
1 Object-oriented principles, Design by Contract
and Eiffel mechanisms

Consider the following 5-class Eiffel system with root class APPLICATION and
root procedure ‘make’ where some details related to creation procedures have
been omitted. The style of classes RECTANGLE, SQUARE, LINE SEGMENT
and APPLICATION does not show good use of Eiffel (and O-O) design princi-
ples.

class POINT

create
default create , make

feature −− Creation

make (r1, r2: REAL)
−− Set (x, y) to (r1, r2) .

do
x := r1
y := r2

ensure
x set : x = r1
y set : y = r2

end

feature −− Access

x: REAL
−− The x−coordinate.

y: REAL
−− The y−coordinate.

feature −− Element change

move (p: POINT)
−− Move (x, y) to (x + p.x, y + p.y).

do
x := x + p.x
y := y + p.y

ensure
x updated: x = old x + p.x
y updated: y = old y + p.y

end

end

class RECTANGLE
...
feature −− Access

upper left : POINT
−− The upper left corner.

lower right : POINT
−− The lower right corner.

end

class SQUARE
...

1

feature −− Access
upper left : POINT
−− The upper left corner.

side length : REAL
−− The side length.

end

indexing
description : ”Line segments between points p1 and p2.”

class LINE SEGMENT
...
feature −− Access

p1: POINT

p2: POINT
end

class APPLICATION

create
make

feature

make
−− Create some shapes and move them.

local
r : RECTANGLE
s : SQUARE
l : LINE SEGMENT

do
create r
create s
create l
io . put string (”Moved the ” + move and get name (r, create {POINT}.

make (2, 2)) + ”%N”)
io . put string (”Moved the ” + move and get name (s, create {POINT}.

make (3, 5)) + ”%N”)
io . put string (”Moved the ” + move and get name (l, create {POINT}.

make (2.5, 4)) + ”%N”)
end

move and get name (a: ANY, p: POINT): STRING
−− Move the shape stored in ‘a’ by the vector ‘p ’.
−− ‘Result’ will be the name of the shape.

do
if {r: RECTANGLE} a then

r . upper left .move (p)
r . lower right .move (p)
Result := ”rectangle”

elseif {s: SQUARE} a then
s . upper left .move (p)
Result := ”square”

elseif {l : LINE SEGMENT} a then
l .p1.move (p)
l .p2.move (p)
Result := ”line segment”

else
Result := ”unknown”

end
end

2

end

Rewrite the program using Eiffel and O-O principles and Design by Con-
tract. Your solution may use class POINT as given above. Explain the changes:
which principles you applied, and which language mechanisms facilitate your
solution.

3

2 Genericity, agents, patterns and components

A principal goal of the Eiffel method is the creation of reusable components. The
pattern of publishing some type of object on an event channel that forwards it
to a list of subscribers is a common idiom that can be reused across applications.
Consider the following (artificial but concise) client code:

class APPLICATION

create
make

feature −− Creation
make

local
ec : EVENT CHANNEL [INTEGER]

do
create ec
−− ‘ec’ should now have an empty list of subscribers .

ec . subscribe (agent subscriber1)
−− ‘ec’ should now have exactly one subscriber.

ec .publish (2)
−− ‘2’ should now have appeared on the console.

ec . subscribe (agent subscriber2)
−− ‘ec’ should now have two subscribers.

ec .publish (3)
−− ‘3’ and ‘4’ should now have appeared on the console.

end

feature −− Subscriber
subscriber1 (i : INTEGER)

do
io . put integer (i)

end

subscriber2 (i : INTEGER)
do

io . put integer (i + 1)
end

end

The task is to implement class EVENT CHANNEL. You can make use of
class LINKED LIST whose interface is given here:

class interface LINKED LIST [G]

create
make
−− Create an empty list.

feature −− Element change
extend (v: G)
−− Add ‘v’ to the end.

feature −− Access
item: G
−− Item at current cursor position.

feature −− Cursor movement
start
−− Move cursor to first position .

4

forth
−− Move cursor to next position.

feature −− Status report
after : BOOLEAN
−− Is there no valid cursor position to the right of the cursor?

end

(Hint: an agent that can be called with one argument of type G has type
PROCEDURE [ANY, TUPLE [G]])

5

3 Multiple inheritance

The following program with root class APPLICATION and root procedure
‘make’ uses multiple inheritance:

class APPLICATION

create
make

feature
make

local
a: A
c: C
d: D

do
create c
create d
a := c
a. f
c.g
a := d
a. f
c := d
c. f
d. f

end
end

class A
create

default create

feature
f

do
io . put string (”A.f%N”)

end

g
do

io . put string (”A.g%N”)
end

end

deferred class B
inherit

A
rename

f as h
undefine

g
end

end

class C

inherit
A redefine f end

create

6

default create

feature
f

do
io . put string (”C.f%N”)

end
end

class D

inherit
B select h end
C redefine g end

create
default create

feature
g

do
io . put string (”D.g%N”)

end
end

What will be printed on the console if the program is executed?

7

