
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 10

2

Today

 Basic data structures

 Arrays

 Linked Lists

 Hashtables

 Another data structure: Tree

3

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

Constant time for random reads

Constant time for random writes

Costly to resize (including inserting elements in the
middle of the array)

Must be indexed by an integer

Generally very space efficient

In Eiffel the basic array class is generic, ARRAY [G].

4

Using Arrays

Which of the following lines are valid?

Which can fail, and why?

 my_array : ARRAY [STRING]

 my_array [“Fred”] := “Sam”

 my_array [10] + “‟s Hat”

 my_array [5] := “Ed”

 my_array.force (“Constantine”, 9)

Which is not a constant-time array operation?

Valid, can‟t fail

Invalid

Valid, can fail

Valid, can fail

Valid, can‟t fail

5

Linked Lists

 Linked lists are one of the simplest data-structures

 They consist of linkable cells

class LINKABLE [G]

create
 set_value

feature
 set_value (v : G)
 do
 value := v
 end

 value : G

 set_next (n : LINKABLE[G])
 do
 next := n
 end

 next : LINKABLE [G]
end

6

Using Linked Lists

Suppose you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

Insert at the beginning

Insert in the middle

Insert at the end

Find the length of the list

What simple optimization could be made to make end-
access faster?

O (1)

O (n)

O (n)

O (n)

7

Hashtables

Hashtables provide a way to use regular objects as keys
(sort of like how we use INTEGER “keys” in arrays).

This is essentially a trade-off:

 We have to provide a hash function.

 The hash function maps K, the set of possible keys,
into an integer interval a .. b.

 A perfect hash function gives a different integer
value for every element of K.

 Whenever two different keys give the same hash
value, a collision occurs.

 Our hash function should be good (minimize collisions)

 Our hashtable will always take up more space than it
 needs to

8

Good points about Hashtables

Hashtables aren‟t all that bad though, they provide

us with a great solution: they can store and retrieve
objects quickly by key! This is a very common operation.

For each of the following, define what the key and
 the values could be:

A telephone book

The index of a book

Google search

Name Telephone Number

Concept Page

Search String Websites

Would you use a hashtable or an array for storing the
pages of a book?

9

Data structures

 You have seen several data structures

 ARRAY, LINKED_LIST, HASH_TABLE, …

 We will now look at another data structure and see how
recursion can be used for traversal.

10

Tree

11

Tree

12

Tree: A more abstract way

node root

leaf

 A non-empty tree has one root. An empty tree does not
have a root.

 Every non-leaf node has links to its children. A leaf
does not have children.

 There are no cycles.

13

Binary tree

node

 A binary tree is a tree.

 Each node can have at most 2 children

 (possibly 0 or 1).

14

Exercise: Recursive traversal

 Implement class NODE with an INTEGER attribute.

 In NODE implement a recursive feature that traverses
the tree and prints out the INTEGER value of each
NODE object.

 Test your code with a class APPLICATION which builds
a binary tree and calls the traversal feature.

15

Exercise: Solution

 See code in IDE.

16

Binary search tree

10

8 13

4 9 20

 A binary search tree is a binary tree where each node
has a COMPARABLE value.

 Left sub-tree of a node contains only values less than
the node‟s value.

 Right sub-tree of a node contains only values greater
than or equal to the node‟s value.

17

Exercise: Adding nodes

 Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

 Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

 Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

18

Exercise: Solution

 See code in IDE.

19

Exercise: Searching

 Implement feature has (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if n is in
the tree rooted by Current.

 Test your code with a class APPLICATION which builds
a binary search tree and calls has.

20

Exercise: Solution

 See code in IDE.

21

The End

End of slides

Time left?

Here„s another recursion example ...

22

Exercise: Magic Squares

 A magic square of size NxN is a NxN square such that:

 Every cell contains a number between 1 and N2.

 The sum in every row and column is constant.

 The numbers are all different.

4

3

8

9

5

1

2

7

6

23

Exercise: Magic Squares

 Finding a 3x3 magic square is related to finding the
permutations of 1 to 9.

 There exist 72 magic 3x3 squares.

 123456789

 123456798

 123456879

 123456897

 123456978

 123456987

 ...

 987654321

24

Exercise: Magic Squares

 Write a program that finds all the 3x3 magic

 squares.

 Hints

 Reuse the previous recursive algorithm by
applying it to permutations (enforce no
repetitions).

 Use two arrays of 9 elements, one for the
current permutation and one to know if a number
has already been used or not.

25

Exercise: Solution

 See code in IDE.

