ETH Ziirich

Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin
Nordio

ETH Zurich, February-May 2011

Lecture 12:
Metrics, Models
& Cost Estimation

O

©
Measurement

"To measure is to know"

"When you can measure what you are speaking about and
express it in numbers, you know something about it; but
when you cannot measure it, when you cannot express it
in numbers, your knowledge is of a meager and unsatisfactory kind; it may
be the beginning of knowledge, but you have scarcely in your thoughts
advanced to the state of Science, whatever the matter may be. “

"If you cannot measure it, you cannot improve it."
Lord Kelvin

"You can't control what you can’t measure”
Tom de Marco

‘Not everything that counts can be counted, and not
everything that can be counted counts.”

Albert Einstein (attributed)

Why measure software?

©

Understand issues of software development
Make decisions on basis of facts rather than opinions

Predict conditions of future developments

The purpose of this lecture

Learn techniques to
> Measure factors of interest, mostly
= Cost

= Faults

> Estimate these factors, in particular cost, in advance

Some estimation techniques

©

Count

Determine from goals

Use individual expert judgment
Use collective expert judgment
Rely on analogy

Estimate from proxies

Apply model

Decompose and recompose

. Calibration from historical data
10 Use tools

11. Combine approaches

VO N oA WN R

How good an estimator are you?

(From: Steve McConnell, Software Estimation, Microsoft Press, 2006)

For each of the following values, give a range that gives

you a 90% chance of containing the correct answer
Low High

Surface temperature of the sun (°C)

Latitude of Shanghai (degrees)

Area of the Asian continent (sg Am)

Year of Alexander the Great's birth

US currency in circulation, 2004 ($)

Total volume of Great Lakes (/iters or cubic km)

Worldwide box office receipts for Titanic ($)

Length of coastline of Pacific Ocean (Am)

Book titles published in US since 1776

Weight of heaviest blue whale recorded (tons)

Results

©

Some estimation techniques

©

Count

Determine from goals

Use individual expert judgment
Use collective expert judgment
Rely on analogy

Estimate from proxies

Apply model

Decompose and recompose

. Calibration from historical data
10 Use tools

11. Combine approaches

VO N oA WN R

Absolute and relative measurements

1402 Over/Under Percentage

0% - v > PR e B s e s 7 o 2L B

e ° o. » ° P 0..0~ oJ .~ .~...0.~..~....,..o.o -..nu o o e
. P ‘:‘ ": O.: ; - 0. @ :

A PUIE B A S

-140% 2 R
Without Historical Data With Historical Data
Variance between + 207% to - 1457% Variance between - 20% to + 20%
(Mostly Level 1 & 2) (Level 3)

(Based on 120 projects in Boeing Information Systems)

Reference: John D. Vu. ‘Software Process Improvement Journey:From Level 1 to Level 5.”
7th SEP& Conference, San Jose, March 1997.

Software metrics: methodological guidelines

©

Measure only for a clearly stated purpose

Specifically: software measures should be connected with
quality and cost

Assess the validity of measures through controlled,
credible experiments

Apply software measures to software, not people

GQM (see next)

GQM (Goal/Question/Metric) (Basili et al.)

©

Process for a measurement campaign:

1. Define goal of measurement
Analyze... with the purpose of ... the ... from the point
of view of ... in the context of ...

Example: Analyze testing phase with the purpose of
estimating the costs from the point of view of the
manager in the context of Siemens Train Division's
embedded systems group

2. Devise suitable set of questions
Example: do faults remain that can have major
safety impact?

3. Associate metric with every question

Example: software quality

External quality factors:
> Correctness
» Robustness
» Ease of use
> Security
> ...

Compare:
> "This program is much more reliable than the previous
development”

> "There are 67 outstanding faults, of which 3 are
‘blocking’ and 12 "serious’. The new fault rate for the
past three months has been two per week.”

What to measure in software:

examples

Effort measures
> Development time
> Team size
» Cost

Quality measures
» Number of failures
» Number of faults
» Mean Time Between Failures

©
Difficulty of cost control

Many industry projects late and over budget, although
situation is improving

Cost estimation still considered black magic by many; does
it have to be?

 Source: van Gehuchten (1991)
- Average overrun: 22 7%

— == . = | Note: widely cited Standish ’

-5 25 TH 125 225 325 425 525

PERGENTAGE OF EFFORT OVERRUN ‘Chaos” report has been

Fig. 1. Distribution of relative effort overruns 71)
) shown not to be credible
- J

©
Difficulty of effort measurement: an example

(after Ghezzi/Jazayeri/Mandrioli)
Productivity:

> Software professional: a few tens of lines of code
per day

» Student doing project: much morel

Discrepancy due to: other activities (meetings,
administration, ...); higher-quality requirements; application
complexity; need to understand existing software
elements; communication time in multi-person development;
higher standards (testing, documentation).

)
Effort measurement

Standard measure: person-month (or "man-month")

Even this simple notion is not without raising difficulties:
> Programmers don't just program

> mpersons x #months is not
inferchangeable with
n persons x mmonths

Brooks: "The Mythical Man-Month"

MYTHICA L
MAN-MONTH

16

Project parameters

©

Elements that can be measured in advance, to be fed into
cost model

Candidates:

» Lines of code (LOC, KLOC, SLOC..) and other internal
measures

> Function points, application points and other external
measures

Some metrics apply to all programs, others to O-O
programs only

Complexity models

Aim: estimate complexity of a software system

Examples:
> Lines of code
» Function points

> Halstead's volume measure: N log n, where N is
program length and n the program vocabulary
(operators + operands)

> McCabe's cyclomatic humber: C=e-n+ 2 p, wheren
is number of vertices in control graph, e the number
of edges, and p the number of connected components

Traditional internal code metrics

©

Source Lines of Code (SLOC)
Comment Percentage (CP)

McCabe Cyclomatic Complexity (CC)

Source lines of code (SLOC)

Definition: count number of lines in program

Conventions needed for: comments; multi-line instructions; control
structures; reused code.

Pros as a cost estimate parameter:

> Appeals to programmers
»Fairly easy to measure on final product
»Correlates well with other effort measures

Cons:
> Ambiguous (several instructions per line, count comments or not ...)

»Does not distinguish between programming languages of various
abstraction levels

»Low-level, implementation-oriented
> Difficult to estimate in advance.

20

Source lines of code

©

A measure of the number of physical lines of code

Different counting strategies:
> Blank lines
> Comment lines
> Automatically generated lines

EiffelBase has 63,474 lines, Vision2 has 153,933 lines,
EiffelStudio (Windows GUI) has 1,881,480 lines in all
compiled classes.

Code used in examples given here and below are got from revision
68868 in Origo subversion server.

“)
Comment percentage

Ratio of the number of commented lines of code divided by
the number of non-blank lines of code.

Critique:
If you need to comment your code, you better refactor it.

©

Software Metrics

using EiffelStudio

With material by

Vi Wei & Marco Piccioni

May 2011

What to measure

Product properties
> Lines of Code
> Number of classes
» Cohesion & Coupling
» Conformance of code to OO principles

Process properties
» Man-month spent on software
> Number of bugs introduced per hour
> Ratio of debugging/developing time
> CMM, PSP

(@ Metrics tool in EiffelStudio

©

A code quality checking tool with seamlessly working style:

Coding - Metricing - Problem solving - Coding

Highly customizable:

Define your own metrics to match particular
requires

Meftric archive comparison:
Compare measurement of your software to others

Automatic metric quality checking:
Get warned when some quality criterion are not met

(@ Metrics tool: evaluate metric

Metric Evaluation |Detailed Result || Metrie Definition || Metrie History || Metrie Archiwe

.- Value: 10 @ Iﬂ h 4 L% ﬂ

Setup input domain: Select metric:
4 Metrics ""’*

|;.T|r-:u:-t_clu5ter =] @ Class
m_base — @y Classes
Blinet —@Clients
|j_time —EpCompiled classes
m_web —EpDeferred claszes

—F Dependent =

—Eplescendant =

—EpEffective clazses
—p Expanded classes
—EpFrozen classes
—p]Feneric classes
—Helrs
—p]Indirect clients
—EpIndirect heirs
—EpIndirect parents

—mm Indirect suppliers
[PP
T)

P . a |

Y fl & X & [Group

[@ Metrics tool: investigate result

Metric Evaluation | Detailed Result Metriec Definition | Metric Historw | Metrie Archiwve

Metric name: Classes Type: [Basic nit: @ Cla=s Valne: 3TT El 7
Input domain:
ﬁrnnt_cluster m_base Ij_net Ij_ time Ij_web
Results: O
Class * Location ~
gk HTML_TAELE web. table
¢k HTML TARLE COHSTANTS web. table
g STOIH web. stdio
@ STDOUT web. stdia
SHARED STIOUT web. stdio
SHARED STIIH web. stdio
@k HTML_FAGE web. hitml
HIML_TEXT web. himl
HIML _GEHERATOE web. hitml
HIML_COHSZTANTZ web. himl
HTML web. himl 3

27

(@ Metrics tool: define new metric

©

Metric Evaluatinn] Detailed Result Metric Definition |Metrie History | Metric Archive

i

W ®E A

Select metric:

& Metrics

@ Cla==

—Classes
—izClient =
—Compiled claszes
—mj]]eferred classes
— Dependent =
—Descendant s
—iEffective clazzes
— i Expanded claszes
— Frozen claszes
—iayTeneric claszes

—Indirect clients

—Indirect heirs

—Indirect parents

—Indirect zuppliers

— Inwariant Equipped clazses
—Obsolete claszes

—izy P arent =

— i Suppliers -

o

—ﬁm]‘[eirs 1

[G oup

Hame: Unnamed class metric#3

Type: mBasic

Tnit:

@ Class=

Dlescription

Definition:

Criterion Froperties

= W oor
|—H- 1=_obzsolete
L not

'“'_I\ indexing_contain
¥ indexing has_tag
e indirect_heir iz
.':',,, indirect_parent_is
iz alwaws compiled

% i1s_compiled
15 _deferred
M1z _effective
Expres: gm is_erum

iz ohz # 1=_expanded
- # 1= _external
M 15 _frozen
& Sta B 15 generic

28

[@ Metrics tool: metric History

Metric Evaluatil:-n] Detailed Result] Metric Definition Metric History lMetric ﬁ.rn:hive]

" ﬂ ﬂj] AT ﬁ Hiiu| [v Hide archiwes more than IF days old. | Select A11 Deselect A1l Select Recaleulatable Deselect Recalenlatable
* Metric name | | Current walue | Frevious walue | Difference | Filter | Bezult | Calculated time | Input domain

I---”']Um:u:ummented features " |1] 1 D |.ﬁ 05/26,/2007 §:24:52 311 PN ‘.;| zample

[JFeatures A 62 - - O D5/26/2007 7:19:39.559 AM | gsample

[Classes A |2 - - O 05/26/2007 T:19:40. 375 AM | osample

[JClaszes Ay 242 - - [05/26/2007 T:40:30. 734 AM [j) base

29

(@ Metrics tool: archive

©

Metric Ewaluation | Detailed Eesult

Archive Management

Metrie Definition | Metrie History | Metric Archiwve

4 Location: |20 imy_archive xml

Setup input domain:

Select metric:

il

A WNetries “
ﬂrunt_cluster -] g Class
— fFmClasses
—] fFClients
— v grCompiled cla. .
— || grpleferred cla. ..
— g lependents
— || Gy lezcendants
— |+ fmEtfective ol ..
— v Gy Expanded cla. ..
— i Frozen claszes o
£ >
% [22 | /1) Group

Archive Comparison

Selert reference archive (URL acceptablel:

Select current archiwve (UEL acceptable]:

-
il

30

McCabe cyclomatic complexity

A measure based on a connected graph of the module
(shows the topology of control flow within the program)

Definition
M= E- N+ P where
M = cyclomatic complexity
£ = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components.

Example of cyclomatic complexity

©

if condition then
code 1
else

code 2
end

External metric: function points

Definition: one end-user business function
Five categories (and associated weights):
Inputs (4)

Outputs (5)

Inquiries (4)

Files (10)

Interfaces to other systems (7)

YV V V VYV V

Pros as a cost estimate parameter:

> Relates to functionality, not just implementation

» Experience of many years, ISO standard

> Can be estimated from design

> Correlates well with other effort measures
Cons:

> Oriented towards business data processing

> Fixed weights

33

Application points

©

Definition: high-level effort generators
Examples: screen, reports, high-level modules
Pro as a cost estimate parameter:

> Relates to high-level functionality

> Can be estimated very early on
Con:

» Remote from actual program

Some metrics for O-O programs

©

Weighted Methods Per Class (WMC)

Depth of Inheritance Tree of a Class (DIT)
Number of Children (NOC)

Coupling Between Classes (CBO)

Response for a Class (RFC)

'c
Weighted methods per class ’

Sum of the complexity of each feature contained in the
class.

Feature complexity: (e.g. cyclomatic complexity)
When feature complexity assumed to be 1,
WMC = number of features in class

In Eiffel base, there are 5,341 features,
In Vision2 (Windows), there are 10,315 features,

In EiffelStudio (Windows GUI), there are 89,630
features.

36

Depth of inheritance tree of a class

Length of the longest path of inheritance ending at the

current module

CONTAINER [G]

£
CURSOR_
SEQUENCE[G] STRUCTURE
[G]

*
INDEXABLE
[G, H -> INTEGER]

% o4

for CHAIN, DIT=7

Number of children

©

Number of immediate subclasses of a class.

In Eiffel base, there are 3 classes which have more than
10 immediate subclasses:

ANY
COMPARABLE
HASHABLE

And of course, ANY has most children.

38

_ ©
Coupling between classes

Number of other classes to which a class is coupled, i.e.,
suppliers of a class.

In Eiffel base, there are 3 classes which directly depend
on more than 20 other classes, they are:

STRING_8
STRING_32
TUPLE

Class SED_STORABLE_FACILITIES indirectly depends
on 91 other classes.

39

Response for a class (RFC)

©

Number of features that can potentially be executed in
a feature, i.e., transitive closure of feature calls.

foo do
bar
end = g
foo —> bar - .
bar
r1
2 RFC=3

end

Cost estimation techniques

(This part of the material comes for a large
part from Steve McConnell, Sofware
Estimation, Microsoft Press, 2006, and B.W.
Boehm et al., Software Cost Estimation with
Cocomo II, Addison-Wesley, 2000)

. . O
Estimating costs

Any estimate has an associated probability

A typical probability distribution:

o A
100% Nominal outcome (50/50 esTimaTe)

N
7

From: McConnell Schedule, cost or effort

©
The cone of uncertainty

4
, Approved; definition
s Requirements Precision
\’i design . .
1.25 — Detailed; design
1 ——
0.67 7
0.5
0.25
Time

After: Boehm, McConnell 43

Limits to the cone model

©

You get a cone that narrows itself (not a cloud) only if the

project is well controlled and the estimates are regularly
and effectively updated.

With these qualifications, the cone model is superior to
single-point estimates

Sources of uncertainty

©

1 The development process
2 Unstable requirements

3 Unaccounted activities

4 Optimism

5 Bias

6 Unsupported precision

Using individual expert judgment 7

Practical advice:
> Never use of f-the-cuff estimate
> Require low and high estimates
> Require decomposition o

100% Estimates o

individual i
80% -

‘ : Estimates |
B0% :
40% ’ o o : . . 5

20%
Error

[T A A A t
9 1011121314 151617 18 19 20 21 22 23 24

[t
[

(e
e
o -
P
oo -
o -

Estimation Group

Source: McConnell

46

Using group judgment

Techniques:
> Individual first, then compare
> Discuss differences (do not just compute average)
> Arrive at consensus

Wideband Delphi (Boehm)

The Delphi coordinator presents each estimator with the specification and an estimation
form.

Estimators prepare initial estimates individually. (Optionally, this step can be performed
after step 3.)

The coordinator calls a group meeting in which the estimators discuss estimation issues
related to the project at hand. If the group agrees on a single estimate without much
discussion, the coordinator assigns someone to play devil's advocate.

Estimators give their individual estimates to the coordinator anonymously.

The coordinator prepares a summary of the estimates on an iteration form (shown in

Figure 13-2) and presents the iteration form to the estimators so that they can see how
their estimates compare with other estimators’ estimates.

The coordinator has estimators meet to discuss variations in their estimates.

Estimators vote anonymously on whether they want to accept the average estimate. If
any of the estimators votes "no," they return to step 3.

The final estimate is the single-point estimate stemming from the Delphi exercise. Or,
the final estimate is the range created through the Delphi discussion and the single-
point Delphi estimate is the expected case.

48

Effectiveness of Wideband Delphi (McConnell) 7

700% = Delphi
£00% Estimates L 2 .
500%] | @ Oroup
: Averages
400% -

Error 30094 =

200% oA

100% g

0% =¢

~100% oy oge S

B N
1011121314 151617 18192021 2223 242

et e
) e
WA
S

Estimation Group

Figure 13-4 Estimation accuracy of simple averaging compared to Wideband Delphi
estimation. Wideband Delphi reduces estimation error in about two-thirds of cases.

Source: McConnell

49

Effectiveness of Wideband Delphi (McConnell) 7

12000 =y

1100% 1 = Delphi Estimates
1000% -4 4 Group Averages

800% -~

700% -

Error 600% A

500% -1

A00% 4o
300% -

200% - -

100%

0% Ao

Estimation Group

Figure 13-5 Wideband Delphi when applied to terrible initial estimates. In this data set,
Wideband Delphi improved results in 8 out of 10 cases.

Source: McConnell

50

Decompose and recompose

©

Basic idea: find a division of the task into subtasks
(function-based or step-based), estimate the subtasks,
and combine the results.

Advantage: errors may compensate each other
Risk: accumulation of optimistic estimates

Advice: enforce best-case and worst-case estimate for
each subtask

Estimation by analogy

Steps:
» 1 Get detailed data (size, effort, cost) for similar
project
> 2 Compare size of old and new projects (measures:

tables, screens, Web pages, reports, clusters,
classes...)

> 3 Estimate size of new project

> 4 Estimate effort (or other parameter) for new
project

> B Check for inconsistent comparison assumptions

Estimation by proxy

Examples of proxies:

> Screens

> Static Web pages

> Dynamic Web pages

> (Relational) database pages

> Reports

> Business rules

> Story points (requirements features)
Estimating proxy values’: "T-Shirt sizing"

53

©
The cone of uncertainty

4
, Approved; definition
s Requirements Precision
\’i design . .
1.25 — Detailed; design
1 ——
0.67 7
0.5
0.25
Time

After: Boehm, McConnell 54

Cost models

©

How do you estimate the cost of a project, before
starting the project?

55

Cost models

Purpose: estimate in advance the effort attributes
(development time, team size, cost) of a project

Problems involved:

> Find the appropriate parameters defining the project
(making sure they are measurable in advance)

> Measure these parameters

> Deduce effort attributes through appropriate
mathematical formula

Best known model: COCOMO (B. W. Boehm)

56

Cost models: COCOMO

0.91 to 1.23 (depending on
novelty, risk, process..)

Basic formula:

Effort= A+ Sizél« M

2.94
(early design)

cost driver
estimation

For Size, use:
> Action points at stage 1 (requirements)
> Function points at stage 2 (early design)
> Function points and SLOC at stage 3 (post-architecture)

57

COCOMO cost drivers (examples)

Early design:

> Product reliability &
complexity

> Required reuse

> Platform difficulty

> Personnel capability
> Personnel experience
> Schedule

> Support facilities

Postarchitecture.
> Product reliability & complexity
> Database size
» Documentation needs
> Required reuse

> Execution time & storage
constraints

> Platform volatility

> Personnel experience &
capability

> Use of software tools

> Schedule

> Multisite development

58

COCOMO cost drivers

Very Very Extra
Factor Low Low Nominal High High High Influence
Applications (Business 1.22 1.10 100 088 0381 151
Area) Experience
Database Size 080 100 114 1.28 142
Developed for 095 100 107 115 124 1.31
Reuse
Extent of 0.81 091 1.00 111 123 1.52
Documentation Required
Language and Tools 1.20 109 1.00 091 0384 143
Experience
Multisite Development 1.22 109 1.00 093 086 078 1.56
Personnel Continuity 1.29 112 1.00 poc 081 1.59
{turnover)
Platform Experience 1.19 109 100 091 085 1.40
Platform Volatility 087 100 115 130 1.49
Product Complexity 0.73 087 100 117 134 174 2.38
Programmer Capability 134 115 100 088 076 1.76
(general)
Required Software 0.82 092 100 110 126 1.54
Reliability
Requirements Analyst 1.42 119 100 085 071 2.00
Capability
Storage Constraint 1.00 1.05 117 146 1.46
Time Constraint 1.00 111 129 163 163
Use of Software Tools 117 109 1.00 080 078 1.50

Source: Boehm, McConnell 59

COCOMO cost drivers

©

Programmer Capability (General) g

Time Constraint {163

Personnel Continuity (Turnover) {1

Multisite Development i;-"}

Required Software Reliability iii ’

yomarorsem

Extent of Documentation Required

Applications (Business Area) Experience

Use of Software Tools ii{i,g

Platform Volatility [.1.4

Storage Constraint ;:1153;'413"

Process Maturity {5
Language and Tools Experience e
Database Size

Platform Experience

Architecture and Risk Resolution |1, 3

Precedentedness | 133 .

Developed for Reuse

Team Cohesion & 1,

Development Flexibility {126

Source: Boehm, McConnell

60

COCOMO cost drivers N

Product Complexty b

Requirements Analyst Capability

Programmer Capability (Genetal) [

Time Constraint

. - [e
Personnel Continuity (Turnover) &

Multi-Site Development L

Required Software Reliability

Bdent of Documentation Required i

H
L

Applications {Business Area) Bperience

Use of Software Tools

Platform Bxperience |

Architecture and Risk Resolution g g

Development Flewbility . =

Source: Boehm, McConnell o1

)
About cost models

Easy to criticize, but seem to correlate well with measured
effort in well-controlled environments

Useful only in connection with long-running measurement
and project tracking policy; cf CMMI, PSP/ TSP

Worth a try if you are concerned with predictability and
cost control

Reliability models

Goal: to estimate the reliability - essentially, the likelihood
of faults - in a system.

Basis: observed failures

Source: hardware reliability studies; application to

software has been repeatedly questioned, but the ideas
seem to hold

63

Reliability models: basic parameters

Interfailure times
Average: Mean Time To Failure: MTTF

Mean Time To Repair: MTTR
> Do we stop execution to repair?
> Can repair infroduce new faults?

Relability: R

MTTF

1+ MTTF

MTTEF:

the AutoTest experience

A Class STRING

bugs |
///

=

Humber of bu

A———
Testing time

Apparent shape (conjecture only):
b=a-b/t1

65

Reliability models

Attempt to predict the number of remaining faults and

failures A Failures
Example: Motorola's zero-failure testing \
Failures (1) = ae™®)

=
Testing time

Desired failure density (e.g. 1
failure per 10,000 SLOC)

Testing hours to last failur'eJ

Zero-failure test hours:
[In(f/ (05 +f)]*h

In [(0.5 +) / tf +)]

[Ebfailures so far]

Software metrics: methodological guidelines

©

Measure only for a clearly stated purpose

Specifically: software measures should be connected with
quality and cost

Assess the validity of measures through controlled,
credible experiments

Apply software measures to software, not people

GQM (see below)

Metrics for software engineering

An assessment:
> Many software attributes are quantifiable

> They include both project and product attributes
> Models are available to estimate the values

> Models and metrics are only useful as part of a long-
term measurement policy (see CMMI, PSP/TSP, but
usable in many other contexts)

> Tools are available to support the metrics and models

68

