
Chair of Software Engineering

Automatic Verification
of Computer Programs

What is verification

• Check correctness of the implementation
given the specification

• Static verification
– Check correctness without executing the program

– E.g. static type systems, theorem provers

• Dynamic verification
– Check correctness by executing the program

– E.g. unit tests, automatic testing

• Automatic verification
– Push-button verification

2

How to get the specification

• Need machine-readable specification for
automatic verification (not just comments)

• Different variants:

– Eiffel‘s „Design by Contract“

• With new across construct even features quantifiers

– .Net 4.0 „Code Contracts“

• Implmeneted contracts as a library

– JML „Java Modeling Language“

• Dialect of Java featuring contracts with special comments

• Writing expressive specification is difficult

3

Dynamic Verification

• Execute program and check that execution
satisfies specification

• Manual

– Write unit tests (xUnit framework)

– Execute program and click around

• Automatic

– Random testing

• Generate random objects

• Execute random routines

4

Random Testing

• Select routine under test

• Precondition used for input validation

– Test is valid if it passes precondition

• Postcondition used as test oracle

– Test is successful if it passes postcondition

• Improvements to random testing by making
input selection smarter (e.g. use linear solver)

5

Random Testing

• Create random objects

– Call random creation procedure

– Call random commands

– For arguments, generate random input

• Random basic types

– Interesting values: Void, (2^31-1), 1, 0, -1, …

• Build object pool

6

Static Verification

• Need a model of the programming language

– What is the effect of an instruction

• Translate program to a mathematical
representation

• Use an automatic or interactive theorem
prover to check that specification is satisfied
in every possible execution

7

Translation to Boogie

8

implementation APPLICATION.make {

 var temp_1;

entry:

 havoc temp_1;

 assume (temp_1 != Void) &&

 (!Heap[temp_1, $allocated]);

 Heap[temp_1, $allocated] := true;

 Heap[temp_1, $type] := ACCOUNT;

 call create.ACCOUNT.make(temp_1);

}

make

 local

 a: ACCOUNT

 do

 create a.make

 end

Translation to Boogie

• Translates AST from EiffelStudio to Boogie

• Uses Boogie verifier to check Boogie files

• Traces verification errors back to Eiffel source

9

EiffelStudio AutoProof Boogie

Eiffel
AST

Boogie
File

Boogie
Errors

Eiffel
Errors

Verification Demo

• EiffelStudio: AutoTest

• EVE: AutoProof

• VisualStudio: CodeContracts

10

Automatic Fault Correction

11

• Build a test suite

– E.g through automatic testing

• Find and localize faults

– Failing test cases

– Static analysis

• Try fixes

– Apply fix templates and random code changes

• Validate fixes

– Run test suite again, now all tests have to pass

Dynamic Contract Inference

• Build a test suite

– E.g through automatic testing

• Run program and store interesting values in
interesting program points

– E.g. argument values on feature calls

• Post-analyze values and recognize patterns

• Propose new contracts based on patterns

12

Static Contract Inference

• Infer precondition from postcondition or other
assertions

– Weakest precondition calculus

• Infer loop invariants from postcondition

– Generate mutations from postcondition

13

Putting It All Together

14

Compiler
Automatic

Tests
Automatic

Proof

Element
Statically
Verified

Automatic
Fixes

Manual
Proof

Automatic
Contract
Inference

Manual
Fixes

Element
Dynamically

Verified

Demo

• VAMOC video

15

References

• EVE: http://se.inf.ethz.ch/research/eve/

• AutoTest, AutoProof, AutoFix, CITADEL, …:
http://se.inf.ethz.ch/research/

• CodeContracts:
http://research.microsoft.com/en-
us/projects/contracts/

• JML: http://www.cs.ucf.edu/~leavens/JML/

 16

http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/
http://se.inf.ethz.ch/research/
http://se.inf.ethz.ch/research/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://www.cs.ucf.edu/~leavens/JML/
http://www.cs.ucf.edu/~leavens/JML/

