
Chair of Software Engineering 

Automatic Verification 
of Computer Programs 



What is verification 

• Check correctness of the implementation 
given the specification 

• Static verification 
– Check correctness without executing the program 

– E.g. static type systems, theorem provers 

• Dynamic verification 
– Check correctness by executing the program 

– E.g. unit tests, automatic testing 

• Automatic verification 
– Push-button verification 
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How to get the specification 

• Need machine-readable specification for 
automatic verification (not just comments) 

• Different variants: 

– Eiffel‘s „Design by Contract“ 

• With new across construct even features quantifiers 

– .Net 4.0 „Code Contracts“ 

• Implmeneted contracts as a library 

– JML „Java Modeling Language“ 

• Dialect of Java featuring contracts with special comments 

• Writing expressive specification is difficult 
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Dynamic Verification 

• Execute program and check that execution 
satisfies specification 

• Manual 

– Write unit tests (xUnit framework) 

– Execute program and click around 

• Automatic 

– Random testing 

• Generate random objects 

• Execute random routines 
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Random Testing 

• Select routine under test 

• Precondition used for input validation 

– Test is valid if it passes precondition 

• Postcondition used as test oracle 

– Test is successful if it passes postcondition 

 

• Improvements to random testing by making 
input selection smarter (e.g. use linear solver) 
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Random Testing 

• Create random objects 

– Call random creation procedure 

– Call random commands 

– For arguments, generate random input 

• Random basic types 

– Interesting values: Void, (2^31-1), 1, 0, -1, … 

• Build object pool 
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Static Verification 

• Need a model of the programming language 

– What is the effect of an instruction 

• Translate program to a mathematical 
representation 

• Use an automatic or interactive theorem 
prover to check that specification is satisfied 
in every possible execution 
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Translation to Boogie 
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implementation APPLICATION.make { 

  var temp_1; 

entry: 

  havoc temp_1; 

  assume (temp_1 != Void) &&  

                       (!Heap[temp_1, $allocated]); 

  Heap[temp_1, $allocated] := true; 

  Heap[temp_1, $type] := ACCOUNT; 

  call create.ACCOUNT.make(temp_1); 

} 

make 

 local 

  a: ACCOUNT 

 do 

  create a.make 

 end 



Translation to Boogie 

• Translates AST from EiffelStudio to Boogie 

• Uses Boogie verifier to check Boogie files 

• Traces verification errors back to Eiffel source 
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Verification Demo 

• EiffelStudio: AutoTest 

• EVE: AutoProof 

• VisualStudio: CodeContracts 
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Automatic Fault Correction 
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• Build a test suite 

– E.g through automatic testing 

• Find and localize faults 

– Failing test cases 

– Static analysis 

• Try fixes 

– Apply fix templates and random code changes 

• Validate fixes 

– Run test suite again, now all tests have to pass 



Dynamic Contract Inference 

• Build a test suite 

– E.g through automatic testing 

• Run program and store interesting values in 
interesting program points 

– E.g. argument values on feature calls 

• Post-analyze values and recognize patterns 

• Propose new contracts based on patterns 
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Static Contract Inference 

• Infer precondition from postcondition or other 
assertions 

– Weakest precondition calculus 

• Infer loop invariants from postcondition 

– Generate mutations from postcondition 

13 



 

Putting It All Together 
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Demo 

• VAMOC video 
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References 

• EVE: http://se.inf.ethz.ch/research/eve/ 

 

• AutoTest, AutoProof, AutoFix, CITADEL, …: 
http://se.inf.ethz.ch/research/ 

 

• CodeContracts: 
http://research.microsoft.com/en-
us/projects/contracts/ 

 

• JML: http://www.cs.ucf.edu/~leavens/JML/ 
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