1. Contracts

The deferred class Time in the following code abstracts a simple interface of time in 24-hour
format; the range of valid time is specified by the class invariant. Please specify the proper
preconditions/postconditions for the class routines.

deferred class TIME
feature -- Initialization

make (a_hour, a_min, a_sec: NATURAL_S8)
-- Initialize ‘hour’, ‘minute’, and ‘second’ with ‘a_hour’,
-- ‘a_min’, and ‘a_sec’, respectively.
require

set_hour (a_hour); set minute (a_minute); set second (a_second)
ensure

feature -- Access

hour: NATURAL_8 assign set_hour
-- Hour.

minute: NATURAL_8 assign set_minute
-- Minute.

second: NATURAL_8 assign set_second
-- Second.

feature -- Setters

set_hour (a_hour: NATURAL_S8)
-- Set “hour' to be ‘a_hour’.
require

hour := a_hour
ensure

set_minute (a_minute: NATURAL_S8)
-- Set “minute' to be ‘a_minute’.
require -- omitted here
do
minute := a_minute
ensure -- omitted here
end

set_second (a_second: NATURAL_S8)
-- Set “second' to be ‘a_second’.
require -- omitted here
do
second := a_second
ensure -- omitted here
end

feature -- Operation

tick
-- Tick the time to the next second, 1in 24-hour format.
-- During a day, “tick” works in the usual way. For example,
-- the next second of 07:28:59 would be 07:29:00. While
-- the next second of 23:59:59 would be 00:00:00.
deferred
ensure

invariant
hour_in_range: hour < 24
minute_in_range: minute < 60

second_in_range: second < 60
end

2. Void Safety

The void safety mechanism prevents runtime “Call on void target.” errors by ensuring that: (1) A

statically attached reference is always dynamically attached at run-time after initialization; and

(2) Acall x. £(..) is only permitted if x is a statically attached reference.

Read the following program and answer the questions on the following page, assuming that the

compiler enforces void safety. (foo is a feature in class A.)

deferred class C

feature

end

attribute_one: detachable A

operation_one (a_argl: detachable A; a_arg2: attached A)
local
1 locl: attached A
1 loc2: detachable A
do
1 locl := a_argl -- (1)
1 loc2 := a_arg2 -- (i)
end

operation_two (a_arg: detachable A)

do
if a_arg /= Void then
operation_four
a_arg.foo -- (1i1)
end
end

operation_three (a_arg: detachable A)

do
attribute_one := a_arg
if attribute_one /= Void then
operation_four
attribute_one.foo -- (iv)
end
end

operation_four
deferred
end

(1) Are the assignments on line (i) and (ii) valid? Why or why not?

(2) Are the feature calls on line (iii) and (iv) valid? Why or why not? If not, please correct the
code to make it valid (with as small a change as possible) while preserving the intended
semantics.

3. Programming

Skip lists are a data structure for storing sorted items. In simple terms, skip lists are sorted linked
lists with two differences:

1. Forward references. The nodes in ordinary lists have one next reference, while the
nodes in skip lists may have multiple “next” references — called forward references. A
node always has a forward reference pointing to its next node, and some nodes have
extra references to nodes along the list. When the list is traversed, these extra references
allow some nodes to be “skipped”.

2. Node size. The number of forward references of a node is called the size of the node.
The size of a node is at least 1 (according to 1) and at most max_size. The header node
and the tail node always have the size max_size, and the sizes of other nodes are
determined probabilistically. Given a fixed probability p, the probabilities for a node
having size 2, 3, 4 ..., are p, p>, p*... (0 <= p <= 1), respectively.

The maximum node size max_size and the probability p are two characteristics of a skip
list, and they are both fixed at the construction time.

As shown by the example in Figure 1, a skip list can be conceptually understood as consisting of
several layers and each layer constitutes a sorted linked list containing a subset of the items.
Notice that a node of size n is linked into layers 1 —n.

&—P References between nodes

Layer 3 o » [Null
Layer 2 . [[. [Null
Layer 1 .—L Null

Header 3 4 7 12 13 15 16 18 Tail

Figure 1. Layered structure of a skip list

Inside a skip list, we need both a skip list node and a layer to specify a reference position. In the
following, we use the value stored at a node to denote that node, and use a pair (node, layer) to
denote a reference position in a skip list. For example, reference at position (12, 2) is the
reference at node 12 in layer 2. The value at a reference position is determined exclusively by
the node at that position. Thus, the value at position (12, 2) would be 12.

When traversing a skip list, we accordingly can move in two directions from a reference
position. We can either move to the lower layer of the current node, or move to the next node
in the same layer by following the reference. For example, we can move from (12, 2) to either
(12, 1) (called downward position) or (15, 2) (called forward position).

Given the skip list shown in Figure 1, the diagram in Figure 2 illustrates how the search and
insert operations could be done with efficiency.

e To search for value 16 in the skip list, we start from position (header, 3). Since the value
at the forward position is 12, which is smaller than 16, we move forward to position (12,
3); now the forward position is at the tail node, so we move downward to (12, 2); the
value at the forward position is now 15, which is still smaller than 16, so we move
forward again to position (15, 2); here the forward position has value 18, which is
bigger than 16, thus we move downward to (15, 1) and then 16 is found at its forward
position.

e To insert a value, say 17, into a skip list, we first create a node to accommodate the
value 17. Suppose the node creation procedure decides (probabilistically) that the new
node has size 3, we then collect the last positions with values smaller than 17 in layers 1
— 3. Here we (only) need to do this in layers 1 — 3 is because, as mentioned earlier, a
node of size n is (only) linked into layers 1 — n. The references at the collected positions
will point to the inserted node after insertion, and, in this example, these positions
include (12, 3), (15, 2), and (16, 1). After that, we can update accordingly the references
at the collected positions and in the new node to link the new node into the skip list, in
all 3 layers.

—-=% “16” would be found faster by following this search path

Reference positions before 17 when the insertion is done

: AN
Laver 3 ° Sy | SN Null
Y 1 . | o ®T / \
* ’
Layer 2 L > e » =v .l// N\ Null
e > /| 1z
*
Layer 1 o . . » o ° » . > ev / B Null
Yy i M,
Header 3 4 7 12 13 15 16 Tail

Figure 2. Search and insertion in a skip list

A partial implementation of a skip list has been given below. The class DS_SKIP_LIST_NODE is
already complete. Its creation feature makes use of a random number generator to determine
the size of the new created node.

The elements in the skip list are sorted in ascending order. Please provide the missing part of
the feature insert in class DS_SKIP_LIST so that, when called, it inserts its argument a_value into
the list, if a_value is not already in the list.

(In case you need the interface information for class ARRAY and COMPARABLE, it is shown on
the next page.)

class ARRAY[G]
feature

lower: INTEGER
-- Minimum 1index.

upper: INTEGER
-- Maximum index.

count: INTEGER
-- Number of available indexes.

item (i: INTEGER): G
-- Entry at index "1i'.

put (v: like item; i: INTEGER)
-- Replace “i'-th entry, if in 1index interval, with

VJ
end

deferred class COMPARABLE
feature -- Comparison

is less alias "<" (other: like Current): BOOLEAN
-- Is current object lLess than “other'?

is less_equal alias "<=" (other: like Current): BOOLEAN
-- Is current object lLess than or equal to “other'?

is_greater alias ">" (other: like Current): BOOLEAN
-- Is current object greater than “other'?

is_greater_equal alias ">=" (other: like Current): BOOLEAN
-- Is current object greater than or equal to “other'?

is_equal (other: like Current): BOOLEAN

-- Is “other' attached to an object of the same type
-- as current object and identical to it?

end

class
DS_SKIP_LIST NODE [G -> COMPARABLE]

create
make_empty, make_with_value

feature{DS_SKIP_ LIST} -- Initialization

make_empty (a_no_of_layers: NATURAL_8; a_probability: REAL)
-- Initialize a skip Llist node.
require
a_no_of_layers_big enough: a_no_of layers >= 1
a_probability in_range:
0 <= a_probability and a_probability <= 1
local
1 layers: NATURAL_S8
1 continue: BOOLEAN
1 random: RANDOM
do
-- compute probabilistically the size of the new node
from
1 random := Rand
1 layers := 1
1 _continue := True
until
not 1 continue or 1 layers >= a_no_of_layers
loop
1 random.forth
if (1_random.real_item <= a_probability) then
1 layers := 1_layers + 1
else
1 continue := false

end
end
check 1 <= 1 layers and 1_layers <= a_no_of_layers end

size := 1 layers
create links.make_filled (Void, 1, 1_layers)
ensure

size_in_range: 1 <= size and size <= a_no_of_layers
links_not_void: links /= Void
end

make_with_value (a_no_of_layers: NATURAL_8; a_probability: REAL;
a_value: G)
-- Initialize a skip list node and set ‘value’ to be ‘a_value’.
require
a_no_of_layers_big enough: a_no_of_layers >= 1
a_probability in_range: @ <= a_probability and a_probability <= 1
do
make empty (a_no_of_layers, a_probability)
set_value (a_value)
ensure
size _in_range: 1 <= size and size <= a_no_of layers
links_not_void: links /= Void

value set: value = a_value
end

feature{DS_SKIP LIST} -- Access

size: NATURAL_S8
-- Number of forward references in the node.

links: ARRAY[detachable DS_SKIP LIST_NODE[G]]
-- List of forward references.

value: detachable G assign set_value
-- Value.

feature{DS_SKIP LIST} -- Setting

set_value (a_value: detachable G)
-- Set the value to be ‘a_value’.

do

value := a_value
ensure

value_set: value = a_value
end

feature{NONE} -- Implementation

Rand: RANDOM
-- Random number generator.
once
create Result.make
end

end

class
DS_SKIP_LIST [G -> COMPARABLE]

create
make

feature{ANY} -- Initialization

make (a_no_of_layers: NATURAL_8; a_probability: REAL)
-- Initialize a skip Llist.
require
no_of layers_big enough: a_no_of_layers >= 1
probability in_range: @ <= a_probability and a_probability <= 1
local
1 count: NATURAL_S8
do
number_of_layers := a_no_of layers
probability := a_probability

-- make sure the tail node has maximum size
create tail.make_empty (a_no_of layers, 1.0)

-- make sure header has maximum size
create header.make_empty (a_no_of_layers, 1.0)

-- initially, all forward references in the header node
-- point to the tail node

from
1l count := 1

until
1 count = a_no_of layers + 1

loop

-- note that references actually point to nodes

header.links.put (tail, 1 count)
1 count := 1 count + 1

end

end

feature -- Access

probability: REAL
-- Fixed probability for each skip List, which decides
-- the distribution of node size.

number_of_layers: NATURAL_8
-- Fixed total number of Layers.

header: DS_SKIP_LIST_NODE[G]
-- List header.

tail: DS_SKIP_LIST_NODE[G]
-- List tail.

feature{ANY} -- Operation

insert (a_value: G)
-- Insert “a_value’ into the Llist.
require
-- Suppose there is a feature "has’
-- checking if “a_value’ 1is already in the skip Llist
not_in_list: not has (a_value)
local

ensure
value_inserted: has (a_value)
end

-- Other implementation details omitted

end

Please provide the missing part of the feature has in class DS_SKIP_LIST so that, when called, it
checks whether its argument a_value is already in the list.

has (a_value: attached G): BOOLEAN
-- Is “a_value’ in the Llist?
local

