- Please **immediately** tell the supervisors of the exam if you feel disturbed during the exam.

Good luck!

Question	Number of possible points	Points
1	8	
2	12	
3	16	
4	26	
5	16	
6	16	

T . T		
Legi-Nr ·		
1051 111	 	

1 Modularity, ADT, Design by Contract and Concurrency (8 points)

Put checkmarks in the checkboxes corresponding to the correct answers. Multiple correct answers are possible; there is at least one correct answer per question. A correctly set checkmark is worth 1 point, an incorrectly set checkmark is worth -1 point. If the sum of your points is negative, you will receive 0 points.

Exan	nple:	
1.	Which of the following statements are true? a. Classes exist only in the software text; objects exist only during the execution of the software.	
	during the execution of the software. b. Each object is an instance of its generic class. c. An object is deferred if it has at least one deferred feature.	
1.	Modularity, reusablilty, ADT and design patterns. a. Inheritance is a key mechanism to support the Open-Closed principle.	
	b. The Uniform Access principle allows a supplier to switch between storage and computation as the way to provide results to the client.	
	c. An ADT can be implemented as a deferred class or as an effective class.	
	d. Modular decomposability and modular composability imply each other.	
	e. It is easy to extend a composite-based design with new composite classes.	
	f. The visitor pattern violates the Information Hiding principle.	
2.	Design by Contract.	
	a. Precondition violations reveal bugs in the supplier, while post- condition violations reveal bugs in the client.	
	b. Class invariants can be strengthened in descendant classes.c. During the execution of a feature, the invariant of the generating class may be violated.	
	d. To call a feature on an object, the client is responsible for making sure that the invariants of that object and preconditions of the feature are satisfied.	

3. Concurrency with SCOOP,

a. When assertion monitoring is turned off, an unqualified call $f(a)$ with separate actual argument a can proceed when the object attached to a is reserved by the current object.	
ů ů	
o. A traitor is a separate reference attached to a non-separate	
object.	
e. Computation in a processor is sequential and will be performed	
n the requested order.	
d. Invocation of a command on a separate object is non-blocking	
while invocation of a query on a separate object is blocking.	

2 Design by Contract (12 Points)

Figure 1 shows a BON diagram of bank accounts. The class BANK_ACCOUNT models a bank account. This class contains a routine withdraw with an empty implementation. The signature of withdraw is withdraw (v. INTEGER). The precondition of this routine does not impose any restriction (any client can invoke it because its precondition is always satisfied).

The class $STUDENT_ACCOUNT$ defines a student bank account. The routine withdraw is redefined in $STUDENT_ACCOUNT$ and its precondition requires that balance is greater than v. The class B_A_NORMAL defines a normal bank account. It also redefines the routine withdraw and its precondition requires balance is greater than v plus fee (where fee is a constant).

Finally, the class $B_A_BUSINESS$ defines a business bank account. This class defines an attribute *credit* storing the credit of the bank account (a positive number). The routine *withdraw* is also redefined in $B_A_BUSINESS$ and its precondition requires *balance* plus *credit* is greater than v. In the following classes implementing this notion, complete the contracts at the locations marked by dotted lines (invariants are omitted). Furthermore, complete the redefine clauses marked by dotted lines.

Figure 1: BON diagram of bank accounts.

```
indexing
2 description: "Objects that represent a bank account."
4 class
BANK_ACCOUNT
6
feature -- Element change
```

Logi Nr	
Degi-IVI	

8	withdraw(v: INTEGER) is withdraw v.
10	
12 14	do
16	
18	
20	
22	
24 26	feature Implementation
	$BANK_ACCOUNT$
9 11 13 15	end feature — Element change withdraw(v: INTEGER) is — withdraw v.
17 19 21	do
23	end
25	
27	
29	

```
31
33 \, end
 1 indexing
      description: "Objects that represent a normal bank account."
 3 class
      B\_A\_NORMAL inherit
 5
          BANK\_ACCOUNT
             redefine
7
9
11
  {\bf feature} \; -- \; {\bf Element \; change}
13
      withdraw(v: INTEGER) is
             -- withdraw v.
          require else
15
17
          do
19
             balance \,:=\, balance \,-\, v
          ensure
21
23
25
27
29
31
33 feature -- Implementation
      fee: INTEGER
35 \, \mathbf{end}
 1 indexing
      description: "Objects that represent a business bank account."
 3 class
      B\_A\_BUSINESS inherit
5
          BANK\_ACCOUNT
 7
             redefine
 9
                         ......
             \mathbf{end}
  feature -- Element change
      withdraw(v: INTEGER) is
              -- withdraw v.
```

```
15
          require else
17
          do
19
              balance := balance - v
          ensure
21
23
          end
25
27
29
31
33
  feature -- Implementation
      credit:\ INTEGER
  end
```

3 Abstract Data Types (16 Points)

3.1 Writing an ADT for CREDIT_CARD (7 Points)

The following list describes the requirements for the implementation of a CREDIT_CARD class:

- 1. Every CREDIT_CARD has a limit and a debit balance.
- 2. The balance and the limit are recorded in "Rappen" (as INTEGERs).
- 3. The limit is always above 0.
- 4. It is always possible to retrieve the balance and the limit for any given CREDIT_CARD.
- 5. It is possible to settle the credit card debts (reset the debit balance to 0) and to charge the credit card with an amount (add an amount to the debit balance).
- 6. The balance of a CREDIT_CARD is adjusted accordingly.
- 7. The balance of a CREDIT_CARD should never be above the limit.
- 8. The amount that is charged on a credit card needs to be greater than 0.

Given is the following partial ADT description. Add type information for the functions, preconditions and axioms to complete it. Make sure to meet the requirements described above and to provide axioms that are sufficiently complete.

FUNCTIONS Creators: • new_card: Queries: • limit: • balance: Commands: • settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	
FUNCTIONS Creators: • new_card: Queries: • limit: • balance: Commands: • settle: • charge: PRECONDITIONS P1 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	TYPES
Creators: • new_card: Queries: • limit: • balance: Commands: • settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	CREDIT_CARD
• new_card: Queries: • limit: • balance: Commands: • settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	FUNCTIONS
Queries: • limit :	Creators:
• limit: • balance: Commands: • settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	• new_card:
• balance: Commands: • settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	Queries:
Commands: • settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	• limit:
• settle: • charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	• balance :
• charge: PRECONDITIONS P1 P2 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	Commands:
PRECONDITIONS P1 AXIOMS A1 A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	• settle:
P1	• charge:
P1	PRECONDITIONS
AXIOMS A1	
AXIOMS A1	P2
A1	
A2 A3 A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	
A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	
A4 A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	A3
A5 A6 3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	
3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	
3.2 Proof of balance properties (6 Points) Prove by structural induction of credit cards that the value returned by balance is non-negative and equal or below the value of its limit. So prove that:	
ance is non-negative and equal or below the value of its limit. So prove that	
	· ·

		• • • •
	ompleteness (3 Points)	
	ompleteness (3 Points)	
3.3 Proof of sufficient c	ompleteness (3 Points) ufficiently complete.	••••
3.3 Proof of sufficient c	ompleteness (3 Points)	••••
3.3 Proof of sufficient c	ompleteness (3 Points) ufficiently complete.	
3.3 Proof of sufficient c	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient c	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient c	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient c	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient c	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient c	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient control of sufficien	ompleteness (3 Points) ifficiently complete.	
3.3 Proof of sufficient control of sufficien	ompleteness (3 Points) ifficiently complete.	

ETHZ D-INFK Prof. Dr. B. Meyer	Software Architecture – Exam
4 Design Patterns I (26 Points)
consist of four wheels, a car body and design patterns. 1. Identify the patterns that are u	y car factory. The factory builds cars that an engine. The code makes use of several used in the code fragment (12 Points)
For each identified pattern do	the following:
List the classes which areCategorize the pattern (C	part of the pattern. reational, Structural, Behavioral).
• Give a short description o	f the pattern and explain what it achieves.

Le	gi-Nr.:

indexing

•	 •	•	•	 •	•	 •		 	•								•			•			•		 •	•	 	•			•		
	 •			 •	•			 																									
					•			 																			 						
					•			 																								 	

2. Now you also want to build Mercedes cars. Extend the existing code to build Mercedes sedans, convertibles and also a Mercedes station wagon. All Mercedes cars use MERCEDES_WHEELs and MERCEDES_ENGINES. The body is a MERCEDES_SEDAN_BODY, a MERCEDES_CONVERTIBLE_BODY or a MERCEDES_STATION_WAGON_BODY respectively. Also keep the open-closed principle in mind, i.e. do not modify existing classes. (14 Points)

Note: The classes BMW_CONVERTIBLE_WHEEL, BMW_SEDAN_WHEEL, BMW_V6_ENGINE, BMW_V8_ENGINE, BMW_CONVERTIBLE_BODY and BMW_SEDAN_BODY are direct descendants of WHEEL, ENGINE and BODY respectively with no features added. For the second assignment you can also assume that the classes MERCEDES_WHEEL, MERCEDES_ENGINE, MERCEDES_SEDAN_BODY,

MERCEDES_CONVERTIBLE_BODY and MERCEDES_STATION_WAGON_BODY already exist.

```
description: "System's root class"
 4 class
       APPLICATION
 6
  create
      make
10 feature -- Initialization
12
       make is

    Run application.

14
           local
                l\_car\_factory: \ CAR\_FACTORY
16
           do
               \mathbf{create}\ l\_car\_factory.make\ (\mathbf{create}\ \{BMW\_FACTORY\_IMP\}.make)
                l\_car\_factory . build\_convertible
20
  end -- class APPLICATION
 1 indexing
       description: "Abstract car factory"
```

```
3
  class
       CAR\_FACTORY
 5
 7 create
      make
 9
  feature \{NONE\} -- Initialization
11
       make\ (a\_implementation;\ \mathbf{like}\ implementation)\ \mathbf{is}
13
                 - Create car factory with implementation 'a_implementation'
15
                implementation := \textit{a\_implementation}
17
  feature -- Access
19
       last\_car: CAR is
21
               -- Get the last built car
23
               \mathbf{Result} := \mathit{implementation.last\_car}
           end
25
  feature -- Operations
27
       build\_sedan \  \, \mathbf{is}
29
                -- Build a sedan (Limousine)
           do
31
               implementation.build\_sed an
           end
33
        build\_convertible is
35
                -- Build a convertible (Cabriolet)
37
               implementation.\,build\_convertible
           end
39
  {\bf feature}~\{\it NONE\}~--~{\bf Implementation}
41
       implementation: \ CAR\_FACTORY\_IMP
43
  end
  indexing
       description: "Deferred implementation"
 4 deferred class
       CAR\_FACTORY\_IMP
 6
  feature -- Access
 8
       last\_car:\ CAR
              -- Get the last built car
10
12 feature -- Operations
14
       build\_sedan \ \ \mathbf{is}
                -- Build a sedan (Limousine)
           deferred
16
           end
18
        build\_convertible is
20
               -- Build a convertible (Cabriolet)
```

```
deferred
22
          end
24\,\mathrm{end}
  indexing
      description: "BMW factory implementation"
 4 class
      BMW\_FACTORY\_IMP
 6
  {\bf inherit}
      CAR\_FACTORY\_IMP
10 create
      make
12
  feature \{NONE\} — Initialization
14
16
                - Create a BMW Factory object
          do
18
              {\bf create}\ sedan\_builder
              {\bf create}\ convertible\_builder
20
          end
22 feature -- Operations
24
      build_sedan is
               -- Build a sedan (Limousine)
26
              sed an\_builder.\ build
               last\_car \ := \ sedan\_builder. \ last\_product
28
30
       build\_convertible is
32
               -- Build a convertible (Cabriolet)
          do
34
               convertible\_builder\ .\ build
               last\_car := convertible\_builder . last\_product
36
          end
38 feature -- Implementation
      sedan\_builder:\ CAR\_BUILDER[BMW\_SEDAN\_BODY,\ BMW\_V8\_ENGINE,
           BMW\_SEDAN\_WHEEL]
       convertible\_builder: CAR\_BUILDER[BMW\_CONVERTIBLE\_BODY,
42
           BMW_V6_ENGINE, BMW_CONVERTIBLE_WHEEL]
44 \, \mathbf{end}
  indexing
      description: "Car builder"
 4 class
      CAR\_BUILDER[G->BODY, H->ENGINE, I->WHEEL]
 6
  feature -- Access
8
      last\_product: CAR
10
```

```
feature -- Build
12
       build is
                -- Build 'last_product'
14
           do
16
                create last_product
                build\_body
18
                build\_engine
                build\_wheels
20
           end
22 feature \{NONE\} — Implementation
24
       build_body is
                 — Build body into car
26
                last\_product.set\_car\_body~(body\_factory.new)
28
           end
30
       build\_engine is
                 -- Build engine into car
32
                last\_product.set\_engine~(engine\_factory.new)
34
36
       build\_wheels is
                 -- Build wheels into car
38
                last\_product \;.\;\; set\_front\_left\_wheel \quad (wheel\_factory \,.\, new)
40
                last\_product. set\_front\_right\_wheel (wheel\_factory.new)
                last\_product \;.\; set\_rear\_left\_wheel \quad (\; wheel\_factory \,.\, new)
42
                last\_product. set\_rear\_right\_wheel (wheel\_factory.new)
44
   feature \{NONE\} — Factories
46
       body\_factory\colon \mathit{FACTORY}[\mathit{G}]
48
       engine\_factory: FACTORY[H]
50
       wheel\_factory: FACTORY[I]
52
   end
 1 indexing
       description: "Abstract Factory"
 3
   class
       FACTORY[G \rightarrow ANY  create default\_create  end]
 5
 7 feature -- Factory methods
       \textit{new} : G \text{ is}
                  - Create a new object
11
                create Result
13
           end
15 \, \mathbf{end}
 1 indexing
       description: "Objects that represent a car"
```

```
3
  class
 5
      CAR
 7 feature -- Access
 9
       front\_left\_wheel: WHEEL
       front\_right\_wheel: WHEEL
       rear\_left\_wheel: WHEEL
11
       rear\_right\_wheel: WHEEL
13
       car_body: BODY
15
       engine: ENGINE
17
   feature -- Setters
19
        set\_front\_left\_wheel (a_wheel: like front\_left\_wheel) is
21
              -- Set the front left wheel
23
               front\_left\_wheel := a\_wheel
           end
25
       set\_front\_right\_wheel (a_wheel: like front\_right\_wheel) is
27
              -- Set the front right wheel
29
               front\_right\_wheel := a\_wheel
           end
31
       set\_rear\_right\_wheel (a_wheel: like rear\_right\_wheel) is
33
              -- Set the rear right wheel
35
               rear\_right\_wheel \ := \ a\_wheel
           end
37
        set\_rear\_left\_wheel (a_wheel: like rear\_left\_wheel) is
               -- Set the rear left wheel
39
               rear\_left\_wheel \ := \ a\_wheel
41
43
       set\_car\_body (a\_car\_body: like car\_body) is
45
              -- Set 'car_body'
47
              car\_body := a\_car\_body
49
       set_engine (a_engine: like engine) is
51
              -- Set 'engine'
53
               engine := a\_engine
           end
55
  end
     description: "Objects that represent a car body"
 4 deferred class
      BODY
 6
  end
```

l indexing description: "Objects that represent wheels" 3
deferred class 5 WHEEL
7 end

Legi-Nr.:...

Legi-Nr.:

ETHZ D-INFK	
Prof. Dr. B. Meyer	Software Architecture – Exam

Legi-Nr.:	• • • •
	• • •
5 Web shop (16)	
Assume you have written a web shop application to sell goods in Switzerla Now your company expands to Germany and you want to use the same st there. You have a class SALES_ORDER which provides the following fu tions:	op
• Allow to fill out an order	
• Handle tax calculation	
• Process order and print sales recipe	
Unfortunately the tax calculation in Germany differs from the one in Switz land. In this question we discuss solutions to this problem.	er-
5.1 Copy & Paste	
The first approach is to copy the code of class SALES_ORDER to a new clear SALES_ORDER_GERMANY and to rewrite the the code for the the calculation. Do you think this is a good solution (explain why/why not)?	

ETHZ D-INFK		
Prof. Dr. B. Meyer	Software Architecture –	Exam
5.2 Case distinction		
In this solution you define a variable country country. Then in the tax calculation you insert		every
when switzerland then 3 // Switzerland tax calculation when germany then 5 // Germany tax calculation end		
Is this in general a good solution (explain)?		

5.3 A solution based on inheritance

Another (often used) solution would be to create two classes **SALES_ORDER_GERMANY** and **SALES_ORDER_SWITZERLAND** which inherit from **SALES_ORDER** and redefine the features used to calculate the taxes. What kind of problems could arise with this approach? (Hint: Assume there are also other differences like date format or shipping costs.)

Le	egi-Nr:
5.4 A design pattern might he	elp
There is a good solution based on a desi Which pattern is it? Describe how you wo all participants.	

ETHZ D-INFK Prof. Dr. B. Meyer	Software Architecture – Exam
6 Visitor & Composite Pat	tern (16 points)
6.1 Theoretical Questions (6 Point	nts)
6.1.1 Pattern Categories (2 Point)	
Which pattern-category do the following patter	erns belong to?
Composite pattern:	
Visitor pattern:	
6.1.2 Visitor and Open-Closed Principle	le (2 Points)
Please analyze where the visitor pattern (as in and/or violates the Open-Closed principle, and	

6.2 Class Diagram (2 Points)

Draw the class-diagram of the (transparent) composite pattern, using either BON or UML notation.

6.3 Pattern Implementation (10 Points)

We now consider a composite-model of a hierarchical file system consisting of two types of components: <code>COMPOSITE_FILE</code> and <code>COMPOSITE_FOLDER</code>, both descendants of <code>COMPONENT</code>.

To perform different operations on that filesystem we want to use the visitor pattern, using the following abstract visitor.

```
description: "Abstract visitor"
 3
   deferred class
       VISITOR
 7 feature -- Visit
        visit\_file \ ( \ a\_file : \ COMPOSITE\_FILE) \ \mathbf{is}
 9
            -- Visit a file
           require
                 a\_file\_exists : a\_file /= Void
11
           deferred
13
           end
15
        visit_folder (a_folder: COMPOSITE_FOLDER) is
            -- Visit a folder
17
           require
                a\_folder\_exists: a\_folder /= Void
           \mathbf{deferred}
19
21 \, \mathbf{end}
```

end

6.3.1 Accept (3 Points)

Fill in the the code for the accept feature of ${\it COMPOSITE_FILE}$ and ${\it COMPOSITE_FOLDER}$

```
class
 2
      COMPOSITE\_FILE
  inherit
      COMPONENT
  create
6
      make
8 feature {NONE} -- Initialization
      make(a_name: STRING) is
10
          require
             name\_exists: a\_name /= Void
          do
12
             {f create}\ name.make\_from\_string\ (a\_name)
14
          end
16 feature -- Status
      has\_changed: BOOLEAN
      name: STRING
20 feature -- Visitor
      accept( a_visitor: VISITOR) is
22
              -- Accept a visitor
              -- TODO: Implement the accept feature, so it accepts visits
24
                      from concrete visitors.
          do
26
28
30
          end
  end
```

```
1
 3 class
      COMPOSITE\_FOLDER
 5 inherit
      COMPONENT
7\,\mathrm{create}
      make
  feature \{NONE\} — Initialization
      make(a_name: STRING) is
11
          require
              name\_exists:\ a\_name\ /=\ Void
13
15
              {\bf create}\ children. make
              create name.make_from_string (a_name)
17
          end
19 feature -- Status Report
      has_changed: BOOLEAN
21
           — Have the contents of the folder changed since the last check?
      name: STRING
23
  feature -- Composite
      add(a_component: COMPONENT) is
25
                - Add a new child-component
27
              a\_component\_exists: a\_component /= Void
29
          do
              children.extend(a\_component)
31
          ensure
               list\_extended: children.count = old children.count + 1
33
      remove(a\_component: COMPONENT) is
35
              -- Remove a child component
37
              a\_component\_exists: a\_component /= Void
39
               children.prune(a\_component)
41
          end
      children: \  \, \underline{\textit{LINKED\_LIST}[\textit{COMPONENT}]}
43
           -- A list of all subcomponents of Current
45
  feature -- Visitor
47
      accept( a_visitor: VISITOR) is
49
              -- Accept a visitor
              -- TODO: Implement the accept feature, so it accepts visits
51
                       from concrete visitors .
          do
53
55
57
  end
```

6.3.2 Visit (7 Points)

Complete the code for the concrete visitor VISITOR_CHECK_CHANGE. You have to implement a visitor that outputs the name of all COMPOSITE_FILEs of the filesystem that have changed since the last check.

If a file has been changed, its feature *has_changed* will be set to true by the underlying operating system.

Hint: You can use io. put_string(a_string: STRING) for printing a string to the console.

indexing

description: "A Visitor that outputs all files that have been changed"

```
VISITOR\_CHECK\_CHANGE
 6 inherit
     VISITOR
 8
  feature -- Visit
      visit\_folder ( a\_folder: COMPOSITE\_FOLDER) is
10
              - Visit a folder
             -- TODO: Implement this feature
12
14
16
18
             ......
20
22
24
26
28
30
32
      visit\_file \ ( \ a\_file : \ COMPOSITE\_FILE ) \ \mathbf{is}
             -- Visit a file
            — TODO: Implement this feature
34
         do
36
38
40
```

	Legi-Nr.:	
42		
44		
46		
48		
50		
52	end	
$54\mathrm{end}$		