Chair of Software En

gineerin

Automatic Verification
of Computer Programs

What is verification)

Check correctness of the implementation
given the specification

Static verification
— Check correctness without executing the program
— E.g. static type systems, theorem provers

Dynamic verification
— Check correctness by executing the program
— E.g. unit tests, automatic testing

Automatic verification
— Push-button verification

How to get the specification ()

* Need machine-readable specification for
automatic verification (not just comments)

e Different variants:

— Eiffel‘s ,,Design by Contract”
* With new across construct even features quantifiers

— .Net 4.0 ,,Code Contracts”

* Implmeneted contracts as a library
— JML ,Java Modeling Language”

 Dialect of Java featuring contracts with special comments

* Writing expressive specification is difficult

Dynamic Verification)

* Execute program and check that execution
satisfies specification

 Manual
— Write unit tests (xUnit framework)
— Execute program and click around

e Automatic

— Random testing
* Generate random objects
* Execute random routines

Random Testing)

Select routine under test
Precondition used for input validation
— Test is valid if it passes precondition

Postcondition used as test oracle

— Test is successful if it passes postcondition

Improvements to random testing by making
input selection smarter (e.g. use linear solver)

Random Testing

* Create random objects
— Call random creation procedure
— Call random commands
— For arguments, generate random input

 Random basic types

— Interesting values: Void, (2731-1), 1, 0, -1, ...

* Build object pool

Static Verification)

* Need a model of the programming language
— What is the effect of an instruction

* Translate program to a mathematical
representation

e Use an automatic or interactive theorem

prover to check that specification is satisfied
in every possible execution

Translation to Boogie

make
local
a: ACCOUNT
do
create a.make
end

implementation APPLICATION.make {
var temp 1;

entry:
havoc temp 1;
assume (temp 1 != Void) &&

(!Heap[temp 1,

Heap[temp 1, S$allocated] := true;
Heap[temp 1, Stype] := ACCOUNT;
call create.ACCOUNT.make (temp 1) ;

Sallocated]) ;

Translation to Boogie “

Eiffel Boogie

AST File
EiffelStudio AutoProof Boogie
Eiffel Boogie

Errors Errors

* Translates AST from EiffelStudio to Boogie
* Uses Boogie verifier to check Boogie files
* Traces verification errors back to Eiffel source

Verification Demo

e EiffelStudio: AutoTest
e EVE: AutoProof
e VisualStudio: CodeContracts

Automatic Fault Correction

)

Build a test suite
— E.g through automatic testing

Find and localize faults

— Failing test cases

— Static analysis

Try fixes

— Apply fix templates and random code changes

Validate fixes
— Run test suite again, now all tests have to pass

Dynamic Contract Inference

)

Build a test suite
— E.g through automatic testing

Run program and store interesting values in
Interesting program points

— E.g. argument values on feature calls
Post-analyze values and recognize patterns
Propose new contracts based on patterns

Static Contract Inference ()

* |nfer precondition from postcondition or other
assertions

— Weakest precondition calculus

* |Infer loop invariants from postcondition

— Generate mutations from postcondition

Putting It All Together “

Automatic Manual
Fixes Fixes

Dynamically
Proof Leon Verified

Compiler

Automatic Automatic Element }

Automatic
Contract
Inference

\ 4

Element Manual
Statically
Verified Proof

14

Demo

e VAMOC video

References)

EVE: http://se.inf.ethz.ch/research/eve/

AutoTest, AutoProof, AutoFix, CITADEL, ...:
http://se.inf.ethz.ch/research/

CodeContracts:
http://research.microsoft.com/en-
us/projects/contracts/

JML: http://www.cs.ucf.edu/~leavens/IML/

16

http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/eve/
http://se.inf.ethz.ch/research/
http://se.inf.ethz.ch/research/
http://se.inf.ethz.ch/research/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://www.cs.ucf.edu/~leavens/JML/
http://www.cs.ucf.edu/~leavens/JML/

