
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Solution 5: Assignments and control structures

ETH Zurich

1 Assignments

The solution lists the correct statements for each of the subtasks.

1. (a)

2. (d)

3. (d)

4. (b)

5. (c)

6. (e)

7. (b) (d)

8. (a)

9. (c) (e)

2 Reading loops

Version A:

• The result of the comparison using = will always be False (STRING is a reference type).

• The if-statement is inside the loop: it will move all the stations until it finds the right one.

• The corrected code of version A is shown in Listing 1.

Version B:

• Infinite loop: there is no call to a command that advances the cursor position in the list.

• Possible precondition violation: i.item.name.is equal (”Central”) may be tested before
i.after, therefore trying to access an item when the cursor has already advanced past the
end of the list. To get a guaranteed order of evaluation, use or else instead of or.

• The corrected code of version B is shown in Listing 2.

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Listing 1: Version A

explore
−− Move ”Central”.

local
i: like Zurich.stations.new cursor
found: BOOLEAN

do
from

i := Zurich.stations.new cursor
until

i.after or found
loop
if i.item.name.is equal (”Central”) then

found := True
else

i.forth
end

end
if not i.after then

i.item.set position ([0.0, 0.0])
end

end

Listing 2: Version B

explore
−− Move ”Central”.

local
i: like Zurich.stations.new cursor

do
from

i := Zurich.stations.new cursor
until

i.after or else i.item.name.is equal
(”Central”)

loop
i.forth

end
if not i.after then

i.item.set position ([0.0, 0.0])
end

end

3 Next station: loops

note
description: ”Creating new objects for Zurich.”

class
DISPLAY

inherit
ZURICH OBJECTS

feature −− Explore Zurich

add public transport
−− Add a public transportation unit per line.

do
across

Zurich.lines as i
loop

i.item.add transport
end

end

update transport display (t: PUBLIC TRANSPORT)
−− Update route information display inside transportation unit ‘t’.

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

require
t exists: t /= Void

local
i: INTEGER
s: STATION

do
console.clear
console.append line (t.line.name.out + ” Willkommen/Welcome”)
from

i := 1
s := t.arriving

until
i > 3 or s = Void

loop
console.append line (stop info (t, s))
s := t.line.next station (s, t.destination)
i := i + 1

end
if s /= Void then
if s /= t.destination then

console.append line (”...”)
end
console.append line (stop info (t, t.destination))

end
end

stop info (t: PUBLIC TRANSPORT; s: STATION): STRING
−− Information about stop ‘s’ of transportation unit ‘t’.

require
t exists: t /= Void
s on line: t.line.has station (s)

local
time min: INTEGER
l: LINE

do
time min := t.time to station (s) // 60
if time min = 0 then
Result := ”<1”

else
Result := time min.out

end
Result := Result + ” Min.%T” + s.name
across

s.lines as i
loop

l := i.item
if l /= t.line and

((l.next station (s, l.first) /= Void and not
t.line.has station (l.next station (s, l.first))) or

(l.next station (s, l.last) /= Void and not
t.line.has station (l.next station (s, l.last)))) then

Result := Result + ” ” + i.item.name.out

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

end
end

end

end

4 Board game: Part 1

There are several possible solution; we discuss two that are most reasonable in our opinion.
A simpler solution includes only three classes:

• GAME: encapsulates the logic of the game (start state, the structure of a round, ending
conditions).

• DIE: provides random numbers in the required range.

• PLAYER: stores the state of each player in the game and performs a turn.

We discarded ROUND and TURN: we consider them parts of behavior of GAME and
PLAYER respectively, rather than separate abstractions. Additionally PLAYER and TOKEN
represent the same abstraction for now.

In the simpler solution we don’t introduce classes for SQUARE and BOARD. The only
information associated with squares in the current version of the game is their index, thus a
square can be easily represented with an integer. Also the board in the current version doesn’t
have any specific structure (square arrangement); the only property of the board is the number
of squares, which probably does not deserve a separate class and instead can be stored in GAME.

A more flexible solution additionally includes classes SQUARE and BOARD. Though
SQUARE doesn’t contain enough behavior for now, we anticipate that in the future versions of
the game there might be squares with special properties and behavior (this anticipation is based
on our knowledge of the problem domain, namely that interesting boardgames have squares of
different types with different properties).

Introducing class BOARD makes the solution more flexible with respect to the arrangement
of squares on the board. In the simple version the knowledge about “on which square does a
token land if it moves n steps starting from square x” is located in class PLAYER. Once it
becomes more complicated than just x + n, it is better to encapsulate such knowledge in class
BOARD.

4


	Assignments
	Reading loops
	Next station: loops
	Board game: Part 1

