
Software Architecture

Chair of Software Engineering

Lecture 7:
Quality Assurance and testing

Topics

• Testing basics

• Partition testing

• Measure test quality

• Unit testing and test driven development

• GUI testing

• Test management

• Debugging

Testing Basics

Definition: software quality assurance (QA)

A set of policies and activities to:

 Define quality objectives

 Help ensure that software products and processes

meet these objectives

 Assess to what extent they do

 Improve them over time

Software quality

Correctness
Robustness
Security
Ease of use
Ease of learning
Efficiency

Extendibility
Reusability
Portability

Timeliness
Cost-effectiveness
Self-improvement

Process quality:

Product quality (long-term):

Product quality (immediate):

Quality, defined negatively

Quality is the absence of “deficiencies” (or “bugs”).

More precise terminology (IEEE):

Mistakes

Faults

Failures

result from

caused by

Example: A Y2K issue

Failure: person’s age appears as negative!

Fault: code for computing age yields
negative value if birthdate is in 20th
century and current date in 21st

Mistake: failed to account for dates
beyond 20th century Also: Error

In the case of a failure, extent of
deviation from expected result

What is a failure?

For this discussion, a failure is any event of system
execution that violates a stated quality objective.

Why does software contain faults?

We make mistakes:
 Unclear requirements
 Wrong assumptions
 Design errors
 Implementation errors

Some aspects of a system are hard to predict:

 For a large system, no one understands the whole
 Some behaviors are hard to predict
 Sheer complexity

Evidence (if any is needed!):

Widely accepted failure of “n-version programming”

The need for independent QA

Deep down, we want our software to succeed.

We are generally not in the best position to prevent or
detect errors in our own products.

Definition: testing

To test a software system is to try to make it fail

The obligatory quote

“Testing can only show the presence of errors,
never their absence”

(Edsger W. Dijkstra, in
Structured Programming, 1970,

and a few other places)

2. Wow! Exciting! Where can I buy one?

1. Gee, too bad, I hadn’t thought of this. I guess
testing is useless, then?

Limits of testing

Theoretical: cannot test for termination

Practical: sheer number of cases

(Dijkstra’s example: multiplying two integers; today
would mean 2128 combinations)

Consequences of the definition

 The purpose of testing is to find “bugs”

(More precisely: to provoke failures, which generally reflect
faults due to mistakes)

 We should really call a test “successful” if it fails
 (We don’t, but you get the idea)

 A test that passes tells us nothing about the reliability of the Unit
Under Test (UUT)
 (except if it previously failed (regression testing))

 A thorough testing process must involve people other than
developers
 (although it may involve them too)

 Testing stops at the identification of bugs
 (it does not include correcting them: that’s debugging)

Testing: the overall process

 Identify parts of the software to be tested

 Identify interesting input values

 Identify expected results (functional) and execution
characteristics (non-functional)

 Run the software on the input values

 Compare results & execution characteristics to
expectations

Testing, the ingredients: test definition

Implementation Under Test (IUT)
The software (& possibly hardware) elements
to be tested

Test case
Precise specification of one execution intended to
uncover a possible fault:

 Required state & environment of IUT
before execution

 Inputs
Test run

One execution of a test case
Test suite

A collection of test cases

More ingredients: test assessment

Expected results (for a test case)
Precise specification of what the test is expected to
yield in the absence of a fault:
 Returned values
 Messages
 Exceptions
 Resulting state of program & environment
 Non-functional characteristics (time, memory…)

Test oracle
A mechanism to determine whether a test run
satisfies the expected results
 Output is generally just “pass” or “fail”.

Classification: by scope

Unit test: tests a module

Integration test: tests a complete subsystem

 Exercises interfaces
between units, to
assess whether they
can operate together

System test : tests a complete, integrated application

against the requirements
 May exercise characteristics present only at the level

of the entire system

 We cannot connect our email
client to their database
driver because ours is written
in Eiffel and theirs is written
in Java.

Classification: by intent

Functional testing
 Goal: evaluate the system's compliance with its specified

requirements.

Fault-directed testing
Goal: reveal faults through failures
 Unit and integration testing

Conformance-directed testing
Goal: assess conformance to required capabilities
 System testing

Acceptance testing
Goal: enable customer to decide whether to accept a product

Regression testing
Goal: Retest previously tested element after changes, to assess
whether they have re-introduced faults or uncovered new ones.

Mutation testing
Goal: Introduce faults to assess test case quality

Alpha and beta testing

Alpha testing

 The first test of newly developed hardware or software
in a laboratory setting. When the first round of bugs has
been fixed, the product goes into beta test with actual
users.

Beta testing

 A test of new or revised hardware or software that is
performed by users at their facilities under normal
operating conditions.

 An interesting example: proportional testing of Gmail.

Classification: by available information

White-box testing
 To define test cases, source

code of IUT is available

 Alternative names:
implementation-based,
structural, “glass box”,
 “clear box”

Black-box testing

 Properties of IUT available only
through specification

 Alternative names:
responsibility-based, functional

A comparison

White-box Black-box

IUT
internals

Knows internal structure
& implementation

No knowledge

Focus Ensure coverage of many
execution possibilities

Test conformance to
specification

Origin of
test cases

Source code analysis Specification

Typical use Unit testing Integration & system testing

Who? Developer Developers, testers,
customers

Input Partitioning

Limits of testing - revisited

Theoretical: cannot test for termination

Practical: sheer number of cases

(Dijkstra’s example: multiplying two integers; today
would mean 2128 combinations)

Problem: Exhaustive testing is impractical

Solution: Select representative input samples, but how?

Partition testing (black-box)

We cannot test all inputs, but need realistic inputs

Idea of partition testing: select elements from a partition

of the input set, i.e. a set of subsets that is
 Complete: union of subsets covers entire domain
 Pairwise disjoint: no two subsets intersect

Purpose (or hope!):

 For any input value that produces a failure, some
other in the same subset produces a similar failure

Common abuse of language: “a partition” for “one of the
subsets in the partition” (e.g. A2)
 Better called “equivalence class”

A1

A2
A3 A4

A5

Examples of partitioning strategies

Ideas for equivalence classes:

 Set of values so that if any is processed correctly then
any other will be processed correctly

 Set of values so that if any is processed incorrectly
then any other in set will be processed incorrectly

 Values at the center of a range, e.g. 0, 1, -1 for integers

 Boundary values, e.g. MAXINT

 Values known to be particularly relevant

 Values that must trigger an error message (“invalid”)

 Intervals dividing up range, e.g. for integers

 Objects: need notion of “object distance”

Example partitioning

Date-related program

 Month: 28, 29, 30, 31 days

 Year: leap, standard non-leap,
 special non-leap (x100), special leap (x1000)

All combinations: some do not make sense

From Wikipedia:
The Gregorian calendar, the current standard calendar in most of the
world, adds a 29th day to February in all years evenly divisible by
four, except for centennial years (those ending in -00), which receive
the extra day only if they are evenly divisible by 400. Thus 1600,
2000 and 2400 are leap years but 1700, 1800, 1900 and 2100 are not.

http://en.wikipedia.org/wiki/Gregorian_calendar
http://en.wikipedia.org/wiki/February

Boundary testing

Many errors occur on or near boundaries of input domain

Heuristics: in an equivalence class, select values at edge

Examples:

 Leap years

 Non-leap commonly mistaken as leap (1900)

 Leap years commonly mistaken as non-leap (2000)

 Invalid months: 0, 13

 For numbers in general: 0, very large, very small

Partition testing: assessment

Applicable to all levels of testing: unit, class, integration,
system

Black-box: based only on input space, not the
implementation

A natural and attractive idea, applied formally or by many
testers, but lacks rigorous basis for assessing
effectiveness.

Measure Test Quality

Coverage (white-box technique)

Idea : to assess the effectiveness of a test suite,
Measure how much of the program it exercises.

Concretely:

Choose a kind of program element, e.g. instructions
(instruction coverage) or paths (path coverage)

 Count how many are executed at least once
 Report as percentage

A test suite that achieves 100% coverage achieves the chosen

criterion. Example:
 “This test suite achieves instruction coverage

 for routine r ”
Means that for every instruction i in r, at least one test

executes i.

Taking advantage of coverage measures

Coverage-guided test suite improvement:
 Perform coverage analysis for a given criterion
 If coverage < 100%, find unexercised code sections
 Create additional test cases to cover them

The process can be aided by a coverage analysis tool:

1. Instrument source code by inserting trace
instructions

2. Run instrumented code, yielding a trace file
3. From the trace file, analyzer produces coverage

report

High coverage /= high quality.

Coverage criteria

Instruction (or: statement) coverage:
 Measure instructions executed

Disadvantage: insensitive to some control structures

Branch coverage:

 Measure conditionals whose paths are both executed

Condition coverage:

 Count how many atomic boolean expressions evaluates
 to both true and false

Path coverage:

 Count how many of the possible paths are taken

(Path: sequence of branches from routine entry to exit)

Example: source code

public class Account {

 private int balance;

 public void withdraw (int sum) {
 if (balance >= sum) {
 balance = balance - sum;
 if (balance == 0)
 System.out.println (
 “The account is now empty.");
 } else
 System.out.println (
 “There are less than ” + sum +
 “CHF in the account.”);
 }
…
}

Start

balance

>= sum

balance =

balance –

sum

balance

== 0

print (…)

print (…)

False

True

True

False

Example: instruction coverage

public class Account {

 private int balance;

 public void withdraw(int sum) {
 if (balance >= sum) {
 balance = balance - sum;
 if (balance == 0)
 System.out.println(
 “The account is now empty.");
 } else
 System.out.println(
 “There are less than ” + sum +
 “CHF in the account.”);
 }
…
}

Start

balance

>= sum

balance =

balance –

sum

balance

== 0

print (…)

print (…)

TC1:
a = new Account();
a.setBalance(100);
a.withdraw(1000);

TC2:
a = new Account();
a.setBalance(100);
a.withdraw(100);

Example: branch (condition, path) coverage

public class Account {

 private int balance;

 public void withdraw(int sum) {
 if (balance >= sum) {
 balance = balance - sum;
 if (balance == 0)
 System.out.println(
 “The account is now empty.");
 } else
 System.out.println(
 “There are less than ” + sum +
 “CHF in the account.”);
 }
…
}

Start

balance

>= sum

balance =

balance –

sum

balance

== 0

print (…)

print (…)

TC1:
a = new Account();
a.setBalance(100);
a.withdraw(1000);

TC2:
a = new Account();
a.setBalance(100);
a.withdraw(100);

TC3:
a = new Account();
a.setBalance(100);
a.withdraw(99);

Specification coverage

Predicate = an expression that evaluates to a boolean value

 e.g.: a b (f(x) x > 0)

Clause = a predicate that does not contain any logical
operator

 e.g.: x > 0

If specification expressed as predicates on the state,
specification coverage translates to predicate coverage.

Predicate coverage (PC)

A predicate is covered iff it evaluates to both true and
false in 2 different runs of the system.

Example:

 a b (f(x) x > 0)

 is covered by the following 2 test cases:

 {a=true; b=false; f(x)=false; x=1}

 {a=false; b=false; f(x)=true; x=-1}

Clause coverage (CC)

Satisfied if every clause of a certain predicate evaluates to
both true and false.

Example:

 x>0 y<0

 Clause coverage is achieved by:

 {x=-1; y=-1}

 {x=1; y=1}

Combinatorial coverage (CoC)

Every combination of evaluations for the clauses in a
predicate must be achieved.

Example:
((AB)C)

A B C ((AB)C)

1
2
3
4
5
6
7
8

T
T
T
T
F
F
F
F

T
T
F
F
T
T
F
F

T
F
T
F
T
F
T
F

T
F
T
F
T
F
F
F

Mutation testing

Idea: make small changes to the program source code (so
that the modified versions still compile) and see if your
test cases fail for the modified versions

Purpose: estimate the quality of your test suite

Terminology

Faulty versions of the program = mutants

 We only consider mutants that are not equivalent to
the original program!

A mutant is said to be killed if at least one test case
detects the fault injected into the mutant

A mutant is said to be alive if no test case detects the
injected fault

Mutation operators

Mutation operator = a rule that specifies a syntactic
variation of the program text so that the modified
program still compiles

Mutant = the result of an application of a mutation operator

The quality of the mutation operators determines the

quality of the mutation testing process.

Mutation operator coverage (MOC): For each mutation

operator, create a mutant using that mutation operator.

Examples of mutants

Original program:

if (a < b)

 b := b – a;

else

 b := 0;

Mutants:

if (a < b)

if (a <= b)

if (a > b)

if (c < b)

 b := b – a;

 b := b + a;

 b := x – a;

else

 b := 0;

 b := 1;

 a := 0;

Mutation operators (classical)

 Replace arithmetic operator by another

 Replace relational operator by another

 Replace logical operator by another

 Replace a variable by another

 Replace a variable (in use position) by a constant

 Replace number by absolute value

 Replace a constant by another

 Replace “while… do…” by “repeat… until…”

 Replace condition of test by negation

 Replace call to a routine by call to another

OO mutation operators

Visibility-related:

 Access modifier change – changes the visibility level
of attributes and methods

Inheritance-related:

 Hiding variable/method deletion – deletes a
declaration of an overriding or hiding variable/routine

 Hiding variable insertion – inserts a member variable
to hide the parent’s version

OO mutation operators (continued)

Polymorphism- and dynamic binding-related:
 Constructor call with child class type – changes the

dynamic type with which an object is created

Various:
 Argument order change – changes the order of

arguments in routine invocations (only if there exists
an overloading routine that can accept the changed
list of arguments)

 Reference assignment and content assignment
replacement
 example: list1 := list2 ->

 list1 := list2.clone()

Unit Testing

Unit testing

 unit testing is a software verification and validation
method in which a programmer tests if individual units of
source code are fit for use. A unit is the smallest
testable part of an application.

 The goal of unit testing is to isolate each part of the
program and show that the individual parts are correct.
A unit test provides a strict, written contract that the
piece of code must satisfy.

 Unit tests find problems early in the development cycle.

 Ideally, each test case is independent from the others.

Components of a test case

Test case execution Result validation Input generation

xUnit – widely used testing frameworks

 xUnit frameworks allow testing of different elements
(units) of software, such as functions and classes. The
main advantage of xUnit frameworks is that they provide
an automated solution with no need to write the same
tests many times, and no need to remember what should
be the result of each test.

 Examples

• JUnit for Java

• NNnit for .NET

• CppUnit for C++

JUnit: Overview

Provides a framework for running test cases

Test cases

 Written manually

 Normal classes, with annotated methods

Input values and expected results defined by the tester

Execution is the only automated step

How to use JUnit

Requires JDK 5

Annotations:

 @Test for every routine that represents a test case
 @Before for every routine that will be executed before every
@Test routine

 @After for every routine that will be executed after every
@Test routine

Every @Test routine must contain some check that the

actual result matches the expected one – use asserts
for this
 assertTrue, assertFalse, assertEquals,

assertNull, assertNotNull, assertSame,

assertNotSame

Example: basics

package unittests;

import org.junit.Test; // for the Test annotation
import org.junit.Assert; // for using asserts
import junit.framework.JUnit4TestAdapter; // for running

import ch.ethz.inf.se.bank.*;

public class AccountTest {
 @Test public void initialBalance() {
 Account a = new Account("John Doe", 30, 1, 1000);
 Assert.assertEquals(
 "Initial balance must be the one set through the constructor",
 1000,
 a.getBalance());
 }
}

To declare a routine as

a test case

To compare the actual

result to the expected

one

Example: set up and tear down

package unittests;

import org.junit.Before; // for the Before annotation
import org.junit.After; // for the After annotation
// other imports as before…

public class AccountTestWithSetUpTearDown {

 private Account account;

 @Before public void setUp() {
 account = new Account("John Doe", 30, 1, 1000);
 }
 @After public void tearDown() {
 account = null;
 }
 @Test public void initialBalance() {
 Assert.assertEquals("Initial balance must be the one set through the constructor",
 1000,
 account.getBalance());
 }
}

To run this routine before any

@Test routine

To run this routine after

any @Test routine

Must make account an

attribute of the class now

@BeforeClass, @AfterClass

A routine annotated with @BeforeClass will be executed
once, before any of the tests in that class is executed.

A routine annotated with @AfterClass will be executed
once, after all of the tests in that class have been
executed.

Can have several @Before and @After methods, but only
one @BeforeClass and @AfterClass routine respectively.

Checking for exceptions

Pass a parameter to the @Test annotation stating the type
of exception expected:

@Test(expected=AmountNotAvailableException.class) public void overdraft ()

throws AmountNotAvailableException {

 Account a = new Account("John Doe", 30, 1, 1000);

 a.withdraw(1001);

 }

The test will fail if a different exception is thrown or if
no exception is thrown.

Pass a parameter to the @Test annotation setting a
timeout period in milliseconds. The test fails if it takes
longer than the given timeout.

@Test(timeout=1000) public void testTimeout () {

 Account a = new Account("John Doe", 30, 1, 1000);

 a.infiniteLoop();

 }

Setting a timeout

Test-driven development (TDD)

Software development methodology
One of the core practices of extreme programming (XP)
Write test, write code, refactor
More explicitly:

1. Write a small test.
2. Write enough code to make the test succeed.
3. Clean up the code.
4. Repeat.

Always used together with xUnit.

Evolutionary approach to development

Combines

 Test-first development

 Refactoring

Primarily a method of software design

 Not just method of testing

Test-Driven Development (TDD)

TDD 1: Test-First Development (TFD)

A change to the system that leaves its behavior
unchanged, but enhances some non-functional quality:

 Simplicity

 Understandability

 Performance

Refactoring does not fix bugs or add new functionality.

TDD 2: Refactoring

Change the name of a variable, class, ...

Convert local variable to attribute

Generalize type

Introduce argument

Turn a block of code into a routine

Replace a conditional with polymorphism

Break down large routine

Examples of refactoring

• Apply test-first development.

• Refactor whenever you see fit (before next functional
modification).

TDD = TFD + Refactoring

Why refactoring is so important to TDD?

• Easy to give in and not write a test or skip a
refactoring.

• Pair-programming partner can help keep you on track.

• Write testable code.

TDD and extreme programming (XP)

• Write new business code only when a test fails.

• Eliminate any duplication you find.

TDD: Kent Beck’s rules

• You design organically, running code provides feedback
between decisions.

• You write your own tests, because you cannot wait.

• Development environment must provide rapid response
to small changes.

• Your design must be consist of highly cohesive, loosely
coupled components to make testing easier.

• Side effect: easier evolution and maintenance.

TDD: consequences for the developer

Developers must learn to write good unit tests:

 Run fast (short setup, run, and tear-down)

 Run in isolation (reordering is possible)

 Use data that makes test cases easy to read

 Use real data when needed

 Each test case is one step towards overall goal

TDD: consequences on unit tests

TDD is a programming technique that ensures that
source code is thoroughly unit tested.

Need remains for:

 Nonfunctional testing

 User acceptance testing

 System integration testing

XP suggests these tests should also occur early.

TDD & traditional testing

• Failed test case is a success.

• TDD guarantees complete statement coverage (per
definition).

• Traditional testing only recommends it.

TDD & traditional testing

Programmers often do not read documentation.

Instead, they look for examples an play with them.

Good unit tests can serve as

 Examples

 Documentation

TDD & documentation

Bob Martin:

“The act of writing a unit test is more an act of design than of
verification. It is also more an act of documentation than of
verification. The act of writing a unit test closes a
remarkable number of feedback loops, the least of which is
the one pertaining to verification of function”

Contracts serve a very similar purpose.

Write header comment and contract before
implementation.

Symbiosis:

 Tests make system run, execute assertions.

 Assertions provide additional tests.

TDD & contracts

Pros

 Reduce gap between decision and feedback.

 Encourage developers to write code that is easily
tested.

 Creates a thorough test bed.

Drawbacks

 Time taken away from core development.

 Some code is difficult to test.

TDD: pros and cons

TDD needs fast test execution for feedback, but some
tests reply on calculations that are slow, for example,
database conneciton.

Solution: during testing, replace the expensive calculation
with its simulated version:

• Simulated version should have the same interface with
the original version.

• Simulated version should run fast.

Mock object: reducing test execution time

Mock object: an example

LIBRARY books*

REAL_
LIBRARY

MOCKED_
LIBRARY

books books

CLIENT

books: LINKED_LIST [STRING] –- From MOCKED_LIBRARY

 do

 create Result.make

 Result.extend (“OOSC”)

 Result.extend (“Design Patterns”)

 end

GUI Testing

Why is GUI testing hard?

 GUI

 Graphics: easy for humans, hard for machines

 Themable GUIs

 Simple change to interface, big impact

 Network & Databases

 Big effort to set up environment

 Computers

 Operating Systems

 Applications

 Data

 Network

 Reproducibility

Why is GUI testing hard?

 In the old days things were easy

 Stdin / Stdout / Stderr

 Modern applications lack uniform interface

 GUI

 Network

 Database

 …

Minimizing GUI code

 GUI code is hard to test

 Try to keep it minimal

 How?

VIEW

Model-View-Controller

A = 50%

B = 30%

C = 20%

V
ie

w
s

M
o
d

el

Model-View Controller

Model View Controller (2/2)

Model

• Encapsulates application state

• Exposes application functionality

• Notifies view of changes

View

• Renders the model

• Sends user gestures to controller

• Allows controller to select view

Controller

• Defines application behavior

• Maps user actions to model

 updates

• Selects view for response

• One for each functionality

View selection

User gestures

State change Change

Notification

Events

Feature calls

Example: Abstracting the GUI away

Algorithm needs to save file

Algorithm queries Dialog for name

Makes Algorithm hard to test

Solution:

 Abstract interactivity away

 Makes more of your software easy to test

Capture and replay

Capture
 Run GUI application manually, capture all the input
 events such as keystrokes, mouse moves and clicks.

Replay

 Rerun the application automatically, spawn recorded
 events, check if the system responses as expected.

Problems

 Fragile to changes, hard to define correctness.

WebDriver, a web-based testing tool

 WebDriver is a tool for automating testing web
applications, and in particular to verify that they work as
expected

 public static void main(String[] args) {
 WebDriver driver = new HtmlUnitDriver(); // Create a new html unit driver

 driver.get("http://www.google.com"); // And now use this to visit Google

 // Find the text input element by its name
 WebElement element = driver.findElement(By.name("q"));

 element.sendKeys("Cheese!"); // Enter something to search for

 // Now submit the form. WebDriver will find the form for us from the element
 element.submit();

 // Check the title of the page
 System.out.println("Page title is: " + driver.getTitle());
 }
}

How to check if a page is rendered correctly?

Test management

Testing strategy

Planning & structuring the testing of a large program:
 Defining the process

 Test plan
 Input and output documents

 Who is testing?
 Developers / special testing teams / customer

 What test levels do we need?
 Unit, integration, system, acceptance, regression

 Order of tests
 Top-down, bottom-up, combination

 Running the tests
 Manually
 Use of tools
 Automatically

Who tests

Any significant project should have a separate QA team

Why: the almost infinite human propensity to self-delusion

Unit tests: the developers

 My suggestion: pair each developer with another who
serves as “personal tester”

Integration test: developer or QA team

System test: QA team

Acceptance test: customer & QA team

Classifying reports: by severity

Classification must be defined in advance

Applied, in test assessment, to every reported failure

Analyzes each failure to determine whether it reflects a
fault, and if so, how damaging

Example classification (from a real project):

 Not a fault

 Minor

 Serious

 Blocking

Classifying reports: by status

From a real project:

 Registered

 Open

 Re-opened

 Corrected

 Integrated

 Delivered

 Closed

 Irreproducible

 Cancelled

Regression bug!

Assessment process (from real project)

Irrepro-

ducible

Reopened

Cancelled

Registered

Open

Corrected

Integrated

Closed

Developer

Project

Project/
Customer

Customer

Project

Customer

Customer

Project

Project

Project

Developer

Some responsibilities to be defined

Who runs each kind of test?

Who is responsible for assigning severity and status?

What is the procedure for disputing such an assignment?

 What are the consequences on the project of a failure at
each severity level?

 (e.g. “the product shall be accepted when two

 successive rounds of testing, at least one week
 apart, have evidenced fewer than m serious faults
 and no blocking faults”).

Debugging

9
2

Debugging: topics and scope

What is Debugging?

Problem Management

How Failures Come to Be?

Scientific Debugging

Techniques

 Delta Debugging

What is Debugging?

What Is Debugging?

Debugging is the work required to diagnose and correct a
bug.

Testing is not debugging.

Debugging is not testing.

Debugging typically occurs after a failure has been
observed.

Tracking problems

Large projects have many bugs reported.

Bugs are not always fixed immediately.

Need for Bug tracking system

 Bugzilla

 Origo

Classifying Problems

Severity

 Blocker

 Critical

 Major

 Normal

 Minor

 Trivial

 Enhancement

Priority

Identifier

Comments

Notifications

Bug Lifecycle

Testing and bug prevention

Three questions about each bug you find (Van Vleck):

 “Is this mistake somewhere else also?”

 “What next bug is hidden behind this one?”

 “What should I do to prevent bugs like this?”

How Failures Come to Be 1/3

How Failures Come to Be 2/3

How Failures Come to Be 3/3

Scientific method

Observation

Hypothesis

Prediction Experiment

Conclusion

Debugging basics: breakpoints

 A breakpoint is a signal that tells the debugger to
temporarily suspend execution of your program at a
certain point.

 When your program stops in debugger, you can evaluate
expressions in each level in the call stack.

 A conditional breakpoint is a breakpoint which only stops
when the given condition evaluates to True.

“Scientific Debugging” (Zeller)

 Observe failure.

 Invent hypothesis, consistent with observation.

 Use hypothesis to make prediction.

 Test prediction by experiment or observation:

 If prediction satisfied, then refine hypothesis.

 Otherwise, create alternative hypothesis.

Debugging Techniques

Delta Debugging

Bug Example: Mozilla
<td align=left valign=top>

<SELECT NAME="op sys" MULTIPLE SIZE=7>

<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows

95<OPTION VALUE="Windows

98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows

2000<OPTION VALUE="Windows

NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System

7.5<OPTION VALUE="Mac

System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac

System 8.5">Mac System

8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System

9.x<OPTION VALUE="MacOS X">MacOS

X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION

VALUE="NetBSD">NetBSD<OPTION

VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTIONVALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-

UX<OPTION

VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION

VALUE="OS/2">OS/2<OPTION

VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION VALUE="SunOS">SunOS<OPTION

VALUE="other">other</SELECT></td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION

VALUE="P4">P4<OPTION

VALUE="P5">P5</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="bug severity" MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION

VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION

VALUE="enhancement">enhancement</SELECT>

</tr>

</table>

Bug Example: Mozilla

Looking at the input it is hard to understand the real cause
of the bug.

Can we simplify the input?

Delta Debugging: Characteristics

Simplification algorithm for bug reproducing examples.

Reduces size of input or program.

Easy to implement and customize.

Assumptions

 Input can be split into parts

 Working program

 Failing program

Delta Debugging: Example 2/5

Assume the following makes Mozilla crash:

<SELECT NAME=”priority” MULTIPLE SIZE=7>

Approach:

Remove parts of input and see if it still crashes.

Delta Debugging: Example 3/5

1 <SELECT NAME="priority" MULTIPLE SIZE=7> F

2 <SELECT NAME="priority" MULTIPLE SIZE=7> P

3 <SELECT NAME="priority" MULTIPLE SIZE=7> P

4 <SELECT NAME="priority" MULTIPLE SIZE=7> P

5 <SELECT NAME="priority" MULTIPLE SIZE=7> F

6 <SELECT NAME="priority" MULTIPLE SIZE=7> F

7 <SELECT NAME="priority" MULTIPLE SIZE=7> P

8 <SELECT NAME="priority" MULTIPLE SIZE=7> P

9 <SELECT NAME="priority" MULTIPLE SIZE=7> P

10 <SELECT NAME="priority" MULTIPLE SIZE=7> F

11 <SELECT NAME="priority" MULTIPLE SIZE=7> P

12 <SELECT NAME="priority" MULTIPLE SIZE=7> P

13 <SELECT NAME="priority" MULTIPLE SIZE=7> P

Bold parts remain in the input

Pass

Fail

Delta Debugging: Example 4/5

14 <SELECT NAME="priority" MULTIPLE SIZE=7> P

15 <SELECT NAME="priority" MULTIPLE SIZE=7> P

16 <SELECT NAME="priority" MULTIPLE SIZE=7> F

17 <SELECT NAME="priority" MULTIPLE SIZE=7> F

18 <SELECT NAME="priority" MULTIPLE SIZE=7> F

19 <SELECT NAME="priority" MULTIPLE SIZE=7> P

20 <SELECT NAME="priority" MULTIPLE SIZE=7> P

21 <SELECT NAME="priority" MULTIPLE SIZE=7> P

22 <SELECT NAME="priority" MULTIPLE SIZE=7> P

23 <SELECT NAME="priority" MULTIPLE SIZE=7> P

24 <SELECT NAME="priority" MULTIPLE SIZE=7> P

25 <SELECT NAME="priority" MULTIPLE SIZE=7> P

26 <SELECT NAME="priority" MULTIPLE SIZE=7> F

Delta Debugging: Example 5/5

After 26 tries we found:

<SELECT>

causes Mozilla to crash.

Delta Debugging: Limitations

Delta Debugging does not guarantee smallest possible
example.

 It only guarantees an example where every line is
relevant.

We need to be able to replay inputs.

We need to be able to split inputs.

Empty input must not trigger failure.

Debugging: conclusion

Debugging

Failures

Problem Management

Scientific Debugging

Techniques

 Delta Debugging

