
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

Solution 8: Recursion

ETH Zurich

1 An infectious task

1. Correct. This version works and uses tail recursion. It will always give the flu to p first,
and then call infect on his/her coworker. The recursion ends when either there is no
coworker, or the coworker is already infected. Without the second condition the recursion
is endless if the coworker structure is cyclic.

2. Incorrect. This version results in endless recursion if the coworker structure is cyclic. The
main cause is that the coworker does not get infected before the recursive call is made, so
with a cyclic structure nobody will ever be infected to terminate the recursion.

3. Incorrect. This version results in an endless loop if the structure is cyclic. The main
problem is with the loop’s exit condition that does not include the case when q is already
infected.

4. Correct. However, this version will call set flu twice on all reachable persons except the
initial one. On the initial person set flu will be called once in case of a non-circular
structure and three times in case of a circular structure.

Multiple coworkers

class
PERSON

create
make

feature −− Initialization

make (a name: STRING)
−− Create a person named ‘a name’.

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name
create {V ARRAYED LIST [PERSON]} coworkers

ensure
name set: name = a name
no coworkers: coworkers.is empty

end

feature −− Access

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

name: STRING
−− Name.

coworkers: V LIST [PERSON]
−− List of coworkers.

has flu: BOOLEAN
−− Does the person have flu?

feature −− Element change

add coworker (p: PERSON)
−− Add ‘p’ to ‘coworkers’.

require
p exists: p /= Void
p different: p /= Current
not has p: not coworkers.has (p)

do
coworkers.extend back (p)

ensure
coworker set: coworkers.has (p)

end

set flu
−− Set ‘has flu’ to True.

do
has flu := True

ensure
has flu: has flu

end

invariant
name valid: name /= Void and then not name.is empty
coworkers exists: coworkers /= Void

end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
p.set flu
across

p.coworkers as c
loop

if not c.item.has flu then
infect (c.item)

end
end

end

The coworkers structure is a directed graph. The master solution traverses this graph using

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

depth-first search.

2 Short trips

Listing 1: Class SHORT TRIPS

note
description: ”Short trips.”

class
SHORT TRIPS

inherit
ZURICH OBJECTS

feature −− Explore Zurich

highlight short distance (s: STATION)
−− Highight stations reachable from ‘s’ within 2 minutes.

require
station exists: s /= Void

do
highlight reachable (s, 2 ∗ 60)

end

feature {NONE} −− Implementation

highlight reachable (s: STATION; t: REAL 64)
−− Highight stations reachable from ‘s’ within ‘t’ seconds.

require
station exists: s /= Void

local
line: LINE
next: STATION

do
if t >= 0.0 then

Zurich map.station view (s).highlight
across

s.lines as li
loop

line := li.item
next := line.next station (s, line.north terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end
next := line.next station (s, line.south terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end

end
end

end

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

end

3 Get me out of this maze!

Listing 2: Class MAZE

class
MAZE

inherit
ARRAY2 [CHARACTER]

redefine
out

end

create
make

feature −− Map characters

Empty char: CHARACTER = ’.’
−− Character for empty fields.

Exit char: CHARACTER = ’∗’
−− Character for an exit field.

Wall char: CHARACTER = ’#’
−− Character for a wall field.

Visited char: CHARACTER = ’x’
−− Character for a field that has been visited by ‘find path’.

feature −− Element change

set empty (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to empty.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Empty char, r, c)

ensure
field set: item (r, c) = Empty char

end

set exit (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to exit.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Exit char, r, c)

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

ensure
field set: item (r, c) = Exit char

end

set wall (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to wall.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Wall char, r, c)

ensure
field set: item (r, c) = Wall char

end

set visited (r, c: INTEGER)
−− Set field with row ‘r’ and column ‘c’ to visited.

require
r valid: r >= 1 and r <= height
c valid: c >= 1 and c <= width

do
put (Visited char, r, c)

ensure
field set: item (r, c) = Visited char

end

feature −− Status report

is valid (c: CHARACTER): BOOLEAN
−− Is ‘c’ a valid map character?

do
Result := c = Empty char or c = Wall char or c = Exit char

end

feature −− Path finding

path: STRING
−− Sequence of instructions to find the way out of the maze.

find path (r, c: INTEGER)
−− Find the path starting at row ‘r’ and column ‘c’.

require
row valid: 1 <= r and r <= height
column valid: 1 <= c and c <= width

do
if item (r, c) = Exit char then

path := ””
elseif item (r, c) = Empty char then

set visited (r, c)
if (c − 1) > 0 and path = Void then

find path (r, c − 1)
if path /= Void then

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

path := ”W > ” + path
end

end
if (r − 1) > 0 and path = Void then

find path (r − 1, c)
if path /= Void then

path := ”N > ” + path
end

end
if (c + 1) <= width and path = Void then

find path (r, c + 1)
if path /= Void then

path := ”E > ” + path
end

end
if (r + 1) <= height and path = Void then

find path (r + 1, c)
if path /= Void then

path := ”S > ” + path
end

end
set empty (r, c)

end
end

feature −− Output

out: STRING
−− Maze map.

local
i, j: INTEGER

do
from

i := 1
j := 1
Result := ””

until
i > height

loop
from

j := 1
until

j > width
loop

Result.append character (item (i, j))
j := j + 1

end
i := i + 1
Result := Result + ”%N”

end
end

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

end

Listing 3: Class APPLICATION

class
MAZE APPLICATION

create
make

feature −− Initialization
make
−− Run application.

local
mr: MAZE READER
maze: MAZE
start row, start column: INTEGER

do
create mr
Io.put string (”Please enter the name of a maze file: ”)
Io.read line
mr.read maze (Io.last string)
if mr.has error then

Io.put string (mr.error message)
else

maze := mr.last maze
Io.put string (”%N” + maze.out + ”%N”)

Io.put string (”Please enter a starting field for finding a path.%N”)
from
until

start row /= 0
loop

Io.put string (”Row: ”)
Io.read integer
if Io.last integer > 0 and Io.last integer <= maze.height then

start row := Io.last integer
else

Io.put string (”Invalid row. Please try again%N”)
end

end
from
until

start column /= 0
loop

Io.put string (”Column: ”)
Io.read integer
if Io.last integer > 0 and Io.last integer <= maze.width then

start column := Io.last integer
else

Io.put string (”Invalid column. Please try again%N”)
end

end

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2011

maze.find path (start row, start column)
if maze.path /= Void then

Io.put string (”There’s a way out! Go ” + maze.path.out + ”You’re free!%N”
)

else
Io.put string (”Oops, no way out! You’re trapped!%N”)

end
end

end

end −− class APPLICATION

8


