
Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 1: Introduction

2

Goal of the course

(From the course description in the ETH page)

Software Architecture covers two closely related
aspects of software technology:

 Techniques of software design: devising proper
modular structures for software systems. This is
―architecture‖ in the strict sense.

 An introduction to the non-programming, non-
design aspects of software engineering.

3

Some topics

Software architecture:
 Modularity and reusability
 Abstract Data Types
 Design by Contract and other O-O principles
 Design Patterns
 Component-Based Development
 Designing for concurrency

Software engineering:
 Process models
 Requirements analysis
 CMMI and agile methods
 Cost estimation
 Software metrics
 Software testing
 Configuration management
 Project management

Plus: an introduction to UML

4

Practical information

5

Lecturers

Bertrand Meyer, bertrand.meyer@inf.ethz.ch

Office: RZ J22

Carlo A. Furia, carlo.furia@inf.ethz.ch

Office: RZ J4

Martin Nordio, martin.nordio@inf.ethz.ch

Office: RZ J3

mailto:Bertrand.Meyer@inf.ethz.ch
mailto:Michela.Pedroni@inf.ethz.ch
mailto:Michela.Pedroni@inf.ethz.ch

6

Assistants

Julian Tschannen (head assistant)

Christian Estler

(Max) Yu Pei

Marco Piccioni

(Jason) Yi Wei

7

Course material

Course page:
 http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/

 Check it regularly

Lecture material:

 Lecture slides

 Recommended textbooks:

 B. Meyer: Object-Oriented Software Construction,
2nd edition -- Prentice Hall, 1997

 E. Gamma et al.: Design Patterns
 Addison-Wesley, 1995

Exercise material:

 Exercise sheets

 Master solutions

http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/
http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/
http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/
http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/
http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/
http://se.inf.ethz.ch/teaching/2011-F/Soft_Arch-0050/

8

Supplementary recommended books

A good software engineering textbook (see precise
references on course page):

 Ghezzi / Jazayeri / Mandrioli
 (broadest scope)

 Pfleeger / Atlee
 (the most recent)

 Pressman
 (emphasis on practitioners‘ needs)

On patterns: Karine Arnout‘s ETH PhD thesis (available
electronically)

9

Electronic forums

Discussion forums:
Hosted by Inforum (VIS):
 http://forum.vis.ethz.ch

Make sure you are registered online in ―MyStudies‖

To email the whole teaching team (professor and assistants):

 se-softarch-assi@lists.inf.ethz.ch

http://forum.vis.ethz.ch/
mailto:se-softarch-assi@lists.inf.ethz.ch
mailto:se-softarch-assi@lists.inf.ethz.ch
mailto:se-softarch-assi@lists.inf.ethz.ch
mailto:se-softarch-assi@lists.inf.ethz.ch
mailto:se-softarch-assi@lists.inf.ethz.ch

10

Grading

50% project, 50% end-of-semester exam

To pass the course, you need a 4.0 (at least) in both the
project and the exam.

About the exam:

 When: Tuesday, 31 May 2011, 13-15
(normal class time), 90 minutes

 What: all topics of semester

 How: no material allowed (―closed-book‖)

11

About the project

The project is an integral part of the course

Goal:

 Apply software architecture techniques

 Practice group work in software engineering

 Go through main phases of a realistic software
project: requirements, design of both program and
test plan, implementation, testing

12

Project groups

The project must be done in groups of 4 students (smaller
groups are allowed only in special circumstances).

You must form the groups soon (by Friday 25 -- this week!)

Once you have a group, send one email per group to Julian
Tschannen (julian.tschannen@inf.ethz.ch) with the names
of the group members and their Origo usernames

 register on origo.ethz.ch if you have no account yet

If you can‘t find a group, send us an email with your name
and Origo username, so we can put you together with other
students.

13

Project topic

This year‘s topic is to develop:

 An application programming interface (API) for
relational database access

(you will use Eiffel for both design and implementation)

14

Project deadlines*

1. Requirements specification:

 Handed out: 28 February

 Due: 20 March

2. API design:

 Handed out: 21 March

 Due: 10 April

3. Implementation:

 Handed out: 11 April

 Due: 8 May

4. Testing:

 Handed out: 9 May

 Due: 29 May

*May be subject to slight adaptation

15

More details on the project

Grading criteria for each step, and the weight for each
step, are given on the Web page

We will use SVN on Origo for source control. All
submissions (documents and source code) will be delivered
through this repository. You will have to create an Origo
project for your team. See the Web page for details.

16

Standards

For each step (except implementation), you will be given a
template and will have to follow it

While the project involves programming, it is not primarily
a programming project, but a software engineering project.
You will discover some of the challenges and techniques of
developing software as part of actual projects.

On forming the groups:

 Select partners with complementary skills, e.g.
requirements, documentation, design, programming

17

A request

We do not want you to drop the course, but if you are
going to do so, please drop out early (March 10 at the
latest) out of courtesy to other students

18

What is software architecture?

19

Software architecture

We define software architecture as
 The decomposition of software systems into modules*

Primary criteria: extendibility and reusability

Examples of software architecture techniques & principles:

 Abstract data types (as the underlying theory)

 Object-oriented techniques: the notion of class,
inheritance, dynamic binding

 Object-oriented principles: uniform access, single-
choice, open-closed principle…

 Design patterns

 Classification of software architecture styles, e.g.
pipes and filters

* From the title of an article by Parnas, 1972

20

Software architecture: milestones

1968: The inner and outer syntax of a programming language
(Maurice Wilkes)

1968-1972: Structured programming (Edsger Dijkstra); industrial
applications (Harlan Mills & others)

1971: Program Development by Stepwise Refinement (Niklaus Wirth)

1972: David Parnas‘s articles on information hiding

1974: Liskov and Zilles‘s paper on abstract data types

1975: Programming-in-the-large vs Programming-in-the-small (Frank
DeRemer & Hans Kron)

1987: Object-Oriented Software Construction, 1st edition

1994: An introduction to Software Architecture (David Garlan and
Mary Shaw)

1995: Design Patterns (Erich Gamma et al.)

1997: UML 1.0

21

What is software engineering?

22

A definition of software engineering

Wikipedia (from SWEBOK, the Software Engineering Body
of Knowledge)

Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software, and the study of
these approaches; that is, the application of engineering to
software.

(Largely useless definition.)

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Engineering

23

A simpler definition

―The application of engineering to software‖

Engineering (Wikipedia): ―the discipline, art and profession
of acquiring and applying technical, scientific, and
mathematical knowledge to design and implement
materials, structures, machines, devices, systems, and
processes that safely realize a desired objective or
invention‖

A simpler definition of engineering: the application of
scientific principles to the construction of artifacts

http://en.wikipedia.org/wiki/Process_(engineering)

24

Parnas’s view

(Cited in Ghezzi et al.)

―The multi-person construction of multiversion software‖

25

For this course

The application of engineering principles and techniques,
based on mathematics, to the development and operation
of possibly large software systems satisfying defined
standards of quality

26

“Large” software systems

What may be large: any or all of

 Source size (lines of code, LoC)

 Binary size

 Number of users

 Number of developers

 Life of the project (decades...)

 Number of changes, of versions

(Remember Parnas‘s definition)

27

Process and product

Software engineering affects both:

 Software products

 The processes used to obtain and operate them

Products are not limited to code. Other examples include
requirements, design, documentation, test plans, test
results, bug reports

Processes exists whether they are formalized or not

28

Software quality factors

Process

Product

Correctness
Robustness
Security
Ease of use
Ease of learning
Efficiency

Extendibility
Reusability
Portability

Immediate

Long-term

Timeliness
Cost-effectiveness

Security

Hostility

Robustness

Errors

Correctness

Specification

―Reliability‖

29

Software engineering today

Three cultures:

 Process

 Agile

 Object

The first two are usually seen as exclusive, but all have
major contributions to make.

Software Engineering, lecture 1: Personal Software Process for Engineers: Introduction to PSP
30

30

Process

Emphasize:

 Plans

 Schedules

 Documents

 Requirements

 Specifications

 Order of tasks

 Commitments

Examples: Rational Unified Process, CMMI, Waterfall…

31

Agile

Emphasize:

Short iterations

 Emphasis on working code; de-emphasis of plans and
documents

Emphasis on testing; de-emphasis of specifications and
design . ―Test-Driven Development"

Constant customer involvement

Refusal to commit to both functionality and deadlines

Specific practices, e.g. Pair Programming

Examples: Extreme Programming (XP), Scrum

32

Object-oriented culture

Emphasizes:

 Seamless development

 Reversibility

 Single Product Principle

 Design by Contract

33

Six task groups of software engineering

Describe

Implement

Assess

Manage

Operate

Notate

Requirements,
design specification,

documentation …

Design, programming

V&V*, esp. testing

*Validation & Verification

Plans, schedules,
communication, reviews…

Deployment, installation,

Languages for programming etc.

34

A software architecture example

35

Our first pattern example

Multi-panel interactive systems

Plan of the rest of this lecture:

 Description of the problem: an example

 An unstructured solution

 A top-down, functional solution

 An object-oriented solution yielding a useful design
pattern

 Analysis of the solution and its benefits

36

A reservation panel

Flight sought from: To:

Depart no earlier than: No later than: 18 Feb 2010

Choose next action:

 0 – Exit
 1 – Help
 2 – Further enquiry
 3 – Reserve a seat

19 Feb 2010

Santa Barbara Zurich

ERROR: Choose a date in the future

37

A reservation panel

Choose next action:

 0 – Exit
 1 – Help
 2 – Further enquiry
 3 – Reserve a seat

AVAILABLE FLIGHTS: 2
Flt# UA 425 Dep 8:25 Arr 7:45 Thru: LAX, JFK
Flt# AA 082 Dep 7:40 Arr 9:15 Thru: LAX, DFW

Flight sought from: To:

 Depart no earlier than: No later than: 18 Feb 2011 19 Feb 2011

Santa Barbara Zurich

38

The transition diagram

Help Help Initial

Flight_query

Seat_query

Confirmation

Reservation

Help Help

1

1

2
3 3

2

2

2

2 3 3
3

1 1 1 1

1 1

39

A first attempt

A program block for each state, for example:

PFlight_query:

 display ‗‗enquiry on flights‘‘ screen
repeat

 Read user‘s answers and his exit choice C
 if Error_in_answer then output_message end

until
 not Error_in_answer
end

 process answer

inspect C
 when 0 then goto PExit
 when 1 then goto PHelp
 ...
 when n then goto PReservation
end

40

What’s wrong with the previous scheme?

Intricate branching structure (‗‗spaghetti bowl‘‘).

Extendibility problems: dialogue structure ―wired‖ into
program structure.

41

A functional, top-down solution

Represent the structure of the diagram by a function

 transition (i, k)

giving the state to go to from state i for choice k.

This describes the transitions of any particular
application.

Function transition may be implemented as a data
structure, for example a two-dimensional array.

42

The transition function

0 (Initial)

1 (Help)

2 (Confirmation)

3 (Reservation)

4 (Seats)

5 (Flights)

0 1 2 3

Exit

Exit

Exit

Exit

Exit

Return

2

3

4

5

0

0

2

3

4

43

The transition diagram

Help
Help

Initial

Flight_query

Seat_query

Confirmation

Reservation

Help Help

1

1

2
3 3

2

2

2

2 3 3
3

1 1 1 1

1

5 2

4 3

44

New system architecture

 execute_session

 initial transition execute_state is_final

 display read correct message process

Level 3

Level 2

Level 1

45

New system architecture

Procedure execute_session only defines graph traversal.

It knows nothing about particular screens of a given application;
it should be the same for all applications.

 execute_session
 -- Execute full session.
 local
 current_state, choice : INTEGER
 do
 current_state := initial
 repeat
 choice := execute_state (current_state)
 current_state := transition (current_state, choice)
 until
 is_final (current_state)
 end
 end

46

To describe an application

Provide transition function

Define initial state

Define is_final function

47

Actions in a state

execute_state (current_state : INTEGER): INTEGER
 -- Execute actions for current_state ; return user‘s exit choice.
local
 answer : ANSWER
 good : BOOLEAN
 choice : INTEGER
do
 repeat
 display (current_state)
 [answer, choice] := read (current_state)
 good := correct (current_state, answer)
 if not good then message (current_state, answer) end
 until
 good
 end
 process (current_state, answer)
 Result := choice
end

48

Specification of the remaining routines

display (s) outputs the screen associated with state s.

[a, e] := read (s) reads into a the user‘s answer to the
display screen of state s, and into e the user‘s exit choice.

correct (s, a) returns true if and only if a is a correct
answer for the question asked in state s.

If so, process (s, a) processes answer a.

If not, message (s, a) outputs the relevant error
message.

49

Going object-oriented: The law of inversion

How amenable is this solution to change and adaptation?

 New transition?

 New state?

 New application?

Routine signatures:

 execute_state (state : INTEGER): INTEGER
 display (state : INTEGER)

 read (state : INTEGER): [ANSWER, INTEGER]
 correct (state : INTEGER ; a: ANSWER): BOOLEAN
 message (state : INTEGER ; a: ANSWER)

 process (state : INTEGER ; a: ANSWER)

 is_final (state : INTEGER)

50

Data transmission

All routines share the state as input argument. They must discriminate
on it, e.g. :

 display (current_state : INTEGER)
 do
 inspect current_state
 when state1 then
 ...
 when state2 then
 ...
 when staten then
 ...
 end
 end

Consequences:
Long and complicated routines.
Must know about one possibly complex application.
To change one transition, or add a state, need to change all.

51

The flow of control

Underlying reason why structure is so inflexible:

 Too much DATA TRANSMISSION.

current_state is passed from execute_session (level 3) to
all routines on level 2 and on to level 1

Worse: there‘s another implicit argument to all routines –
application. Can‘t define

 execute_session, display, execute_state, ...

as library components, since each must know about all
interactive applications that may use it.

52

The visible architecture

 execute_session

 initial transition execute_state is_final

 display read correct message process

Level 3

Level 2

Level 1

53

The real story

 execute_session

 initial transition execute_state is_final

 display read correct message process

Level 3

Level 2

Level 1

state

state

54

The law of inversion

 If your routines exchange too much data, put your
routines into your data.

In this example: the state is everywhere!

55

Going O-O

Use STATE as the basic abstract data type (and class).

Among features of every state:

The routines of level 1 (deferred in class STATE)

execute_state, as above but without the argument
current_state

56

Grouping by data abstractions

STATE

 execute_session

 initial transition execute_state is_final

 display read correct message process

Level 3

Level 2

Level 1

57

Class STATE

deferred class

 STATE

feature

 choice : INTEGER -- User‘s selection for next step

 input : ANSWER -- User‘s answer for this step

 display

 -- Show screen for this state.

 deferred

 end

 read
 -- Get user‘s answer and exit choice,
 -- recording them into input and choice.
 deferred
 ensure
 input /= Void
 end

58

Class STATE

correct : BOOLEAN
 -- Is input acceptable?
 deferred
 end

message
 -- Display message for erroneous input.
 require
 not correct
 deferred
 end

process
 -- Process correct input.
 require
 correct
 deferred
 end

59

Class STATE

execute_state
 local
 good : BOOLEAN
 do
 from
 until
 good

 loop

 display

 read

 good := correct

 if not good then message end
 end

 process
 choice := input.choice
 end

end

60

Class structure

STATE
*

INITIAL FLIGHT_QUERY RESERVATION

…

execute_state
+

display
+

read
+

correct
+

message
+

process
+

display
+

read
+

correct
+

message
+

process
+

display
+

read
+

correct
+

message
+

process
+

display *
read *

correct *

message *

process *

61

To describe a state of an application

Write a descendant of STATE :

 class FLIGHT_QUERY inherit

 STATE
 feature
 display do ... end

 read do ... end

 correct : BOOLEAN do ... end

 message do ... end

 process do ... end
 end

62

STATE

Rearranging the modules

 execute_session

 initial transition execute_state is_final

 display read correct message process

Level 3

Level 2

Level 1

APPLICATION

63

Describing a complete application

No ‗‗main program‘‘ but class representing a system.

Describe application by remaining features at levels
1 and 2:

 Function transition.

 State initial.

 Boolean function is_final.

 Procedure execute_session.

64

Implementation decisions

Represent transition by an array transition : n rows
(number of states), m columns (number of choices), given
at creation

States numbered from 1 to n; array states yields the
state associated with each index

(Reverse not needed: why?)

No deferred boolean function is_final, but convention: a
transition to state 0 denotes termination.

No such convention for initial state (too constraining).
Attribute initial_number.

65

Describing an application

class
 APPLICATION
create
 make

feature

 initial : INTEGER

 make (n, m : INTEGER)
 -- Allocate with n states and m possible choices.
 do

 create transition.make (1, n, 1, m)
 create states.make (1, n)
 end

feature {NONE } -- Representation of transition diagram

 transition : ARRAY2 [STATE]
 -- State transitions

 states : ARRAY [STATE]
 -- State for each index

66

The array of states

states

 (ENQUIRY_
ON_FLIGHTS)

 (ENQUIRY_
ON_SEATS)

(INITIAL)

(CONFIRMATION)

(RESERVATION) 1

2

3

4

5

A polymorphic data structure!

67

Executing a session

execute_session
 -- Run one session of application
 local
 current_state : STATE -- Polymorphic!
 index : INTEGER
 do
 from
 index := initial
 until
 index = 0
 loop
 current_state := states [index]

 current_state.execute_state

 index :=transition [index, current_state.choice]
 end end

68

Class structure

STATE
*

INITIAL FLIGHT_QUERY RESERVATION

…

execute_state
+

display
+

read
+

correct
+

message
+

process
+

display
+

read
+

correct
+

message
+

process
+

display
+

read
+

correct
+

message
+

process
+

display *
read *

correct *

message *

process *

69

Other features of APPLICATION

put_state (s : STATE; number : INTEGER)
 -- Enter state s with index number
 require
 1 <= number
 number <= states.upper
 do

 states [number] := s

 end

choose_initial (number : INTEGER)
 -- Define state number number as the initial state.
 require
 1 <= number
 number <= states.upper

 do
 first_number := number
 end

70

More features of APPLICATION

put_transition (source, target, label : INTEGER)

 -- Add transition labeled label from state
 -- number source to state number target.
 require
 1 <= source ; source <= states.upper
 0 <= target ;target <= states.upper
 1 <= label ; label <= transition.upper2
 do
 transition.put (source, label, target)
 end

invariant
 0 <= st_number
 st_number <= n
 transition.upper1 = states.upper
end

source

target

label

71

To build an application

Necessary states — instances of STATE — should be
available.

Initialize application:

 create a.make (state_count, choice_count)

Assign a number to every relevant state s :

 a [n] := s

Choose initial state n0 :

 a.choose_initial (n0)

Enter transitions:

 a.put_transition (sou, tar, lab)

May now run:
 a.execute_session

72

Open architecture

During system evolution you may at any time:

 Add a new transition (put_transition).

 Add a new state (put_state).

 Delete a state (not shown, but easy to add).

 Change the actions performed in a given state

 ...

73

Note on the architecture

Procedure execute_session is not ‗‗the function of the
system‖ but just one routine of APPLICATION.

Other uses of an application:
Build and modify: add or delete state, transition, etc.
Simulate, e.g. in batch (replaying a previous session‘s
script), or on a line-oriented terminal.
Collect statistics, a log, a script of an execution.
Store into a file or data base, and retrieve.

Each such extension only requires incremental addition of
routines. Doesn‘t affect structure of APPLICATION and
clients.

74

The system is open

Key to openness: architecture based on types of the
problem‘s objects (state, transition graph, application).

Basing it on ―the‖ apparent purpose of the system would
have closed it for evolution.

Real systems have no top

75

The design pattern

―State and Application‖

76

Software architecture: the basic issue

Finding the right data abstractions

77

What we have seen

Basic definitions and concepts of software engineering

Basic definitions and concepts of software architecture

A design pattern: State and Application

The role of data abstraction

Techniques for finding good data abstractions

