ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

ETHZ D-INFK Final Exam Booklet

Eiffel: Analysis, Design and Programming

Date: 15 December 2009

N VTP Y a LT A1 A 1 F= 1 4 LSRR
0o [T oLl Y0 T o] o Y=Y oSSR

| confirm with my signature, that | was able to take this exam under regular circumstances
and that | have read and understood the directions below.

) T =) 0 =
Directions:

e Exam duration: 90 minutes.

e Except for a dictionary you are not allowed to use any supplementary material.

e Use a pen (not a pencil)!

e All solutions can be written directly on the exam sheets. If you need more space for your
solution ask the supervisors for a sheet of official paper. You are not allowed to use oth-
er paper. Please write your student number on each additional sheet.

e Only one solution can be handed in per question. Invalid solutions need to be crossed
out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Please immediately tell the exam supervisors if you feel disturbed during the exam.

Good luck!

ETHZ D-INFK Eiffel: Analysis, Design and Programming

Prof. Dr. B. Meyer Final Exam
Question Number of possible points Points
1 15
2 20
3 20
4 15
5 30
Total 100

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

1. Contracts (15 Points)

The deferred class Time in the following code abstracts a simple interface of time in 24-hour
format, the range of valid time is specified by the class invariant. Please specify the proper pre-
conditions/postconditions for the class routines.

deferred class TIME
feature -- Initialization
make (a_hour, a_min, a_sec: NATURAL_S8)

-- Initialize ‘hour’, ‘minute’, and €‘second’ with €‘a_hour’,
-- ‘a _min’, and ‘a_sec’, respectively.

require -- (3 Points)
do
set _hour (a_hour); set minute (a_minute); set second (a_second)
ensure -- (3 Points)
end
feature -- Access

hour: NATURAL_8 assign set_hour
-- Hour.

minute: NATURAL_8 assign set _minute
-- Minute.

second: NATURAL_8 assign set_second
-- Second.

feature -- Setters

set_hour (a_hour: NATURAL_8)
-- Set “hour' to be ‘a_hour”’.

require -- (1 Point)
do

hour := a_hour
ensure -- (1 Point)
end

ETHZ D-INFK
Prof. Dr. B. Meyer

Eiffel: Analysis, Design and Programming
Final Exam

set_minute (a_minute: NATURAL_S8)

-- Set “minute' to be ‘a_minute’.

require -- omitted here
do

minute := a_minute
ensure -- omitted here
end

set_second (a_second: NATURAL_S8)

-- Set “second' to be ‘a_second’.

require -- omitted here
do

second := a_second
ensure -- omitted here
end

feature -- Operation

tick

-- Tick the time to the next second, in 24-hour format.

-- During a day, “tick” works in the usual way. For example,
-- the next second of ©7:28:59 would be 07:29:00. While

-- the next second of 23:59:59 would be 00:00:00.

deferred
ensure -- (7 Points)

invariant
hour_in_range: hour < 24
minute_in_range: minute < 60

second_in_range: second < 60
end

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

2. Program Comprehension (20 Points)

The following program with root class APPLICATION and root creation procedure make uses mul-
tiple inheritance. Read the program and answer the questions that follow it.

class APPLICATION

create
make
feature
make
local
a: A
c: C
d: D
1 retried: BOOLEAN
do
if not 1 _retried then
create c
create d
a :=c¢
a.f
a :=d
a.f
c :=d
c.k
d.g
end
rescue
1l retried := True
end
end
class A
create

default_ create

feature
.F
do
io.put_string ("A.f%N")
end
g
do
io.put_string ("A.g%N")
-- Attention: we call f here
.F
end

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

Questions:

1. To make the program compile successfully, what should be added on the dotted line in
class D? Why? (write your answer below) (6.5 points)

2. Please write below the first 5 lines of the console output when the program (corrected
per question 1) is executed, in output order. (1.5 point x 5)

3. Will the program terminate with or without an exception? Why?
(write your answer below) (6 points)

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

3. Multiple Choice (4 Points x 5)

Read the questions below and write down your selections in the following table. Only answers

written in the table will be graded!

Question 1 2 3 4 5

Selection(s)

1. Which of the following descriptions about the EiffelStudio compilation process, if any, is/are

correct?

A.

The Melting Ice Technology is introduced to make compilation of large systems during
development more efficient.

During melting, only Eiffel code that has been changed will be recompiled into C code.

During execution of a system with both melted and frozen code, the melted code will be
interpreted while the rest is executed directly.

Finalizing is a non-incremental process of producing efficient C code and the resulting
executable.

2. Given the conforming inheritance relation between class A and D as shown in Figure 1, fis a

feature in A with precondition P, postcondition Qy, and a single argument of type T,, and the

redefined version of £ in D has precondition Pf’, postcondition Qf’, and argument type Tp.

Which of the following statements (if any) is/are correct? f

A. P, should be weaker than or equal to, Ps;

B. Qs should be weaker than or equal to, Qg; fH

C. Tpshould conform to Ty; Figure 1. Inheritance
D. None of the above is correct. between Aand D

3. Letis_greater be afeature in class C, with signature

is_greater (an_intl, an_int2: INTEGER): BOOLEAN

Which of the following local variable declarations and statements, if any, are valid when

used together? Suppose c is an attached reference with type C and L_bool a boolean local

variable.

A.

1 agent: PROCEDURE[ANY, TUPLE[INTEGER], BOOLEAN]
1 agent := agent c.is_greater(?, 10)
1 bool := 1 agent.call (4)

1 _agent: FUNCTION[ANY, TUPLE[INTEGER], BOOLEAN]
1 agent := agent c.is_greater(?, 10)
1 bool := 1 _agent.item([4])

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

C. 1 _agent: FUNCTION[C, TUPLE[INTEGER, INTEGER], BOOLEAN]
1 agent := agent c.is_greater(?, 10)
1 bool := 1 _agent.call([4])

D. 1 _agent: PROCEDURE[C, TUPLE[], BOOLEAN]
1 agent := agent c.is_greater(?, 10)
1 bool := 1 agent.call (4)

4. Given the following local variable declarations, with class D inherits from class A as shown in
Figure 1,
1a: A
1d:D
1 t1: TUPLE[INTEGER]
1 t2: TUPLE[INTEGER, INTEGER]
which of the assignments below, if any, is/are correct?

A. 1a:=14d

B. 1d:=1a
C. 1. t1 :=1 t2
D. 1 t2 :=1 t1

5. The Cfunction strncmp compares up to the first n bytes of two strings lexicographically, and

its declaration in string.h is as follows

int strncmp(const char * strl, const char * str2, size t n);
To wrap this function directly into an Eiffel feature strncmp, which of the following signa-
tures, if any, is/are valid for feature strncmp?

A. strncmp (pl, p2: POINTER; count: INTEGER): INTEGER
B. strncmp (pl, p2: POINTER; count: SIZE T): INTEGER
C. strncmp (strl: EIF_POINTER; str2: EIF_POINTER; n: INTEGER): INTEGER

D. strncmp (strl: EIF_POINTER; str2: EIF_POINTER; n: SIZE T): INTEGER

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

4. Void Safety (15 Points)

The void safety mechanism prevents runtime “Call on void target.” errors by ensuring that: (1) A
statically attached reference is always dynamically attached at run-time after initialization; and
(2) Acall x. £(...) is only permitted if x is a statically attached reference.

Read the following program and answer the questions on the following page, assuming that the
compiler enforces void safety. (foo is a feature in class A.)

deferred class C
feature
attribute one: detachable A

operation_one (a_argl: detachable A; a_arg2: attached A)
local
1 locl: attached A
1 loc2: detachable A
do
1 loc1 :
1 loc2 :

a_argl -- (1)
a_arg2 -- (i1)

end

operation_two (a_arg: detachable A)

do
if a_arg /= Void then
operation_three
a_arg.foo -- (111)
end
end

operation_three (a_arg: detachable A)

do
attribute_one := a_arg
if attribute_one /= Void then
operation_three
attribute one.foo -- (iv)
end
end

operation_three
deferred
end

end

-10-

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

(1) Are the assignments on line (i) and (ii) valid? Why or why not? (6 Points)

(2) Are the feature calls on line (iii) and (iv) valid? Why or why not? If not, please correct the
code to make it valid (with as small a change as possible) while preserving the intended
semantics. (9 Points)

-11 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

5. Programming (30 Points)

Skip lists are a data structure for storing sorted items. In simple terms, skip lists are sorted linked
lists with two differences:

1. Forward references. The nodes in ordinary lists have one next reference, while the
nodes in skip lists may have multiple “next” references — called forward references. A
node always has a forward reference pointing to its next node, and some nodes have ex-
tra references to nodes along the list. When the list is traversed, these extra references al-
low some nodes to be “skipped”.

2. Node size. The number of forward references of a node is called the size of the node.
The size of a node is at least 1 (according to 1) and at most max_size. The header node
and the tail node always have the size max_size, and the sizes of other nodes are deter-
mined probabilistically. Given a fixed probability p, the probabilities for a node having size
2,3,4.. arep, p° p’... (0 <= p <= 1), respectively.

The maximum node size max_size and the probability p are two characteristics of a skip
list, and they are both fixed at the construction time.

As shown by the example in Figure 2, a skip list can be conceptually understood as consisting of
several layers and each layer constitutes a sorted linked list containing a subset of the items.
Notice that a node of size nis linked into layers 1 —n.

&—P References between nodes

Layer 3 [» [Null

Layer 2 [[[[[Null
[| pr— p— [com— |

Layer 1 Null

Header 3 4 7 12 13 15 16 18 Tail

Figure 2. Layered structure of a skip list

Inside a skip list, we need both a skip list node and a layer to specify a reference position. In the
following, we use the value stored at a node to denote that node, and use a pair (node, layer) to
denote a reference position in a skip list. For example, reference at position (12, 2) is the refer-
ence at node 12 in layer 2. The value at a reference position is determined exclusively by the
node at that position. Thus, the value at position (12, 2) would be 12.

When traversing a skip list, we accordingly can move in two directions from a reference position.
We can either move to the lower layer of the current node, or move to the next node in the
same layer by following the reference. For example, we can move from (12, 2) to either (12, 1)
(called downward position) or (15, 2) (called forward position).

-12 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

Given the skip list shown in Figure 2, the diagram in Figure 3 illustrates how the search and in-
sert operations could be done with efficiency.

e To search for value 16 in the skip list, we start from position (header, 3). Since the value
at the forward position is 12, which is smaller than 16, we move forward to position (12,
3); now the forward position is at the tail node, so we move downward to (12, 2); the
value at the forward position is now 15, which is still smaller than 16, so we move for-
ward again to position (15, 2); here the forward position has value 18, which is bigger
than 16, thus we move downward to (15, 1) and then 16 is found at its forward position.

e Toinsert a value, say 17, into a skip list, we first create a node to accommodate the val-
ue 17. Suppose the node creation procedure decides (probabilistically) that the new
node has size 3, we then collect the /ast positions with values smaller than 17 in layers 1
— 3. Here we (only) need to do this in layers 1 — 3 is because, as mentioned earlier, a
node of size n is (only) linked into layers 1 — n. The references at the collected positions
will point to the inserted node after insertion, and, in this example, these positions in-
clude (12, 3), (15, 2), and (16, 1). After that, we can update accordingly the references at
the collected positions and in the new node to link the new node into the skip list, in all
3 layers.

-—9 “16” would be found faster by following this search path

Reference positions before 17 when the insertion is done

Layer 3 ° »|_ o Null
Y e ettt ik ! \

Layer 2 . » o » =v . Null
| 17

Layer 1 . » ° » ° » ° » ° Null

Header 3 4 7 12 13 15 16 Tail

Figure 3. Search and insertion in a skip list

A partial implementation of a skip list has been given below. The class DS_SKIP_LIST_NODE is
already complete. Its creation feature makes use of a random number generator to determine
the size of the new created node.

The elements in the skip list are sorted in ascending order. Please provide the missing part of
the feature insert in class DS_SKIP_LIST so that, when called, it inserts its argument a_value into
the list, if a_value is not already in the list.

(In case you need the interface information for class ARRAY and COMPARABLE, it is shown on
the next page.)

-13 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

class ARRAY[G]
feature

lower: INTEGER
-- Minimum index.

upper: INTEGER
-- Maximum index.

count: INTEGER
-- Number of available indexes.

item (i: INTEGER): G
-- Entry at index "1i'.

put (v: like item; i: INTEGER)
-- Replace “i'-th entry, if in index interval, with

v.’
end

deferred class COMPARABLE
feature -- Comparison

is_less alias "<" (other: like Current): BOOLEAN
-- Is current object lLess than “other'?

is_less_equal alias "<=" (other: like Current): BOOLEAN
-- Is current object lLess than or equal to “other'?

is_greater alias ">" (other: like Current): BOOLEAN
-- Is current object greater than "other'?

is_greater_equal alias ">=" (other: like Current): BOOLEAN
-- Is current object greater than or equal to "other'?

is_equal (other: like Current): BOOLEAN
-- Is “other' attached to an object of the same type
-- as current object and identical to it?

end

-14 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

class
DS _SKIP_LIST _NODE [G -> COMPARABLE]

create
make_empty, make with_value

feature{DS_SKIP LIST} -- Initialization

make_empty (a_no_of_layers: NATURAL_8; a_probability: REAL)
-- Initialize a skip List node.
require
a_no_of_layers_big enough: a_no_of layers >= 1
a_probability in_range:
O <= a_probability and a_probability <= 1
local
1 layers: NATURAL_S8
1 continue: BOOLEAN
1 random: RANDOM

do
-- compute probabilistically the size of the new node
from
1 random := Rand
1 layers := 1
1 continue := True
until
not 1 continue or 1 layers >= a_no_of layers
loop
1 random.forth
if (1_random.real_item <= a_probability) then
1 layers := 1 layers + 1
else
1 continue := false
end
end
check 1 <= 1 layers and 1 _layers <= a_no_of_layers end
size := 1 layers
create links.make_filled (Void, 1, 1 layers)
ensure
size _in_range: 1 <= size and size <= a_no_of_layers
links_not_void: links /= Void
end

make_with_value (a_no_of_layers: NATURAL_8; a_probability: REAL;
a_value: G)
-- Initialize a skip List node and set ‘value’ to be ‘a _value’.
require
a_no_of_layers_big enough: a_no_of layers >= 1
a_probability in_range: @ <= a_probability and a_probability <= 1
do
make_empty (a_no_of layers, a_probability)
set value (a_value)
ensure
size _in_range: 1 <= size and size <= a_no_of_layers
links_not_void: links /= Void

-15-

ETHZ D-INFK Eiffel: Analysis, Design and Programming

Prof. Dr. B. Meyer

Final Exam

value _set: value = a_value
end

feature{DS_SKIP LIST} -- Access

size: NATURAL_S8
-- Number of forward references in the node.

links: ARRAY[detachable DS _SKIP_LIST _NODE[G]]
-- List of forward references.

value: detachable G assign set_value
-- Value.

feature{DS_SKIP LIST} -- Setting

set_value (a_value: detachable G)
-- Set the value to be ‘a_value’.

do

value := a_value
ensure

value _set: value = a_value
end

feature{NONE} -- Implementation

Rand: RANDOM
-- Random number generator.
once
create Result.make
end

end

class
DS _SKIP _LIST [G -> COMPARABLE]

create
make

feature{ANY} -- Initialization

make (a_no_of layers: NATURAL_8; a_probability: REAL)
-- Initialize a skip Llist.
require
no_of_layers_big enough: a_no_of layers >= 1

probability in _range: @ <= a_probability and a_probability <= 1

local
1 count: NATURAL_S8

do
number_of_layers := a_no_of_ layers
probability := a_probability

-- make sure the tail node has maximum size

create tail.make_empty (a_no_of layers, 1.0)

-16 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

-- make sure header has maximum size
create header.make_empty (a_no_of layers, 1.0)

-- 1initially, all forward references in the header node
-- point to the tail node

from
1l count := 1

until
1 count = a_no_of_layers + 1

loop

-- note that references actually point to nodes

header.links.put (tail, 1 count)
1l count := 1 count + 1

end

end

feature -- Access

probability: REAL
-- Fixed probability for each skip Llist, which decides
-- the distribution of node size.

number_of layers: NATURAL_S8
-- Fixed total number of Llayers.

header: DS _SKIP LIST_NODE[G]
-- List header.

tail: DS_SKIP_ LIST NODE[G]
-- List tail.

feature{ANY} -- Operation

insert (a_value: G)
-- Insert “a_value’ into the list. (30 Points)
require
-- Suppose there is a feature "has’
-- checking if “a_value’ 1is already 1in the skip Llist
not_in_list: not has (a_value)
local

-17 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

ensure
value inserted: has (a_value)
end

-- Other implementation details omitted

end

-19 -

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

6. Bonus Question (20 Points)

Please provide the missing part of the feature has in class DS_SKIP_LIST so that, when called, it
checks whether its argument a_value is already in the list.

has (a_value: attached G): BOOLEAN
-- Is “a _value’ in the Llist?
local

ETHZ D-INFK Eiffel: Analysis, Design and Programming
Prof. Dr. B. Meyer Final Exam

-21-

