
Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 15: Design by Contract
and exception handling

2

Topics

Part 1: Key concepts

Part 2: Contracts & documentation

Part 3: Contracts & testing

Part 4: Contracts & analysis, methodological notes

Part 5: Contracts & inheritance

Part 6: Contracts & loops

Part 7: Handling abnormal cases

Part 8: Contracts in various languages

Part 9: New developments

Part 10: Conclusion

- 1 –

Overview of the
requirements task

- 1 -

Key concepts

3

4

Design by Contract

A discipline of analysis, design, implementation,
management

Applications throughout the software lifecycle:

 Getting the software right: analysis, design ,
implementation

 Debugging & testing

 Automatic documentation

 Getting inheritance right

 Getting exception handling right

 Maintenance

 Management

5

Background

Work on ―axiomatic semantics‖:

 R.W. Floyd (1967)

 C.A.R. Hoare (1969, 1972)

 E.W. Dijkstra (1978)

1970’s languages: CLU, Alphard

Eiffel (from 1985): connection with object technology

90s and onward: contract additions to numerous languages:
C++, Java, C#, UML

6

Design by Contract

Every software element is intended to satisfy a certain
goal, or contract

 for the benefit of other software elements (and
 ultimately of human users)

The contract of any software element should be

 Explicit

 Part of the software element itself

7

The three questions

 What does it expect?

 What does it promise?

 What does it maintain?

Precondition

Postcondition

Class
invariant

8
8

Contracting components

Definition of what each element of the functionality:

 Expects (precondition)

 Promises (postcondition)

 Maintains (invariant)

Does not have to be complete (but wait)

9
9

What we do with contracts

Write better software
Analyze
Design
Reuse
Implement
Use inheritance properly
Avoid bugs
Document software automatically
Help project managers do their job

Perform systematic testing

Guide the debugging process

(with run-time monitoring)

10

With and without contracts

.Net collections
library

EiffelBase

with Karine Arnout

(IEEE Computer)

11

Software construction consists of building
systems as structured collections of
cooperating software elements — suppliers
and clients — cooperating on the basis of
clear definitions of obligations and benefits

These definitions are the contracts

The underlying view

12

Correctness in software

Correctness is a relative notion: consistency of
implementation vis-à-vis specification.

Basic notation: (P, Q : assertions, i.e. properties of the
state of the computation. A : instructions).

{P } A {Q }

―Hoare triple‖

What this means (total correctness):

 Any execution of A started in a state satisfying P
will terminate in a state satisfying Q.

13

Hoare triples: a simple example

 {n > 5} n := n + 9 {n > 13}

Most interesting properties:

 Strongest postcondition (from given precondition).

 Weakest precondition (from given postcondition).

―P is stronger than or equal to Q ‖ means:

 P implies Q

QUIZ: What is the strongest possible assertion? The
weakest?

14

A contract (from EiffelBase)

 extend (new : G; key : H)

 -- Assuming there is no item of key key,
 -- insert new with key ; set inserted.

 require

 key_not_present: not has (key)

 ensure

 insertion_done: item (key) = new

 key_present: has (key)

 inserted: inserted

 one_more: count = old count + 1

15

Software correctness (another quiz)

Consider

{P } A {Q }

Take this as a job ad in the classifieds

Should a lazy employment candidate hope for a weak or
strong P ? What about Q ?

Two ―special offers‖:

 1. {False} A {...}

 2. {...} A {True}

16

Properties of human contracts

A contract:

 Binds two parties (or more): supplier, client

 Is explicit (written)

 Specifies mutual obligations and benefits

 Usually maps obligation for one of the parties into
benefit for the other, and conversely

 Has no hidden clauses: obligations are those
specified

 Often relies, implicitly or explicitly, on general rules
applicable to all contracts: laws, regulations,
standard practices

17

A human contract

Client

Supplier

 (Satisfy precondition:)

Bring package before 4
p.m.; pay fee.

(Satisfy postcondition:)

Deliver package by 10
a.m. next day.

OBLIGATIONS

(From postcondition:)

Get package delivered by
10 a.m. next day.

(From precondition:)

Not required to do
anything if package
delivered after 4 p.m.,
or fee not paid.

BENEFITS deliver

18

Properties of human contracts

A contract:

 Binds two parties (or more): supplier, client

 Is explicit (written)

 Specifies mutual obligations and benefits

 Usually maps obligation for one of the parties into
benefit for the other, and conversely

 Has no hidden clauses: obligations are those
specified

 Often relies, implicitly or explicitly, on general rules
applicable to all contracts: laws, regulations,
standard practices

19

deferred class VAT inherit

 TANK

feature

 in_valve, out_valve : VALVE

 fill
 -- Fill the vat.
 require
 in_valve.open
 out_valve.closed
 deferred
 ensure
 in_valve.closed
 out_valve.closed
 is_full
 end

 empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant

 is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Contracts for analysis, specification

Precondition

Specified, but not
implemented

Postcondition

Class invariant

20

Contracts for analysis

Client

Supplier

 (Satisfy precondition:)

Make sure input valve is
open, output valve closed

(Satisfy postcondition:)

Fill the tank and close
both valves

OBLIGATIONS

(From postcondition:)

Get filled-up tank, with
both valves closed

(From precondition:)

Simpler processing
thanks to assumption
that valves are in the
proper initial position

BENEFITS fill

21

“So, it’s like assert.h?”

Design by Contract goes further:

 ―Assert‖ does not provide a contract

 Clients cannot see asserts as part of the interface

 Asserts do not have associated semantic
specifications

 Not explicit whether an assert represents a
precondition, post-conditions or invariant

 Asserts do not support inheritance

 Asserts do not yield automatic documentation

Source: Reto Kramer

22

A class without contracts

class
 ACCOUNT
feature -- Access

 balance : INTEGER
 -- Balance

 Minimum_balance: INTEGER = 1000
 -- Lowest permitted balance

feature {NONE } -- Deposit and withdrawal

Secret
features

add (sum : INTEGER)
 -- Add sum to the balance.
 do
 balance := balance + sum
 end

23

A class without contracts

feature -- Deposit and withdrawal operations

 deposit (sum : INTEGER)
 -- Deposit sum into the account.
 do
 add (sum)
 end

 withdraw (sum : INTEGER)
 -- Withdraw sum from the account.
 do
 add (– sum)
 end

 may_withdraw (sum : INTEGER): BOOLEAN
 -- Is it permitted to withdraw sum from the account?
 do
 Result := (balance - sum >= Minimum_balance)
 end
end

Value returned
by function

24

Introducing contracts

class

 ACCOUNT
create

 make

feature {NONE } -- Initialization
 make (initial_amount: INTEGER)
 -- Set up account with initial_amount.

 require

 large_enough: initial_amount >= Minimum_balance

 do
 balance := initial_amount

 ensure

 balance_set: balance = initial_amount

 end

25

Introducing contracts

feature -- Access

 balance: INTEGER
 -- Balance

 Minimum_balance : INTEGER = 1000
 -- Lowest permitted balance

feature {NONE} -- Implementation of deposit and withdrawal

 add (sum : INTEGER)
 -- Add sum to the balance.
 do
 balance := balance + sum
 ensure

 increased: balance = old balance + sum
 end

26

Introducing contracts

feature -- Deposit and withdrawal operations

 deposit (sum : INTEGER)
 -- Deposit sum into the account.

 require

 not_too_small: sum >= 0

 do
 add (sum)
 ensure

 increased: balance = old balance + sum

 end

Precondition

Postcondition

27

Introducing contracts

 withdraw (sum : INTEGER)
 -- Withdraw sum from the account.
 require

 not_too_small: sum >= 0

 not_too_big: sum <= balance – Minimum_balance

 do
 add (–sum)

 -- i.e. balance := balance – sum
 ensure

 decreased: balance = old balance - sum

 end

Value of balance, captured
on entry to routine

Precondition

Postcondition

28

The imperative and the applicative

do

 balance := balance - sum

ensure

 balance = old balance - sum

 PRESCRIPTIVE DESCRIPTIVE

 How?

 Operational

 Implementation

 Command

 Instruction

 Imperative

 What?

 Denotational

 Specification

 Query

 Expression

 Applicative

29

The contract

Client

Supplier

 (Satisfy precondition:)

Make sure sum is neither
too small nor too big

(Satisfy postcondition:)

Update account for
withdrawal of sum

OBLIGATIONS

(From postcondition:)

Get account updated with
sum withdrawn

(From precondition:)

Simpler processing: may
assume sum is within
allowable bounds

BENEFITS withdraw

30

Introducing contracts

 may_withdraw (sum : INTEGER): BOOLEAN
 -- Is it permitted to withdraw sum from account?

 do
 Result := (balance - sum >= Minimum_balance)
 end

invariant

 not_under_minimum: balance >= Minimum_balance

end

31

The class invariant

Consistency constraint applicable to all instances of a
class.

Must be satisfied:

 After creation
 After execution of any feature by any client

 Qualified calls only: x.f (...)

32

The correctness of a class

For every creation procedure cp :

{Precp } docp {INV and Postcp }

For every exported routine r :

{INV and Prer } dor {INV and Postr }

x.f (…)

x.g (…)

x.h (…)

create x.make (…)

S1

S2

S3

S4

33

Lists in EiffelBase

Cursor

item

index

count 1

forth back

finish start

after before

"Zurich"

34

Moving the cursor forward

Cursor

index

forth

count 1

after before

"Zurich"

35

Two queries, and command forth

36

The contract language

Language of boolean expressions (plus old):

 No predicate calculus (i.e. no quantifiers,  or ).

 Function calls permitted (e.g. in a STACK class):

put (x : G)

 -- Push x on top of stack.

 require

 not is_full

 do

 …

 ensure

 not is_empty

 end

remove

 -- Pop top of stack.

 require

 not is_empty

 do

 …

 ensure

 not is_full

 end

37

The correctness of a class

For every creation procedure cp :

{Precp } docp {INV and Postcp }

For every exported routine r :

{INV and Prer } dor {INV and Postr }

x.f (…)

x.g (…)

x.h (…)

create x.make (…)

S1

S2

S3

S4

38

A slightly more sophisticated version

balance = deposits.total – withdrawals.total

deposits

withdrawals

balance

(A2)

39

class
 ACCOUNT
create
 make
feature {NONE} – Implementation

 add (sum : INTEGER)
 -- Add sum to the balance.
 do
 balance := balance + sum
 ensure
 balance_increased: balance = old balance + sum
 end

 deposits : DEPOSIT_LIST

 withdrawals : WITHDRAWAL_LIST

New version

40

feature {NONE } -- Initialization
 make (initial_amount: INTEGER)
 -- Set up account with initial_amount.
 require
 large_enough: initial_amount >= Minimum_balance
 do
 balance := initial_amount

 create deposits.make

 create withdrawals.make
 ensure
 balance_set: balance = initial_amount
 end
feature -- Access

 balance: INTEGER
 -- Balance
 Minimum_balance: INTEGER = 1000

 -- Minimum balance

New version

41

New version

feature -- Deposit and withdrawal operations

 deposit (sum : INTEGER)
 -- Deposit sum into the account.
 require
 not_too_small: sum >= 0
 do
 add (sum)

 deposits.extend (create {DEPOSIT }.make (sum))

 ensure
 increased: balance = old balance + sum

 one_more: deposits.count = old deposits.count + 1
 end

42

New version

 withdraw (sum : INTEGER)
 -- Withdraw sum from the account.
 require

 not_too_small: sum >= 0
 not_too_big: sum <= balance – Minimum_balance
 do

 add (– sum)

 withdrawals.extend (create {WITHDRAWAL}.make (sum))

 ensure
 decreased: balance = old balance – sum
 one_more: withdrawals.count = old withdrawals.count + 1
 end

43

New version

 may_withdraw (sum : INTEGER): BOOLEAN
 -- Is it permitted to withdraw sum from account?

 do
 Result := (balance - sum >= Minimum_balance)
 end

invariant

 not_under_minimum: balance >= Minimum_balance

 consistent: balance = deposits.total – withdrawals.total

end

44

The correctness of a class

For every creation procedure cp :

{Precp } docp {INV and Postcp }

For every exported routine r :

{INV and Prer } dor {INV and Postr }

x.f (…)

x.g (…)

x.h (…)

create x.make (…)

S1

S2

S3

S4

45

The new representation

balance = deposits.total – withdrawals.total

deposits

withdrawals

balance

(A2)

46

feature {NONE } – Initialization

 make (initial_amount : INTEGER)
 -- Set up account with initial_amount.
 require
 large_enough: initial_amount >= Minimum_balance
 do

 create deposits.make

 create withdrawals.make

 balance := initial_amount

 ensure
 balance_set: balance = initial_amount
 end

Getting it right

deposit (initial_amount)

What’s wrong with this?

47

Design by contract: some applications

Getting the software right

Getting object-oriented development right: exceptions,
inheritance…

Analysis and design

Automatic documentation

Project management

Maintenance

Testing and debugging

- 1 –

Overview of the
requirements task

- 2 -

Contracts & documentation

48

49

Contracts for documentation

Contract view of a class: simplified form of class text,
retaining interface elements only:

 Remove any non-exported (private) feature

For the exported (public) features:

 Remove body (do clause)

 Keep header comment if present

 Keep contracts: preconditions, postconditions, invariant

 Remove any contract clause that refers to a secret
feature

 (This raises a problem; can you see it?)

50

class
 ACCOUNT
create
 make
feature {NONE } – Implementation

 add (sum : INTEGER)
 -- Add sum to the balance.
 do
 balance := balance + sum
 ensure
 balance_increased: balance = old balance + sum
 end

 deposits : DEPOSIT_LIST

 withdrawals : WITHDRAWAL_LIST

The code (reminder)

51

feature {NONE } -- Initialization
 make (initial_amount: INTEGER)
 -- Set up account with initial_amount.
 require
 large_enough: initial_amount >= Minimum_balance
 do
 balance := initial_amount

 create deposits.make

 create withdrawals.make
 ensure
 balance_set: balance = initial_amount
 end
feature -- Access

 balance: INTEGER
 -- Balance
 Minimum_balance: INTEGER = 1000

 -- Minimum balance

The code (reminder)

52

The code (reminder)

feature -- Deposit and withdrawal operations

 deposit (sum : INTEGER)
 -- Deposit sum into the account.
 require
 not_too_small: sum >= 0
 do
 add (sum)

 deposits.extend (create {DEPOSIT }.make (sum))

 ensure
 increased: balance = old balance + sum

 one_more: deposits.count = old deposits.count + 1
 end

53

The code (reminder)

 withdraw (sum : INTEGER)
 -- Withdraw sum from the account.
 require

 not_too_small: sum >= 0
 not_too_big: sum <= balance – Minimum_balance
 do

 add (– sum)

 withdrawals.extend (create {WITHDRAWAL}.make (sum))

 ensure
 decreased: balance = old balance – sum
 one_more: withdrawals.count = old withdrawals.count + 1
 end

54

The code (reminder)

 may_withdraw (sum : INTEGER): BOOLEAN
 -- Is it permitted to withdraw sum from account?

 do
 Result := (balance - sum >= Minimum_balance)
 end

invariant

 not_under_minimum: balance >= Minimum_balance

 consistent: balance = deposits.total – withdrawals.total

end

55

Contract view

class interface ACCOUNT create
 make
feature
 balance: INTEGER
 -- Balance

 Minimum_balance : INTEGER = 1000
 -- Minimum balance

 deposit (sum: INTEGER)
 -- Deposit sum into the account.
 require
 not_too_small: sum >= 0
 ensure
 increased: balance = old balance + sum

56

Contract view (continued)

 withdraw (sum: INTEGER)
 -- Withdraw sum from the account.
 require
 not_too_small: sum >= 0
 not_too_big: sum <= balance – Minimum_balance
 ensure
 decreased: balance = old balance – sum

 may_withdraw (sum: INTEGER): BOOLEAN
 -- Is it permitted to withdraw sum from the account?

invariant
 not_under_minimum: balance >= Minimum_balance
end

57

Documenting a program

Who will do the program documentation (technical
writers, developers) ?

How to ensure that it doesn’t diverge from the code (the
reverse Dorian Gray syndrome) ?

The Single Product principle

The product is the software

58

Export rule for preconditions

In

some_property must be exported!

No such requirement for postconditions and invariants.

feature

 r (…)

 require

 some_property

59

Flat, interface

Flat view of a class: reconstructed class with all the
features at the same level (immediate and inherited).
Takes renaming, redefinition etc. into account.

The flat view is an inheritance-free client-equivalent form
of the class.

Interface view : the contract view of the flat view. Full
interface documentation.

- 1 –

Overview of the
requirements task

- 3 -

Contracts and testing

60

61
61

Contracts for testing

Contracts provide the right basis:

 A fault is a discrepancy between intent and reality

 Contracts describe intent

A contract violation always signals a fault:

 Precondition: in client

 Postcondition or invariant: in routine (supplier)

In EiffelStudio: select compilation option for contract
monitoring at level of class, cluster or system.

62

A contract violation is not a special case

For special cases

 (e.g. ―if the sum is negative, report an error...‖)

use standard control structures, such as if ... then ... else...

A run-time assertion violation is something else: the
manifestation of

A DEFECT (―BUG‖)

63

Contracts: run-time effect

Compilation options (per class, in Eiffel):

 No assertion checking

 Preconditions only

 Preconditions and postconditions

 Preconditions, postconditions, class invariants

 All assertions

64

Contracts for testing and debugging

Contracts express implicit assumptions behind code
 A bug is a discrepancy between intent and code
 Contracts state the intent!

In EiffelStudio: select compilation option for run-time
contract monitoring at level of:

 Class
 Cluster
 System

May disable monitoring when releasing software
A revolutionary form of quality assurance

65

Contract monitoring

 Enabled or disabled by compile-time options.

 Default: preconditions only.

 In development: use ―all assertions‖ whenever
possible.

 During operation: normally, should disable monitoring.
But have an assertion-monitoring version ready for
shipping.

 Result of an assertion violation: exception.

Ideally: static checking (proofs) rather than dynamic
monitoring.

66

Lists in EiffelBase

Cursor

item

index

count 1

forth back

finish start

after before

"Zurich"

67

Moving the cursor forward

Cursor

index

forth

count 1

after before

"Zurich"

68

Two queries, and command forth

69

Trying to insert too far right

Cursor

(Already past last element!)

count 1

after

"Zurich"

70

Where the cursor may go

Valid cursor positions

0 index 1

after
before

"Zurich"

count count + 1

71

From the invariant of class LIST

Valid cursor positions

72

Contracts and bug types

Preconditions are particularly useful to find bugs in client
code:

 YOUR
APPLICATION

 COMPONENT
LIBRARY

your_list.insert (y, a + b + 1)

i <= count + 1

insert (x : G ; i : INTEGER)
require

i >= 0

class LIST [G] feature

73

Next step: automated testing”

What can be automated:

 Test suite execution

 Resilience (continue test process after failure)

 Regression testing

 Test case generation

 Test result verification (oracles)

 Test extraction from failures

 Test case minimization

B. Meyer et al., Programs that
test themselves, IEEE Computer,
Sept. 2009

74
74

Contracts for testing

Contracts provide the right basis:

 A fault is a discrepancy between intent and reality

 Contracts describe intent

A contract violation always signals a fault:

 Precondition: in client

 Postcondition or invariant: in routine (supplier)

In EiffelStudio: select compilation option for contract
monitoring at level of class, cluster or system.

- 1 –

Overview of the
requirements task

- 4 -

Contracts & analysis,
methodological notes

75

76

Precondition design

The client must guarantee the precondition before the call

This does not necessarily mean testing for the precondition

Scheme 1 (testing):

 if not my_stack.is_full then

 my_stack.put (some_element)

 end

Scheme 2 (guaranteeing without testing):

 my_stack.remove

 ...

 my_stack.put (some_element)

77

Another example

sqrt (x, epsilon: REAL): REAL
 -- Square root of x, precision epsilon
 require

 x >= 0
 epsilon > 0

 do
 ...
 ensure

 abs (Result ^ 2 – x) <= 2 * epsilon * Result

 end

78

The contract

Client

Supplier

(Satisfy precondition:)

 Provide non-negative
value and precision
that is not too small.

(Satisfy postcondition:)

 Produce square root
within requested
precision.

OBLIGATIONS

(From postcondition:)

 Get square root within
requested precision.

(From precondition:)

 Simpler processing
thanks to
assumptions on value
and precision.

BENEFITS sqrt

79

Not defensive programming!

It is never acceptable to have a routine of the form

 sqrt (x, epsilon : REAL): REAL
 -- Square root of x, precision epsilon
 require
 x >= 0
 epsilon > 0

 do
 if x < 0 then
 … Do something about it (?) …
 else
 … Normal square root computation …
 end
 ensure
 abs (Result ^ 2 – x) <= 2 * epsilon * Result

 end

80

Not defensive programming

For every consistency condition that is required to
perform a certain operation:

 Assign responsibility for the condition to one of the
contract’s two parties (supplier, client).

 Stick to this decision: do not duplicate
responsibility.

Simplifies software and improves global reliability.

81

Interpreters

class BYTECODE_PROGRAM feature

 verified : BOOLEAN

 trustful_execute (program: BYTECODE)
 require
 ok : verified
 do ... end

 distrustful_execute (program: BYTECODE)
 do
 verify
 if verified then trustful_execute (program)
end
 end

 verify do ... end

end

82

How strong should a precondition be?

Two opposite styles:

 Tolerant: weak preconditions (including the weakest, True: no
precondition).

 Demanding: strong preconditions, requiring the client to make
sure all logically necessary conditions are satisfied before
each call.

Partly a matter of taste.

But: demanding style leads to a better distribution of roles, provided
the precondition is:

 Justifiable in terms of the specification only.

 Documented (through the short form).

 Reasonable!

83

The demanding style

sqrt (x, epsilon: REAL): REAL
 -- Square root of x, precision epsilon
 require

 x >= 0
 epsilon > 0

 do
 ...
 ensure

 abs (Result ^ 2 – x) <= 2 * epsilon * Result

 end

84

sqrt (x, epsilon: REAL): REAL
 -- Square root of x, precision epsilon.
 require
 True

 do
 if x < 0 then
 … Do something about it (?) …

 else

 … Normal square root computation …

 computed := True

 end
 ensure
 computed implies abs (Result ^ 2 – x) <= 2 * epsilon * Result

 end

A tolerant style

 NO INPUT
TOO BIG OR
TOO SMALL!

85

Contrasting styles

 put (x : G)
 -- Push x on top of stack.
 require
 not is_full
 do

 end

 tolerant_put (x: G)
 -- Push x if possible, otherwise set impossible to True.
 do
 if not is_full then
 put (x)
 else
 impossible := True
 end
 end

- 1 –

Overview of the
requirements task

- 5 -

Contracts and inheritance

86

87

Contracts and inheritance

Issues: what happens, under inheritance, to

 Class invariants?

 Routine preconditions and postconditions?

88

Invariants

Invariant Inheritance rule:

 The invariant of a class automatically includes the
invariant clauses from all its parents,

 ―and‖-ed.

Accumulated result visible in flat and interface forms.

89

Contracts and inheritance

r
require


ensure



r
require


ensure



a1: A

a1.r (…)
…

Correct call in C:

 if a1. then

 a1.r (...)

 -- Here a1. holds

 end

r ++

C A

D B

Client
Inheritance

++ Redefinition

90

Assertion redeclaration rule

When redeclaring a routine, we may only:

 Keep or weaken the precondition

 Keep or strengthen the postcondition

91

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by
default), or

 require else new_pre

 ensure then new_post

Resulting assertions are:

 original_precondition or new_pre

 original_postcondition and new_post

Assertion redeclaration rule

- 1 –

Overview of the
requirements task

- 6 -

Contracts & loops

92

93

Quiz: what does this function compute?

euclid (a, b: INTEGER): INTEGER
 -- Greatest common divisor of a and b
 require
 a > 0 ; b > 0
 local
 m, n : INTEGER
 do
 from
 m := a ; n := b
 invariant
 -- ―????????‖
 variant
 ????????
 until
 m = n
 loop
 if m > n then
 m := m − n
 else
 n := n − m
 end
 end
 Result := m
 end

94

Quiz: what does this function compute?

euclid (a, b: INTEGER): INTEGER
 -- Greatest common divisor of a and b
 require
 a > 0 ; b > 0
 local
 m, n : INTEGER
 do
 from
 m := a ; n := b
 invariant
 -- ―????????‖
 variant
 ????????
 until
 m = n
 loop
 if m > n then
 m := m − n
 else
 n := n − m
 end
 end
 Result := m
 end

95

Quiz: what does this function compute?

euclid (a, b: INTEGER): INTEGER
 -- Greatest common divisor of a and b
 require
 a > 0 ; b > 0
 local
 m, n : INTEGER
 do
 from
 m := a ; n := b
 invariant
 -- gcd (m, n) = gcd (a, b)
 variant
 ????????
 until
 m = n
 loop
 if m > n then
 m := m − n
 else
 n := n − m
 end
 end
 Result := m
 end

96

Loop invariant

True after loop initialization

Preserved by loop body (i.e. if true before, will be true
afterwards) when exit condition not true

 from

 Init

 until

 Exit

 loop

 Body

 end

97

Quiz: what does this function compute?

euclid (a, b: INTEGER): INTEGER
 -- Greatest common divisor of a and b
 require
 a > 0 ; b > 0
 local
 m, n : INTEGER
 do
 from
 m := a ; n := b
 invariant
 -- gcd (m, n) = gcd (a, b)
 variant
 ????????
 until
 m = n
 loop
 if m > n then
 m := m − n
 else
 n := n − m
 end
 end
 Result := m
 end

98

Loop variant

Integer expression that must:

 Be non-negative when after initialization (from)

 Decrease (i.e. by at least one), while remaining non-
negative, for every iteration of the body (loop)
executed with exit condition not satisfied

99

Quiz: what does this function compute?

euclid (a, b: INTEGER): INTEGER
 -- Greatest common divisor of a and b
 require
 a > 0 ; b > 0
 local
 m, n : INTEGER
 do
 from
 m := a ; n := b
 invariant
 -- gcd (m, n) = gcd (a, b)
 variant
 max (m, n)
 until
 m = n
 loop
 if m > n then
 m := m − n
 else
 n := n − m
 end
 end
 Result := m
 end

100

Invariants: loops as problem-solving strategy

A loop invariant is a property that:

 Is easy to establish initially
 (even to cover a trivial part of the data)

 Is easy to extend to cover a bigger part

 If covering all data, gives the desired result!

101

from

 ???

invariant

 ???

across structure as i loop

 Result := max (Result, i.item)

end

Computing the maximum of a list

102

Reversing a list

from

 pivot := first_element
 first_element := Void

until pivot = Void loop

 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)
end

first_element pivot

right

i

1 2 3 4 5

103

Reversing a list

from

 pivot := first_element
 first_element := Void

until pivot = Void loop

 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)
end

first_element pivot

right

i

1 2 3 4 5

104

Reversing a list

from

 pivot := first_element
 first_element := Void

until pivot = Void loop

 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)
end

first_element pivot

right

i

1 2 3 4 5

105

Reversing a list

from

 pivot := first_element
 first_element := Void

until pivot = Void loop

 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)
end

first_element pivot

right

i

1 2 3 4 5

106

i i pivot pivot

Reversing a list

from

 pivot := first_element
 first_element := Void

until pivot = Void loop

 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)
end

first_element

right

1 2 3 4 5

107

Why does it work?

from

 pivot := first_element
 first_element := Void

until pivot = Void loop

 i := first_element
 first_element := pivot
 pivot := pivot.right
 first_element.put_right (i)
end

first_element pivot

right

i

1 2 3 4 5

Invariant: from first_element
following right, initial items
in inverse order; from pivot,
rest of items in original order

- 1 –

Overview of the
requirements task

- 6 -

Handling abnormal cases

108

109

Abnormal case

An ―abnormal case‖ is a case of applying a partial function
outside of its domain

5 approaches:

 1. A priori check

 2. A posteriori check

 3. Using agents

 4. Return codes

 5. Exception handling

110

Exception handling

Things not always happen in the ideal way!

111

Solution 1: Use standard control structures

if not end_of_file then

 read_token

 if token /= ―class‖ then

 message (―File must start with class‖)

 else

 read_token

 if not token  is_identifier then

 message (―Invalid class name‖)

 else

 if token  name  is_taken then

 message (―Class name in use‖)

 else

 …

112

Solution 1: a priori (check before)

 if y  property then

 a  f (y)

 else

 …

 end

f (x : T)
 require

 x.property
 do
 …
 ensure

 Result.other_property
 end

113

Example: linear equation

Purpose: solve A * x = b, given matrix A and vector b
(the result x will be a vector)

 x := A  solution (b)

if then

else

end

…

… A  regular

114

Solution 1: a priori (check before)

 if y  property then

 a  f (y)

 else

 …

 end

f (x : T)
 require

 x.property
 do
 …
 ensure

 Result.other_property
 end

115

Solution 2: a posteriori (try and check)

f (x : T)
 require

 x.property
 do
 …
 ensure

 Result.other_property
 end

Solution 1:

if y  property then
 a  f (y)
else
 …
end

 a  try_f (y)

 if it_worked then

 … Continue normally …
 else

 …

 end

116

Linear equation with solution 2

if then

else

end

…

A  regular

Solution 1:

x := A  solution (b)

 A  invert (b)

 if A  is_inverted then

 x := A  solution

 … Continue normally …
 else

 …

 end

117

Solution 3: using agents

Scheme 1:

action1
if ok1 then
 action2
 if ok2 then
 action3
 -- More processing,
 -- more nesting ...
 end
end

Scheme 2:

 controlled_execute ([
 agent action1,
 agent action2 (...),
 agent action3 (...)
])
 if glitch then
 warning (glitch_message)
 end

118

Solution 4: return codes

if (file_open (f)) {

 … Continue with processing

 }

else

 {

 …

 }

119

Solution 5: exceptions

In case of an abnormal situation:

 Interrupt execution

 Go up call chain

 If exception handler found, execute it

 Otherwise, program stops abnormally

r0

r1

r2

r3

r4

Routine
call

120

What is an exception?

―An abnormal event‖

Not a very precise definition

Informally: something that you don’t want to happen…

121

Exception vocabulary

 ―Raise‖, ―trigger‖ or ―throw‖ an exception

 ―Handle‖ or ―catch‖ an exception

122

C++/Java exception handling style

try {

 … Normal instructions, during which an

 exception may occur …

} catch (ET1 e) {

 … Handle exceptions of type ET1, details in e …

} catch (ET2 e) {

 … Handle exceptions of type ET2, details in e …

}… Possibly more cases…

finally {

 … Processing common to all cases, exception or not…

}

123

Java exceptions

Exceptions are objects, descendants of Throwable:

124

Java: raising an exception

Instruction:

 throw my_exception

The enclosing routine should be of the form

 my_routine (…) throws my_exception {

 …

 if abnormal_condition

 throw my_exception;

 }

125

How to use exceptions?

Two opposite styles:

 Exceptions as a control structure:
 Use an exception to handle all cases
 other than the most favorable ones

 (e.g. a key not found in a hash table triggers
 an exception)

 Exceptions as a technique of last resort

126

Exception handling

A formal basis:

 Introduce notion of contract

 The need for exceptions arises when a contract is
broken by either of its parties (client, supplier)

Two concepts:

 Failure: a routine, or other operation, is unable to
fulfill its contract.

 Exception: an undesirable event occurs during the
execution of a routine — as a result of the failure of
some operation called by the routine.

127

The original strategy

 r (...)

 require
 ...
 do
 op1

 op 2

 ...
 op i
 ...
 op n

 ensure
 ...
 end

128

Not going according to plan

 r (...)

 require
 ...
 do
 op 1

 op 2

 ...
 op i
 ...
 opn

 ensure
 ...
 end

Fails, triggering an exception in
r (r is recipient of exception).

129

Causes of exceptions in O-O programming

Three major kinds:

 Operating system signal: arithmetic overflow, no
more memory, interrupt ...

 Assertion violation (if contracts are being
monitored)

 Void call (x.f with no object attached to x)

In Eiffel & Spec#,
will go away

130

Handling exceptions properly

Safe exception handling principle:

There are only two acceptable ways to react for the
recipient of an exception:

 Concede failure, and trigger an exception in caller:
 ―Organized Panic‖

 Try again, using a different strategy (or repeating
the same strategy:
 ―Retrying‖

(Rare third case: false alarm)

131

How not to do it

(From an Ada textbook)

 sqrt (x: REAL) return REAL is
 begin
 if x < 0.0 then
 raise Negative;
 else
 normal_square_root_computation;
 end
 exception
 when Negative =>
 put ("Negative argument");
 return;
 when others => 
 end; -- sqrt

132

The call chain

r0

r1

r2

r3

r4

Routine
call

133

Exception mechanism

Two constructs:

 A routine may contain a rescue clause.

 A rescue clause may contain a retry instruction.

A rescue clause that does not execute a retry leads to
failure of the routine (this is the organized panic case).

134

Transmitting over an unreliable line (1)

Max_attempts: INTEGER = 100

attempt_transmission (message: STRING)
 -- Transmit message in at most

 -- Max_attempts attempts.
 local
 failures : INTEGER
 do
 unsafe_transmit (message)

 rescue

 failures := failures + 1
 if failures < Max_attempts then

 retry

 end
 end

135

Transmitting over an unreliable line (2)

Max_attempts: INTEGER = 100

failed: BOOLEAN

attempt_transmission (message: STRING)
 -- Try to transmit message;
 -- if impossible in at most Max_attempts
 -- attempts, set failed to true.
 local
 failures: INTEGER
 do
 if failures < Max_attempts then
 unsafe_transmit (message)
 else
 failed := True
 end
 rescue
 failures := failures + 1
 retry
 end

136

Another Ada textbook example

procedure attempt is begin
 <<Start>> -- Start is a label
 loop
 begin
 algorithm_1;
 exit; -- Alg. 1 success
 exception
 when others =>
 begin
 algorithm_2;
 exit; -- Alg. 2 success
 exception
 when others =>
 goto Start;
 end
 end
 end
end main;

attempt

 local

 even: BOOLEAN

 do

 if even then algorithm_2 else

 algorithm_1

 end

 rescue

 even := not even; retry

end

In Eiffel

137

Dealing with arithmetic overflow

quasi_inverse (x: REAL): REAL

 -- 1/x if possible, otherwise 0

 local

 division_tried: BOOLEAN

 do

 if not division_tried then

 Result := 1/x

 end

 rescue

 division_tried := True

 retry

 end

138

If no exception clause (1)

Absence of a rescue clause is equivalent, in first approximation, to an
empty rescue clause:

 f (...)
 do
 ...
 end

is an abbreviation for

 f (...)
 do
 ...
 rescue
 -- Nothing here
 end

(This is a provisional rule; see next.)

139

The correctness of a class

For every creation procedure cp :

{Precp } docp {INV and Postcp }

For every exported routine r :

{INV and Prer } dor {INV and Postr }

x.f (…)

x.g (…)

x.h (…)

create x.make (…)

S1

S2

S3

S4

140

Bank accounts

balance := deposits.total – withdrawals.total

deposits

withdrawals

balance

(A2)

141

Exception correctness

For the normal body:

 {INV and Prer } dor {INV and Postr }

For the exception clause:

 {???} rescuer {??? }

142

Exception correctness

For the normal body:

 {INV and Prer } dor {INV and Postr }

For the exception clause:

 {True} rescuer {INV }

143

If no exception clause (2)

Absence of a rescue clause is equivalent to a default rescue clause:

 f (...)
 do
 ...
 end

 is an abbreviation for

 f (...)
 do
 ...
 rescue
 default_rescue
 end

The task of default_rescue is to restore the invariant.

144

For finer-grain exception handling

Every exception has a type, a descendant of the library
class EXCEPTION

Query last_exception gives an object representing the
last exception that occurred

Some features of class EXCEPTION:

 name

 is_assertion_violation, etc.

 raise

145

Another challenge today

Exceptions in a concurrent world

r0

r1

r2

r3

r4

What if the call chain
is no longer available?

146

Exception handling: summary and conclusion

Exceptions as a control structure (internally triggered):

 Benefits are dubious at best

An exception mechanism is needed for unexpected
external events

Need precise methodology; must define what is
―normal‖ and ―abnormal‖. Contracts provide that
basis.

Next challenge is concurrency & distribution

- 1 –

Overview of the
requirements task

- 8 -

Design by Contract
in various languages

147

148
148

What we do with contracts

Write better software
Analyze
Design
Reuse
Implement
Use inheritance properly
Avoid bugs
Document software automatically
Help project managers do their job

Perform systematic testing

Guide the debugging process

(with run-time monitoring)

149

Emulating Design by Contract mechanisms

Basic step (programmer discipline):

 Add preconditions and postconditions

 Use switch to turn monitoring on or off

 Help for analysis, methodology, debugging, but

• No documentation help

• No class invariants

• No connection with O-O structure

• No inherited assertions

• No connection with exception handling

Other techniques:

 Macros (C, C++)

 Language extensions, e.g. preprocessor

150

The macro approach

GNU Nana: improved support for contracts and logging in C
and C++.

Set of C++ macros and commands for gdb debugger.
Replaces assert.h.

Support for quantifiers (Forall, Exists, Exists1)
corresponding to iterations on the STL (C++ Standard
Template Library).

Support for time-related contracts (―Function must
execute in less than 1000 cycles‖).

151

Gnu Nana example

void intsqrt(int &r) { /* r’ = floor(sqrt(r)) */
DS($r = r); /* save r away into $r for later use under gdb(1) */
 DS($start = $cycles); /* real time constraints */
 ...; /* code which changes r */
 DI($cycles – $start < 1000);
 /* code must take less than 1000 cycles */
 DI(((r * r) <= $r) && ($r < (r + 1) * (r + 1)));

 /* use $r in postcondition */
 }

152

Design by Contract in Java

OAK 0.5 (pre-Java) contained an assertion mechanism,
which was removed due to ―lack of time‖.

Several different proposals. Gosling (May 1999,
http://www.javaworld.com/javaworld/javaone99/j1-99-gosling.html):

―The number one thing people have been asking for is an
assertion mechanism. Of course, that [request] is all over
the map: There are people who just want a compile-time
switch. There are people who ... want something that's
more analyzable. Then there are people who want a full-
blown Eiffel kind of thing. We're probably going to start
up a study group on the Java platform community process.‖

http://www.javaworld.com/javaworld/javaone99/j1-99-gosling.html
http://www.javaworld.com/javaworld/javaone99/j1-99-gosling.html
http://www.javaworld.com/javaworld/javaone99/j1-99-gosling.html
http://www.javaworld.com/javaworld/javaone99/j1-99-gosling.html
http://www.javaworld.com/javaworld/javaone99/j1-99-gosling.html

153

Java Modeling Language (JML)

Contract-equipped extension for Java

Assertions are in the form of JavaDoc comments

Rich tool suite for tests and proofs

154

JML example (1)

public class BankingExample {

 public static final int MAX_BALANCE = 1000;

 private /*@ spec_public @*/ int balance;

 private /*@ spec_public @*/ boolean isLocked = false;

 //@ public invariant balance >= 0 && balance <= MAX_BALANCE;

 //@ assignable balance;

 //@ ensures balance == 0;

 public BankingExample() { balance = 0; }

 //@ requires 0 < amount && amount + balance < MAX_BALANCE;

 //@ assignable balance;

 //@ ensures balance == \old(balance + amount);

 public void credit(int amount) { balance += amount; }

155

JML example (2)

 //@ requires 0 < amount && amount <= balance;

 //@ assignable balance;

 //@ ensures balance == \old(balance) - amount;

 public void debit(int amount) { balance -= amount; }

 //@ ensures isLocked == true;

 public void lockAccount() { isLocked = true; }

 //@ requires !isLocked;

 //@ ensures \result == balance;

 //@ also

 //@ requires isLocked;

 //@ signals_only BankingException;

 public /*@ pure @*/ int getBalance() throws BankingException {

 if (!isLocked) { return balance; }

 else { throw new BankingException(); }

 }

156

Object Constraint Language

Contract extension to UML

Includes support for:

 Invariants, preconditions, postconditions

 Guards (not further specified).

 Predefined types and collection types

 Associations

 Collection operations: ForAll, Exists, Iterate

157

OCL example

Postconditions:

 post: result = collection–>iterate
 (elem; acc : Integer = 0 | acc + 1)

 post: result = collection–>iterate
 (elem; acc : Integer = 0 |
 if elem = object then acc + 1 else acc endif)

post: T.allInstances–>forAll
 (elem | result–>includes(elem) = set–>
 includes(elem) and set2–>includes(elem))

158

Spec#

Contract-equipped version of C# language

Originally developed at Microsoft Research

Includes non-null types

159

Spec# contract example

static int min (int x, int y)

 requires 0 <= x && 0 <= y ;

 ensures x < y ? result == x: result == y;

{

 int m;

 if (x < y)

 m = x;

 else

 m = y;

 return m;

}

Source: Rustan Leino

160

The Spec# verifier
st

at
ic

 v
e
ri

fi
e
r

(B
oo

gi
e
 t

oo
l)

 MSIL (―bytecode‖)

SMT solver (Z3)

V.C. generator

Inference engine
Translator

verification conditions

―correct‖ or list of errors

Spec# compiler

Spec#

Boogie
language

Source: Rustan Leino

161

Code contracts

Introduced in 2009 to provide a ―language-agnostic way to
express coding assumptions in .NET programs‖(Microsoft)

Set of static library methods for writing preconditions,
postconditions, and ―object invariants‖, with tools:

 ccrewrite to generate run-time checking

 cccheck: static checker

 ccdoc: for documentation

Applied to large part of mscore library

- 1 –

Overview of the
requirements task

- 9 -

New developments

162

163

The next steps

Pushing some properties to the type system:

 Void safety

More expressive specifications

Concurrency

Proofs

164

Concurrency

SCOOP mechanism:

 General object-oriented notation for concurrent
programs

 Based on reinterpretation of contracts:
preconditions become wait conditions

put (b : [G] ; v : G)

 -- Store v into b.
 require

 not b.is_full
 do

 …
 ensure

 not b.is_empty
 end

QUEUE BUFFER

my_queue : [T]

…

if not my_queue.is_full then

 put (my_queue, t)

end

BUFFER QUEUE

put

item, remove

166

Increasing expressive power

Eiffel Model Library

Components to prove
(e.g. EiffelBase)

167

Eiffel Model Library (MML)

Classes correspond to mathematical concepts:

SET [G], FUNCTION [G, H], TOTAL_FUNCTION [G, H],
RELATION [G, H], SEQUENCE [G], …

Completely applicative: no attributes (fields), no
implemented routines (all completely deferred)

Specified with contracts (unproven) reflecting
mathematical properties

Expressed entirely in Eiffel

Bernd Schoeller, Tobias Widmer,
Nadia Polikarpova

168

Example MML class

class SEQUENCE [G] feature

 count : NATURAL
 -- Number of items
 last : G
 -- Last item

 extended (x) : SEQUENCE [G]
 -- Identical sequence except x added at end.
 ensure

 Result.count = count + 1

 Result.last = x

 Result.sub (1, count) ~ Current

 mirrored : SEQUENCE [G]
 -- Same items in reverse order.
 ensure

 Result.count = count
 …
 …
end

169

Specifying lists

class
 LINKED_LIST [G]
feature
 …
 remove_front
 -- Remove first item.
 require
 not empty
 do

 first := first.right

 ensure

 end …
end

first

right right right

count = old count – 1

first = old item (2)

model = old model.tail

170

Principles

Very simple mathematics only

 Logic

 Set theory

171

EiffelBase2

In progress: library of fully specified (MML) classes,
covering fundamental data structures and algorithms, and
designed for verification: tests and proofs

Nadia Polikarpova

172

Verification As a Matter Of Course

Arbiter

AutoProof

Alias
analysis

AutoFix

Test case
generation

EVE Test
execution

Test results

Inter.
prover

Sep. logic
prover

AutoTest

Invariant
inference

Invariant
inference

Suggestions

Suggestions

- 1 –

Overview of the
requirements task

- 10 -

Conclusion

173

174

Design by Contract: technical benefits

More focused process: writing to spec

Sound basis for reuse

Exception handling guided by precise definition of ―normal‖
and ―abnormal‖ cases

Interface documentation automatically generated, up-to-
date, can be trusted

Faults occur close to cause, found faster & more easily

Guide for black-box test case generation.

175

Design by Contract: managerial benefits

Library users can trust documentation

They can benefit from preconditions to validate their own
software

Test manager can benefit from more accurate estimate of test
effort

Black-box specification for free

Designers who leave bequeath not only code but intent

Common vocabulary between all actors of the process:
developers, managers, potentially customers

Component-based development possible on a solid basis

176

Tom de Marco (IEEE Computer, Feb 1997)

―I believe that the use of Eiffel-like module contracts is
the most important non-practice in software today‖

