ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

Eiffel: Analysis, Design and Programming Exam

ETH Ziirich

Date: 4 December 2008

Surname, first NAIME:ooooiiii
Student NUIMDET:oooiiiiii e

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

SIGNALUTE: toeiiiiiiiiiiiii

Directions:
e Exam duration: 90 minutes.

e Except for a dictionary you are not allowed to use any supplementary
material.

e Use a pen (not a pencil)!

e All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Don’t forget to include header comments in features.

e Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!

ETHZ D-INFK Eiffel: Analysis, Design and

Prof. Dr. B. Meyer Programming — Exam
Question | Number of possible points | Points
1 20
2 20
3 10
Total 50

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

1 Object-oriented principles, Design by Contract
and Eiffel mechanisms (20 points)

Consider the following 5-class Eiffel system with root class APPLICATION and
root procedure ‘make’ where some details related to creation procedures have
been omitted. The style of classes RECTANGLE, SQUARE, LINE_SEGMENT
and APPLICATION does not show good use of Eiffel (and O-O) design princi-
ples.

class POINT

create
default_create , make

feature —— Creation

make (r1, r2: REAL)
—— Set (x, y) to (rl, r2).

do
T :=rl
y =12
ensure

r_set: T =1l
y-set: y = r2
end

feature —— Access

z: REAL

—— The x—coordinate.

y: REAL
—— The y—coordinate.

feature —— Element change

move (p: POINT)
—— Move (x, y) to (x + p-X, y + p.y)-

do
T :i=+ p.x
Yy =y +py
ensure

z_updated: x = old = + p.x
y-updated: y = old y + p.y
end

end

class RECTANGLE

feature —— Access
upper_left : POINT

—— The upper left corner.

lower_right: POINT
—— The lower right corner.

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

end

class SQUARE

feature —— Access
upper_left : POINT
—— The upper left corner.

side_length: REAL
—— The side length.
end

indexing
description: ”Line segments between points pl and p2.”
class LINE_.SEGMENT

feature —— Access
pl: POINT

p2: POINT
end

class APPLICATION

create
make

feature

make
—— Create some shapes and move them.
local
r: RECTANGLE
s: SQUARE
l: LINE SEGMENT
do
create 7
create s
create [
0. put_string (”Moved the ” + move_and_get_-name (r, create { POINT}.
make (2, 2)) + ”%N”)
0. put_string (”Moved the ” + move_and_get_-name (s, create {POINT}.
make (3, 5)) + ?%N”)
0. put_string (”Moved the ” + move_and_get_-name (I, create { POINT}.
make (2.5, 4)) + ”%N”)
end

move_and_get_name (a: ANY, p: POINT): STRING
—— Move the shape stored in ‘a’ by the vector ‘p’.
—— ‘Result’ will be the name of the shape.
do
if {rr RECTANGLE} a then
7. upper_left . move (p)
r. lower_right . move (p)
Result := ”rectangle”
elseif {s: SQUARE} a then
s. upper-left . move (p)

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

Result := ”square”

elseif {I: LINE_SEGMENT} a then
l.p1l.move (p)
l.p2.move (p)
Result := ”line segment”

else
Result := ”unknown”

end

end

end

Rewrite the program using Eiffel and O-O principles and Design by Con-
tract. Your solution may use class POINT as given above. Explain the changes:
which principles you applied, and which language mechanisms facilitate your
solution.

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

2 Genericity, agents, patterns and components
(20 Points)

A principal goal of the Eiffel method is the creation of reusable components. The
pattern of publishing some type of object on an event channel that forwards it
to a list of subscribers is a common idiom that can be reused across applications.
Consider the following (artificial but concise) client code:

class APPLICATION

create
make
feature —— Creation
make
local
ec: EVENT_-CHANNEL [INTEGER)
do
create ec
—— ‘ec’ should now have an empty list of subscribers.
ec. subscribe (agent subscriberl)
—— ‘ec’ should now have exactly one subscriber.
ec. publish (2)
—— ‘2’ should now have appeared on the console.
ec. subscribe (agent subscriber2)
—— ‘ec’ should now have two subscribers.
ec. publish (3)
—— ‘3" and ‘4’ should now have appeared on the console.
end
feature —— Subscriber
subscriber! (i: INTEGER)
do
0. put_integer (i)
end

subscriber2 (i: INTEGER)
do
0. put_integer (i + 1)
end
end

The task is to implement class EVENT_CHANNEL. You can make use of
class LINKED _LIST whose interface is given here:

class interface LINKED_LIST [G]

create
make
—— Create an empty list.
feature —— Element change

extend (v: G)
—— Add ‘v’ to the end.

feature —— Access

10

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

item: G
—— Item at current cursor position.

feature —— Cursor movement
start
—— Move cursor to first position.

forth
—— Move cursor to next position.

feature —— Status report
after: BOOLEAN
—— Is there no valid cursor position to the right of the cursor?

end

(Hint: an agent that can be called with one argument of type G has type
PROCEDURE [ANY, TUPLE [G]])

11

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

12

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

13

ETHZ D-INFK Eiffel: Analysis, Design and
Prof. Dr. B. Meyer Programming — Exam

3 Multiple inheritance (10 Points)

The following program with root class APPLICATION and root procedure
‘make’ uses multiple inheritance:

class APPLICATION

create
make
feature
make
local
a: A
c: C
d: D
do
create c
create d
@ = @
a.f
c.g
a:=d
a.f
c:=d
c. f
d.f
end
end
class A
create

default_create

feature
f
do
i0. put_string (¥ A.f%N”)
end
g9
do
0. put_string (”A.g%N”)
end
end

deferred class B

inherit
A
rename
fash
undefine
g
end
end

14

ETHZ D-INFK
Prof. Dr. B. Meyer

Eiffel: Analysis, Design and
Programming — Exam

class C

inherit
A redefine fend

create
default_create

feature
f
do
0. put_string (? C.f%N”)
end
end

class D

inherit
B select h end
C redefine g end

create
default_create

feature
g
do
0. put_string ("D.g%N”)
end
end

What will be printed on the console if the program is executed?

15

	Object-oriented principles, Design by Contract and Eiffel mechanisms (20 points)
	Genericity, agents, patterns and components (20 Points)
	Multiple inheritance (10 Points)

