E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 10

Today

» Basic data structures
> Arrays
» Linked Lists
» Hashtables

> Another data structure: Tree

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

»>Constant time for random reads
»>Constant time for random writes

»Costly to resize (including inserting elements in the
middle of the array)

»Must be indexed by an integer
»Generally very space efficient

In Eiffel the basic array class is generic, ARRAY [&]

0,

Using Arrays

Which of the following lines are valid?
Which can fail, and why?

> my_array : ARRAY [STRING] Valid, can't fail|
> my_array ["Fred"] := "Sam" Invalid |

» my_array [10] + “'s Hat" Valid, can fail
» my_array [5] := "Ed" Valid, can fail
> my_array.force ("Constantine”, 9) | Valid, can't fail

Which is not a constant-time array operation?

Linked Lists

> Linked lists are one of the simplest data-structures
> They consist of linkable cells

class LINKABLE [&]

create
set _value

feature
set_value (v: 6)
do
value = v
end

value : &

set_next(n: LINKABLE 6))
do
next:=n
end

next: LINKABLE [G]
end

Using Linked Lists

Suppose you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

»Insert at the beginning O (1))
»>Insert in the middle O (n)
»Insert at the end O (nh)
»Find the length of the list O (n)

What simple optimization could be made to make end-
access faster?

Hashtables

Hashtables provide a way to use regular objects as keys
(sort of like how we use INTEGER “keys" in arrays).

This is essentially a trade-off:

» We have to provide a hash function. ®

> The hash function maps K, the set of possible keys,
intfo an integer interval a .. b.

> A perfect hash function gives a different integer
value for every element of K.

> Whenever two different keys give the same hash
value, a collision occurs.

» Our hash function should be good (minimize collisions) ®

» Our hashtable will always take up more space than it
nheeds to ®

Good points about Hashtables

Hashtables aren't all that bad though, they provide

us with a great solution: they can store and retrieve
objects quickly by key! This is a very common operation.

For each of the following, define what the key and
the values could be:

> A telephone book Name - Telephone Number
» The index of a book Concept > Page
»Google search Search String > Websites

Would you use a hashtable or an array for storing the
pages of a book?

Data structures

> You have seen several data structures
> ARRAY LINKED LIST, HASH TABLE, ..

> We will now look at another data structure and see how
recursion can be used for traversal.

Tree

10

Tree

11

Tree: A more abstract way

leaf

> A non-empty tree has one root. An empty tree does not
have a root.

> Every non-leaf node has links to its children. A leaf
does not have children.

» There are no cycles.

Binary tree

> A binary free is a free.
> Each node can have at most 2 children
(possibly O or 1).

13

Exercise: Recursive traversal

Y VY

Implement class NODE with an INTEGER attribute.

In NODE implement a recursive feature that traverses
the tree and prints out the INTEGER value of each
NODE object.

Test your code with a class APPLICA TION which builds
a binary tree and calls the traversal feature.

14

Exercise: Solution

> See code in IDE.

15

Binary search tree

i e

> A binary search tree is a binary tree where each node
has a COMPARABLE value.

> Left sub-tree of a node contains only values less than
the node's value.

> Right sub-tree of a node contains only values greater
than or equal to the node's value.

16

Exercise: Adding nodes

» Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

> Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

» Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

17

Exercise: Solution

> See code in IDE.

18

Exercise: Searching

> Implement feature Aas (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if nis in
the tree rooted by Current.

> Test your code with a class APPLICATION which builds
a binary search tree and calls Aas.

19

Exercise: Solution

> See code in IDE.

20

The End

End of slides

Time left?
Here's another recursion example ...

21

Exercise: Magic Squares

» A magic square of size NxN is a NxN square such that:
> Every cell contains a number between 1 and N2
> The sum in every row and column is constant.
> The numbers are all different.

0,

22

Exercise: Magic Squares

> Finding a 3x3 magic square is related to finding the
permutations of 1 to 9.

» There exist 72 magic 3x3 squares.

123456789
123456798
123456879
123456897
123456978
123456987

987654321

Exercise: Magic Squares

» Write a program that finds all the 3x3 magic
squares.

> Hints

> Reuse the previous recursive algorithm by
applying it o permutations (enforce no
repetitions).

> Use two arrays of 9 elements, one for the

current permutation and one to know if a number
has already been used or not.

24

Exercise: Solution

> See code in IDE.

25

