
Chair of Software Engineering 

Software Architecture 
 

Bertrand Meyer, Carlo A. Furia, Martin 
Nordio 

 

ETH Zurich, February-May 2011 

Lecture 12: 
Metrics, Models 

& Cost Estimation 

 



Measurement 

“To measure is to know” 

“When you can measure what you are speaking about and 
express it in numbers, you know something about it; but 
when you cannot measure it, when you cannot express it 
in numbers, your knowledge is of a meager and unsatisfactory kind; it may 
be the beginning of knowledge, but you have scarcely in your thoughts 
advanced to the state of Science, whatever the matter may be. ” 

"If you cannot measure it, you cannot improve it."  

    Lord Kelvin 

“You can't control what you can't measure” 
  Tom de Marco  

“Not everything that counts can be counted, and not 
everything that can be counted counts.”  
  Albert Einstein (attributed)  

2 



Why measure software? 

Understand issues of software development 

 

Make decisions on basis of facts rather than opinions 

 

Predict conditions of future developments 

3 



The purpose of this lecture 

Learn techniques to 

 

 Measure factors of interest, mostly 

 Cost 

 Faults 

 

 Estimate these factors, in particular cost, in advance 

4 



Some estimation techniques 

1. Count 

2. Determine from goals 

3. Use individual expert judgment 

4. Use collective expert judgment 

5. Rely on analogy 

6. Estimate from proxies 

7. Apply model 

8. Decompose and recompose 

9. Calibration from historical data 

10. Use tools 

11. Combine approaches 

 

5 



How good an estimator are you? 

(From: Steve McConnell, Software Estimation, Microsoft Press, 2006) 

For each of the following values, give a range that gives 
you a 90% chance of containing the correct answer 

 

6 

Surface temperature of the sun (oC ) 

Latitude of Shanghai (degrees) 

Area of the Asian continent (sq km) 

Year of Alexander the Great’s birth 

US currency in circulation, 2004 ($ ) 

Total volume of Great Lakes (liters or cubic km) 

Worldwide box office receipts for Titanic ($ ) 

Length of coastline of Pacific Ocean (km) 

Book titles published in US since 1776 

Weight of heaviest blue whale recorded (tons) 

Low High 



Results 

7 

1 2 3 4 5 6 7 8 9 10 0 



Some estimation techniques 

1. Count 

2. Determine from goals 

3. Use individual expert judgment 

4. Use collective expert judgment 

5. Rely on analogy 

6. Estimate from proxies 

7. Apply model 

8. Decompose and recompose 

9. Calibration from historical data 

10. Use tools 

11. Combine approaches 

 

8 



Absolute and relative measurements 

. 

0 % 

140% 

-140% 

.. 
. . 

. 

.. 

. . . 
. . 

. 

. . 

. . . . 

. 
. . . 
. . 

. 

. 
. . . . . . . . . .  . . .. . . . .. . 

. 
. . 

. .. 
. 

. 
. 

. . . .. .... .. . .. . .. . . . . . . . . 
. 

Without Historical Data With Historical Data 
Variance between + 20% to  - 145% Variance between - 20% to + 20% 

  (Mostly Level 1 & 2) (Level 3) 

Over/Under Percentage 

. 

(Based on 120 projects in Boeing Information Systems) 

. 
. . . 

. 

. 
. . 

.. 
. 

. . 

. . 
. 

. 
. . 

. 
. 

. . . 
. . . . . . . . . . . . . . . . . 

.. 
. . . . . . . . . . . . . . . . . . . 

. . . . . 
. . . . . . . . . . . 
. . . . . . . . . . . 

. . . . . . . . . . . . . . 

. . . . . . . . 

. . . . . . . . . 

. . . . . . 
. . . . . . 

. . . . . . 

Reference: John D. Vu.  “Software Process Improvement Journey:From Level 1 to Level 5.”   

7th SEPG Conference, San Jose, March 1997. 

9 



Software metrics: methodological guidelines 

Measure only for a clearly stated purpose 

 

Specifically: software measures should be connected with 
quality and cost 

 

Assess the validity of measures through controlled, 
credible experiments 

 

Apply software measures to software, not people 

 

GQM (see next) 

10 



GQM (Goal/Question/Metric) (Basili et al.) 

        
Process for a measurement campaign: 
1. Define goal of measurement 

 Analyze… with the purpose of … the … from the point 
 of view of … in the context of … 
 
 Example: Analyze testing phase with the purpose of 
 estimating the costs from the point of view of the 
 manager in the context of Siemens Train Division’s 
 embedded systems group 

2. Devise suitable set of questions 
 Example: do faults remain that can have major  
 safety impact? 

3. Associate metric with every question 
 

11 



Example: software quality 

External quality factors: 

 Correctness 

 Robustness 

 Ease of use 

 Security 

 … 

Compare: 

 “This program is much more reliable than the previous 
development” 

 “There are 67 outstanding faults, of which 3 are 
`blocking’ and 12 `serious’. The new fault rate for the 
past three months has been two per week.” 

12 



What to measure in software: examples 

Effort measures 

 Development time 

 Team size 

 Cost 

 

 

Quality measures 

 Number of failures 

 Number of faults 

 Mean Time Between Failures 

 
 

13 



Difficulty of cost control 

Many industry projects late and over budget, although 
situation is improving 

Cost estimation still considered black magic by many; does 
it have to be? 

Source: van Genuchten (1991) 
Average overrun: 22% 

14 

Note: widely cited Standish 
“Chaos” report has been 
shown not to be credible 



Difficulty of effort measurement: an example 

     (after Ghezzi/Jazayeri/Mandrioli) 

Productivity: 

 Software professional: a few tens of lines of code 
per day 

 Student doing project: much more! 

 

 

Discrepancy due to: other activities (meetings, 
administration, …); higher-quality requirements; application 
complexity; need to understand existing software 
elements; communication time in multi-person development; 
higher standards (testing, documentation). 

15 



Effort measurement 

Standard measure: person-month (or “man-month”) 

 

Even this simple notion is not without raising difficulties: 

 Programmers don’t just program 

 m persons x n months is not 
interchangeable with 
n persons x m months 

 

 

Brooks: “The Mythical Man-Month” 

16 



Project parameters 

Elements that can be measured in advance, to be fed into 
cost model 

 

Candidates: 

 

 Lines of code (LOC, KLOC, SLOC..) and other internal 
measures 

 

 Function points, application points and other external 
measures 

 

Some metrics   apply to all programs, others to O-O 
programs only 

 17 



Complexity models 

Aim: estimate complexity of a software system 

 

Examples: 

 Lines of code 

 Function points 

 Halstead’s volume measure: N log , where N is 
program length and  the program vocabulary 
(operators + operands) 

 McCabe’s cyclomatic number: C = e – n + 2 p, where n 
is number of vertices in control graph, e the number 
of edges, and p the number of connected components 

18 



Traditional internal code metrics 

 

Source Lines of Code (SLOC) 

 

Comment Percentage (CP) 

 

McCabe Cyclomatic Complexity (CC) 

 

19 



Source lines of code (SLOC) 

Definition: count number of lines in program 
 
Conventions needed for: comments; multi-line instructions; control 
structures; reused code. 
 
Pros as a cost estimate parameter: 
 

Appeals to programmers 
Fairly easy to measure on final product 
Correlates well with other effort measures 

 
Cons: 

Ambiguous (several instructions per line, count comments or not …) 
Does not distinguish between programming languages of various 

abstraction levels 
Low-level, implementation-oriented 
Difficult to estimate in advance. 

20 



Source lines of code  

A measure of the number of physical lines of code  

 

Different counting strategies: 

 Blank lines 

 Comment lines 

 Automatically generated lines 

 

EiffelBase has 63,474 lines, Vision2 has 153,933 lines, 
EiffelStudio (Windows GUI) has 1,881,480 lines in all 
compiled classes. 

 
Code used in examples given here and below are got from revision 
68868 in Origo subversion server. 

21 



Comment percentage 

 

Ratio of the number of commented lines of code divided by 
the number of non-blank lines of code.  

 

Critique: 

If you need to comment your code, you better refactor it. 

 

 

 

22 



Software Metrics 

using EiffelStudio 

With material by  

Yi Wei & Marco Piccioni  

May 2011 

23 



What to measure 

Product properties 

 Lines of Code 

 Number of classes 

 Cohesion & Coupling 

 Conformance of code to OO principles 

 

Process properties 

 Man-month spent on software 

 Number of bugs introduced per hour 

 Ratio of debugging/developing time 

 CMM, PSP 

 

24 



    Metrics tool in EiffelStudio 

A code quality checking tool with seamlessly working style: 

 Coding – Metricing – Problem solving – Coding 

 

Highly customizable: 

 Define your own metrics to match particular 
requires 

 

Metric archive comparison: 

 Compare measurement of your software to others 

 

Automatic metric quality checking: 

 Get warned when some quality criterion are not met 

 25 



    Metrics tool: evaluate metric 

26 



    Metrics tool: investigate result 

27 



    Metrics tool: define new metric 

28 



    Metrics tool: metric History 

29 



    Metrics tool: archive 

30 



McCabe cyclomatic complexity 

A measure based on a connected graph of the module  

(shows the topology of control flow within the program) 

 

Definition 

M = E − N + P  where 

M = cyclomatic complexity  

E = the number of edges of the graph  

N = the number of nodes of the graph  

P = the number of connected components. 

 

31 



Example of cyclomatic complexity  

if condition then 

 code 1 

else 

 code 2 

end 

 

 

 

               E = 4, N = 4, P = 2,  

            M = 4 – 4 + 2 = 2 

32 



External metric: function points 

Definition: one end-user business function 
Five categories (and associated weights): 

 Inputs (4) 
 Outputs (5) 
 Inquiries (4) 
 Files (10) 
 Interfaces to other systems (7) 

 
Pros as a cost estimate parameter: 

 Relates to functionality, not just implementation 
 Experience of many years, ISO standard 
 Can be estimated from design 
 Correlates well with other effort measures 

Cons: 
 Oriented towards business data processing 
 Fixed weights 

33 



Application points 

Definition: high-level effort generators 

Examples: screen, reports, high-level modules 

Pro as a cost estimate parameter: 

 Relates to high-level functionality 

 Can be estimated very early on 

Con: 

 Remote from actual program 

 

34 



Some metrics for O-O programs 

 

Weighted Methods Per Class (WMC) 

 

Depth of Inheritance Tree of a Class (DIT) 

 

Number of Children (NOC) 

 

Coupling Between Classes (CBO) 

 

Response for a Class (RFC) 

35 



Weighted methods per class 

Sum of the complexity of each feature contained in the 
class.  

Feature complexity: (e.g. cyclomatic complexity) 

When  feature complexity assumed to be 1,  

WMC = number of features in class 

 

In Eiffel base, there are 5,341 features, 

In Vision2 (Windows), there are 10,315 features, 

In EiffelStudio (Windows GUI), there are 89,630 
features. 

 

 

 
36 



Depth of inheritance tree of a class 

Length of the longest path of inheritance ending at the 
current module 

 

 

 

 

 

 

 

 

 

                            

for CHAIN, DIT=7 
37 



Number of children 

Number of immediate subclasses of a class. 

 

In Eiffel base, there are 3 classes which have more than 
10 immediate subclasses: 

  ANY 

   COMPARABLE 

   HASHABLE 

 

And of course, ANY has most children. 

38 



Coupling between classes 

Number of other classes to which a class is coupled, i.e., 
suppliers of a class.  

 

In Eiffel base, there are 3 classes which directly depend 
on more than 20 other classes, they are: 

 STRING_8 

 STRING_32 

 TUPLE 

 

Class SED_STORABLE_FACILITIES indirectly depends 
on 91 other classes. 

 

39 



Number of features that can potentially be executed in  

a feature, i.e., transitive closure of feature calls. 

 

foo do 

 bar 
end 

 

bar 

 f1 

 f2                                  RFC=3 

end 

 

Response for a class (RFC) 

foo bar 

f1 

f2 

40 



41 

Cost estimation techniques 

 

(This part of the material comes for a large 
part from Steve McConnell, Sofware 
Estimation, Microsoft Press, 2006, and B.W. 
Boehm et al., Software Cost Estimation with 
Cocomo II, Addison-Wesley, 2000) 



Estimating costs 

Any estimate has an associated probability 

 

A typical probability distribution:  

42 

100% 

Schedule, cost or effort 

Nominal outcome (50/50 estimate) 

From: McConnell 



The cone of uncertainty 

43 

1 

2 

4 

0.25 

0.5 

… 

1.5 

1.25 

0.67 

0.8 

After: Boehm, McConnell 
Time 

Precision 

Approved definition 

Requirements 

UI design 
Detailed design 



Limits to the cone model 

You get a cone that narrows itself (not a cloud) only if the 
project is well controlled and the estimates are regularly 
and effectively updated. 

 

With these qualifications, the cone model is superior to 
single-point estimates 

44 



Sources of uncertainty 

1 The development process 

2 Unstable requirements 

3 Unaccounted activities 

4 Optimism 

5 Bias 

6 Unsupported precision 

 

 

45 



Using individual expert judgment 

Practical advice: 

 Never use off-the-cuff estimate 

 Require low and high estimates 

 Require decomposition 

 

46 
Source: McConnell 



Using group judgment 

Techniques: 

 Individual first, then compare 

 Discuss differences (do not just compute average) 

 Arrive at consensus 

47 



Wideband Delphi (Boehm) 

48 



Effectiveness of Wideband Delphi (McConnell) 

49 
Source: McConnell 



Effectiveness of Wideband Delphi (McConnell) 

50 
Source: McConnell 



Decompose and recompose 

Basic idea: find a division of the task into subtasks 
(function-based or step-based), estimate the subtasks, 
and combine the results. 

 

Advantage: errors may compensate each other 

 

Risk: accumulation of optimistic estimates 

 

Advice: enforce best-case and worst-case estimate for 
each subtask 

51 



Estimation by analogy 

Steps: 

 1 Get detailed data (size, effort, cost) for similar 
project 

 2 Compare size of old and new projects (measures: 
tables, screens, Web pages, reports, clusters, 
classes…) 

 3 Estimate size of new project 

 4 Estimate effort (or other parameter) for new 
project 

 5 Check for inconsistent comparison assumptions 

 

 

 
52 



Estimation by proxy 

Examples of proxies: 

 Screens 

 Static Web pages 

 Dynamic Web pages 

 (Relational) database pages 

 Reports 

 Business rules 

 Story points (requirements features) 

Estimating proxy values’: “T-Shirt sizing” 

53 



The cone of uncertainty 

54 

1 

2 

4 

0.25 

0.5 

… 

1.5 

1.25 

0.67 

0.8 

After: Boehm, McConnell 
Time 

Precision 

Approved definition 

Requirements 

UI design 
Detailed design 



Cost models 

How do you estimate the cost of a project, before 
starting the project? 

55 



Cost models 

Purpose: estimate in advance the effort attributes 
(development time, team size, cost) of a project 

 

Problems involved: 

 Find the appropriate parameters defining the project 
(making sure they are measurable in advance) 

 Measure these parameters 

 Deduce effort attributes through appropriate 
mathematical formula 

 

Best known model: COCOMO (B. W. Boehm)  

56 



Cost models: COCOMO 

Basic formula: 

 

 Effort = A * SizeB * M 
 

 Cost driver 
estimation 

For Size, use: 

 Action points  at stage 1 (requirements) 

 Function points at stage 2 (early design) 

 Function points and SLOC at stage 3 (post-architecture) 

2.94 
(early design) 

0.91 to 1.23 (depending on 
novelty, risk, process…) 

57 



COCOMO cost drivers (examples) 

Early design: 
 Product reliability & 

complexity 

 Required reuse 

 Platform difficulty 

 Personnel capability 

 Personnel experience 

 Schedule 

 Support facilities 

Postarchitecture: 
 Product reliability & complexity 

 Database size 

 Documentation needs 

 Required reuse 

 Execution time & storage 
constraints 

 Platform volatility 

 Personnel experience & 
capability 

 Use of software tools 

 Schedule 

 Multisite development 

58 



COCOMO cost drivers 

59 Source: Boehm, McConnell 



COCOMO cost drivers 

60 Source: Boehm, McConnell 



COCOMO cost drivers 

61 Source: Boehm, McConnell 



About cost models 

Easy to criticize, but seem to correlate well with measured 
effort in well-controlled environments 

 

Useful only in connection with long-running measurement 
and project tracking policy; cf CMMI, PSP/TSP 

 

Worth a try if you are concerned with predictability and 
cost control 

62 



Reliability models 

Goal: to estimate the reliability – essentially, the likelihood 
of faults – in a system.  

 

Basis: observed failures 

 

Source: hardware reliability studies; application to 
software has been repeatedly questioned, but the ideas 
seem to hold 

63 



Reliability models: basic parameters 

Interfailure times 

Average: Mean Time To Failure: MTTF 

 

Mean Time To Repair: MTTR 

 Do we stop execution to repair? 

 Can repair introduce new faults? 

 

Relability: R 

 

  
 R = 

 

MTTF 

1 + MTTF 

64 



MTTF: the AutoTest experience 

# bugs 
Class STRING 

Testing time 

Apparent shape (conjecture only): 

b = a - b / t  

65 



Reliability models 

Attempt to predict the number of remaining faults and 
failures 

Example: Motorola’s zero-failure testing 

 Failures (t) = a e-b (t) 

 

 

 

Zero-failure test hours:   

   [ln (f / (0.5 + f)] * h 
   ________________ 

   ln [(0.5 + f) / tf + f)]  

Testing hours to last failure 

Test failures so far 

Desired failure density (e.g. 1 
failure per 10,000 SLOC) 

66 

Failures 

Testing time 



Software metrics: methodological guidelines 

Measure only for a clearly stated purpose 

 

Specifically: software measures should be connected with 
quality and cost 

 

Assess the validity of measures through controlled, 
credible experiments 

 

Apply software measures to software, not people 

 

GQM (see below) 

67 



Metrics for software engineering 

An assessment: 

 Many software attributes are quantifiable 

 

 They include both project and product attributes 

 

 Models are available to estimate the values 

 

 Models and metrics are only useful as part of a long-
term measurement policy (see CMMI, PSP/TSP, but 
usable in many other contexts) 

 

 Tools are available to support the metrics and models 

68 


