
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Assignment 7: Inheritance and polymorphism

ETH Zurich

Hand-out: Friday, 4 November 2011
Due: Tuesday, 15 November 2011

Well 2 c© Randall Munroe (http://xkcd.com/568/)

Goals

• Understand polymorphism and dynamic binding.

• Practice inheritance.

• Continue the design and implementation of the board game.

1 Polymorphism and dynamic binding

Review polymorphic attachment and dynamic binding (Touch of Class, sections 16.2 and 16.3).
The following classes represent various kinds of traffic participants. Figure 1 shows the class

hierarchy. The listing below shows the source code of the classes.

1

http://xkcd.com/568/


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Figure 1: Class diagram for TRAFFIC PARTICIPANT and its descendants.

Listing 1: Class TRAFFIC PARTICIPANT

deferred class
TRAFFIC PARTICIPANT

feature −− Access
name: STRING
−− Name.

feature {NONE} −− Initialization
make (a name: STRING)
−− Initialize with ‘a name’.

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name

ensure
name set: name = a name

end

feature −− Basic operations
move (distance: REAL)
−− Move ‘distance’ km.

require
distance geq zero: distance >= 0.0

deferred
end

invariant
name valid: name /= Void and then not name.is empty

end

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Listing 2: Class MOTORIZED PARTICIPANT

deferred class
MOTORIZED PARTICIPANT

inherit
TRAFFIC PARTICIPANT

rename
move as ride

end

feature {NONE} −− Initialization
make with device (a name, a device: STRING)
−− Initialize with ‘a name’ and ‘a device’.

require
a device valid: a device /= Void and then not a device.is empty
a name valid: a name /= Void and then not a name.is empty

do
make (a name)
device := a device

ensure
device set: device = a device
name set: name = a name

end

feature −− Access
device: STRING
−− Device name.

feature −− Basic operations
ride (distance: REAL)
−− Ride ‘distance’ km.

do
io.put string (name + ” rides on a ” + device + ” ” + distance.out + ” km”)

end

invariant
device valid: device /= Void and then not device.is empty

end

Listing 3: Class CAR DRIVER

class
CAR DRIVER

inherit
MOTORIZED PARTICIPANT

rename
make with device as make with car,
ride as drive

redefine
drive

end

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

create
make with car

feature −− Basic operations
drive (distance: REAL)
−− Drive car for ‘distance’ km.

do
io.put string (name + ” drives ” + device + ” ” + distance.out + ” km”)

end
end

Listing 4: Class PEDESTRIAN

class
PEDESTRIAN

inherit
TRAFFIC PARTICIPANT

rename
move as walk

end

create make

feature −− Basic operations
walk (distance: REAL)
−− Walk ‘distance’ km.

do
io.put string (name + ” walks ” + distance.out + ” km”)

end
end

To do

Given the variable declarations

traffic participant: TRAFFIC PARTICIPANT
motorized participant: MOTORIZED PARTICIPANT
car driver: CAR DRIVER
pedestrian: PEDESTRIAN

for each of the code fragments below decide whether it compiles. If not, why? If yes, what does
it print? This is a pen-and-paper task; you are not supposed to use EiffelStudio.

Example:

create {CAR DRIVER} traffic participant.make (”Bob”, ”Seat”)
traffic participant.drive (7.8)

The code does not compile, because the feature make is not a creation procedure of class
CAR DRIVER. Additionally, the static type of traffic participant offers no feature drive.

1. create {CAR DRIVER} motorized participant.make with device (”Louis”, ”BMW”)
motorized participant.ride (3.2)

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

2. create motorized participant.make with device (”Sue”, ”bus”)
motorized participant.ride (4.2)

3. create {PEDESTRIAN} traffic participant.make (”Julie”)
traffic participant.move (0.5)

4. create {MOTORIZED PARTICIPANT} car driver.make with car (”Ben”, ”Audi”)
car driver.drive (12.3)

5. create {PEDESTRIAN} traffic participant.make (”Jim”)
pedestrian := traffic participant
pedestrian.walk (1.9)

6. create {CAR DRIVER} traffic participant.make with car (”Anna”, ”Mercedes”)
traffic participant.drive (3.1)

7. create car driver.make with car (”Megan”, ”Renault”)
motorized participant := car driver
motorized participant.ride (17.8)

To hand in

Hand in your answers for the code fragments above.

2 Ghosts in Zurich

Ghosts are taking over Zurich! In this task you will implement a special kind of mobile object:
a GHOST. Ghosts in Traffic have the following behavior: they choose a station of the city and
then fly around it in circles.

To do

1. Download http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/07/traffic.zip,
unzip it and open assignment 7.ecf.

2. Create a new class GHOST and make it inherit from MOBILE. The latter has three
deferred features: position, speed and move distance, which you have to implement before
you can successfully compile your class. For the first two features you have a choice of
making them into either an attribute or a function. The third one should be implemented
as a procedure that calculates where the ghost ends up when it moves from the current
position by d meters. You can assume that all ghosts always move at the same speed (e.g.
10 meters per second).

You’ll probably also want to add new features to GHOST, for example to store the station
that it is flying around and the distance it keeps from the station (the radius of its circular
trajectory). Additionally you’ll need a creation procedure that takes the station and the
radius as arguments.

In order to make the implementation as simple as possible, first think about the easiest
way to represent circular motion (maybe you would want to draw it on paper first). Hint:
It’s convenient to represent the ghost position at any point in time as a sum of two vectors.

5

http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/07/traffic.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

3. In the class GHOST INVASION implement a feature add ghost (s: STATION; r:
REAL 64) that creates a ghost flying around a station s at a distance r and adds it
to Zurich (using the feature add custom mobile). Don’t forget to update the map in order
to create the view for the new ghost. After that, modify the view so that the ghost is
depicted as an icon instead of the default black dot; you can use “ghost.png” from the
“images” directory for the icon. The expression Zurich map.custom mobile view (ghost)
gives you access to the view of the object ghost.

Test the add ghost feature by calling it from invade with arguments of your choice. To
make the ghost move, double-click on the map.

4. Modify the feature invade so that it generates 10 ghosts flying around random stations of
Zurich at a random distance between 10 and 100 meters (you don’t have to check that all
stations are different). To access stations by integer index, create a cursor that iterates
through the stations and call the command go to on that cursor.

To hand in

Hand in classes GHOST and GHOST INVASION.

3 Board game: Part 3

In this task you will extend the implementation of the board game. You will find an updated
problem description below.

The board game comes with a board, divided into 40 squares, a pair of six-sided dice, and
can accommodate 2 to 6 players. It works as follows:

• All players start from the first square.

• One at a time, players take a turn: roll the dice and advance their respective tokens on
the board.

• A round consists of all players taking their turns once.

• Players have money. Each player starts with 7 CHF.

• The amount of money changes when a player lands on a special square:

– Squares 5, 15, 25, 35 are bad investment squares: a player has to pay 5 CHF. If the
player cannot afford it, he gives away all his money.

– Squares 10, 20, 30, 40 are lottery win squares: a player gets 10 CHF.

• The winner is the player with the most money after the first player advances beyond the
40th square. Ties (multiple winners) are possible.

To do

Modify the implementation of the board game in such a way that it accommodates the changes
in the problem description (money, special squares, new winning criterion). We recommend that
you start from the master solution to the assignment 6: http://se.inf.ethz.ch/courses/2011b_

fall/eprog/assignments/07/board_game.zip1.

1The solution depends on the EiffelBase2 library being located in the standard library directory. If you
did not put it there while solving the previous assignment, the project will not compile. In this case go to
Project->Project Settings, choose Groups->Libraries->base2 in the tree on the left and then change the
Location property on the right to wherever you put the library. If you did not download the library at all, refer
to Assignment 6, Task 2 for instructions.

6

http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/07/board_game.zip
http://se.inf.ethz.ch/courses/2011b_fall/eprog/assignments/07/board_game.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Hints

Are there entities in the problem domain that didn’t have enough properties and behavior to
deserve their own classes in the previous version of the game, but that gained some properties
or behavior in the current version? You might want to introduce new classes for such entities.

Bad investment and lottery win squares are special cases of squares, which differ in a way
they affect players. To model this you can introduce class SQUARE and then use inheritance
and feature redefinition to implement the behavior of special squares. You can store squares
of all kinds in a single polymorphic container (e.g. V ARRAY [SQUARE]) and let dynamic
binding take care of which special behavior applies for each square.

To hand in

Hand in the code of your classes.

7


	Polymorphism and dynamic binding
	Ghosts in Zurich
	Board game: Part 3

