
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 10

2

Today

 Basic data structures

 Arrays

 Linked Lists

 Hashtables

 Another data structure: Tree

3

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

Constant time for random reads

Constant time for random writes

Costly to resize (including inserting elements in the
middle of the array)

Must be indexed by an integer

Generally very space efficient

In Eiffel the basic array class is generic, ARRAY [G].

4

Using Arrays

Which of the following lines are valid?

Which can fail, and why?

 my_array : ARRAY [STRING]

 my_array [“Fred”] := “Sam”

 my_array [10] + “‟s Hat”

 my_array [5] := “Ed”

 my_array.force (“Constantine”, 9)

Which is not a constant-time array operation?

Valid, can‟t fail

Invalid

Valid, can fail

Valid, can fail

Valid, can‟t fail

5

Linked Lists

 Linked lists are one of the simplest data-structures

 They consist of linkable cells

class LINKABLE [G]

create
 set_value

feature
 set_value (v : G)
 do
 value := v
 end

 value : G

 set_next (n : LINKABLE[G])
 do
 next := n
 end

 next : LINKABLE [G]
end

6

Using Linked Lists

Suppose you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

Insert at the beginning

Insert in the middle

Insert at the end

Find the length of the list

What simple optimization could be made to make end-
access faster?

O (1)

O (n)

O (n)

O (n)

7

Hashtables

Hashtables provide a way to use regular objects as keys
(sort of like how we use INTEGER “keys” in arrays).

This is essentially a trade-off:

 We have to provide a hash function. 

 The hash function maps K, the set of possible keys,
into an integer interval a .. b.

 A perfect hash function gives a different integer
value for every element of K.

 Whenever two different keys give the same hash
value, a collision occurs.

 Our hash function should be good (minimize collisions) 

 Our hashtable will always take up more space than it
 needs to 

8

Good points about Hashtables

Hashtables aren‟t all that bad though, they provide

us with a great solution: they can store and retrieve
objects quickly by key! This is a very common operation.

For each of the following, define what the key and
 the values could be:

A telephone book

The index of a book

Google search

Name  Telephone Number

Concept  Page

Search String  Websites

Would you use a hashtable or an array for storing the
pages of a book?

9

Data structures

 You have seen several data structures

 ARRAY, LINKED_LIST, HASH_TABLE, …

 We will now look at another data structure and see how
recursion can be used for traversal.

10

Tree

11

Tree

12

Tree: A more abstract way

node root

leaf

 A non-empty tree has one root. An empty tree does not
have a root.

 Every non-leaf node has links to its children. A leaf
does not have children.

 There are no cycles.

13

Binary tree

node

 A binary tree is a tree.

 Each node can have at most 2 children

 (possibly 0 or 1).

14

Exercise: Recursive traversal

 Implement class NODE with an INTEGER attribute.

 In NODE implement a recursive feature that traverses
the tree and prints out the INTEGER value of each
NODE object.

 Test your code with a class APPLICATION which builds
a binary tree and calls the traversal feature.

15

Exercise: Solution

 See code in IDE.

16

Binary search tree

10

8 13

4 9 20

 A binary search tree is a binary tree where each node
has a COMPARABLE value.

 Left sub-tree of a node contains only values less than
the node‟s value.

 Right sub-tree of a node contains only values greater
than or equal to the node‟s value.

17

Exercise: Adding nodes

 Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

 Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

 Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

18

Exercise: Solution

 See code in IDE.

19

Exercise: Searching

 Implement feature has (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if n is in
the tree rooted by Current.

 Test your code with a class APPLICATION which builds
a binary search tree and calls has.

20

Exercise: Solution

 See code in IDE.

21

The End

End of slides

Time left?

Here„s another recursion example ...

22

Exercise: Magic Squares

 A magic square of size NxN is a NxN square such that:

 Every cell contains a number between 1 and N2.

 The sum in every row and column is constant.

 The numbers are all different.

4

3

8

9

5

1

2

7

6

23

Exercise: Magic Squares

 Finding a 3x3 magic square is related to finding the
permutations of 1 to 9.

 There exist 72 magic 3x3 squares.

 123456789

 123456798

 123456879

 123456897

 123456978

 123456987

 ...

 987654321

24

Exercise: Magic Squares

 Write a program that finds all the 3x3 magic

 squares.

 Hints

 Reuse the previous recursive algorithm by
applying it to permutations (enforce no
repetitions).

 Use two arrays of 9 elements, one for the
current permutation and one to know if a number
has already been used or not.

25

Exercise: Solution

 See code in IDE.

