
1. Class design: Doubly-linked list 

A doubly-linked list is a linked data structure that consists of a set of data records, each having two 

special link fields that contain references to the previous and to the next record in the sequence. It can 

be viewed as two singly-linked lists formed from the same data items, in two opposite orders. 

 

 

Design and implement your Eiffel class representing this data structure. The design should satisfy the 

following criteria: 

 The design is void-safe. 

 The doubly-linked class is generic. 

 Basic operations like creating a new list, inserting a node into the list, deleting a node from 

the list, testing element existence and sorting the nodes in the list (in descending or 

ascending order of their values) should be available. 

 Provide contracts to your classes. 

 Provide a test suite for your classes. 

 

2. Class design: composite and visitor pattern 

A computer consists of many different devices, such as CPU, memory, keyboard, graphic card. An 

illustration of such a system is shown below: 

 

 

Your task is to use the composite pattern and visitor pattern to model such a system: 

 There is a deferred class DEVICE which all other devices inherit from. 



 Support at least the following devices: CPU, GPU, memory, keyboard, monitor, graph card and 

computer. CPU, GPU, memory, keyboard and monitor are non-composite devices. Graph card 

and computer are composite devices, meaning they are composed from other devices. 

 Every device has a price feature. For a non-composite device, the price describes the value of 

that individual piece; for a composite device, the price is the sum of all its component pieces. 

 Provide a deferred visitor using the visitor pattern to process all different types of devices. 

 Provide a concrete visitor, which calculates the total price for ONLY the memory parts in a 

computer device. 

 


