
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 4

2

Today

 A bit of logic

 Understanding contracts (preconditions,
postconditions, and class invariants)

 Entities and objects

 Object creation

3

Propositional Logic

 Constants: True, False

 Atomic formulae (propositional variables): P, Q, ...

 Logical connectives: not, and, or, implies, =

 Formulae: φ, χ, ... are of the form

 True

 False

 P

 not φ

 φ and χ

 φ or χ

 φ implies χ

 φ = χ

3

4

Propositional Logic

Truth assignment and truth table

 Assigning a truth value to each propositional variable

Tautology
True for all truth assignments

 P or (not P)

 not (P and (not P))

 (P and Q) or ((not P) or (not Q))

Contradiction

False for all truth assignments

 P and (not P)

4

P Q P implies Q

T F F

T T T

F T T

F F T

5

Propositional Logic

Satisfiable

True for at least one truth assignment

Equivalent
φ and χ are equivalent if they are satisfied under

exactly the same truth assignments, or if φ = χ is a
tautology

5

6

6 Tautology / contradiction / satisfiable?

P or Q

 satisfiable

P and Q

 satisfiable

P or (not P)

 tautology

P and (not P)

 contradiction

Q implies (P and (not P))

 satisfiable

7

7
Equivalence

Does the following equivalence hold? Prove.

(P implies Q) = (not P implies not Q)

Does the following equivalence hold? Prove.

(P implies Q) = (not Q implies not P)

P Q P implies Q not P implies not Q not Q implies not P

T T T T T

T F F T F

F T T F T

F F T T T

F

T

8

8 Useful stuff

De Morgan laws

not (P or Q) = (not P) and (not Q)

not (P and Q) = (not P) or (not Q)

Implications

P implies Q = (not P) or Q

P implies Q = (not Q) implies (not P)

Equality on Boolean expressions

(P = Q) = (P implies Q) and (Q implies P)

9

Predicate Logic

 Domain of discourse: D

 Variables: x: D

 Functions: f: Dn -> D

 Predicates: P: Dn -> {True, False}

 Logical connectives: not, and, or, implies, =

 Quantifiers: ,

 Formulae: φ, χ, ... are of the form

 P (x, ...)

 not φ | φ and χ | φ or χ | φ implies χ | φ = χ

 x φ

 x φ

9

10

10
Existential and universal quantification

There exists a human whose name is Bill Gates

 h: Human | h.name = “Bill Gates”

All persons have a name

 p: Person | p.name /= Void

Some people are students

 p: Person | p.is_student

The age of any person is at least 0

 p: Person | p.age >= 0

Nobody likes Rivella

 p: Person | not p.likes (Rivella)

not (p: Person | p.likes (Rivella))

11

11 Tautology / contradiction / satisfiable?

Let the domain of discourse be INTEGER

x < 0 or x >= 0

 tautology

x > 0 implies x > 1

 satisfiable

x | x > 0 implies x > 1

 contradiction

x | x*y = y

 satisfiable

y | x | x*y = y

 tautology

12

Semi-strict operations

Semi-strict operators (and then, or else)

a and then b

 has same value as a and b if a and b are defined, and
has value False whenever a has value False.

text /= Void and then text.contains (“Joe”)

a or else b
 has same value as a or b if a and b are defined, and

has value True whenever a has value True.

list = Void or else list.is_empty

12

13

Strict or semi-strict?

 a = 0 or b = 0

 a /= 0 and then b // a /= 0

 a /= Void and b /= Void

 a < 0 or else sqrt (a) > 2

 (a = b and b /= Void) and then not

 a.name .is_equal (“”)

13

14

14
Assertions

balance_non_negative: balance >= 0

Assertion clause

Assertion tag (not
required, but

recommended)
Condition
(required)

15

clap (n: INTEGER)
 -- Clap n times and update count.
 require
 not_too_tired: count <= 10
 n_positive: n > 0

Property that a feature imposes on every client

A feature with no require clause is

always applicable, as if the precondition reads

 require

 always_OK: True

15
Precondition

16

clap (n: INTEGER)
 -- Clap n times and update count.
 require
 not_too_tired: count <= 10
 n_positive: n > 0
 ensure
 count_updated: count = old count + n

Property that a feature guarantees on termination

A feature with no ensure clause always satisfies

its postcondition, as if the postcondition reads
 ensure

 always_OK: True

16 Postcondition

17

Property that is true of the current object at
any observable point

A class with no invariant clause has a trivial
invariant

 always_OK: True

class ACROBAT
 …
invariant

 count_non_negative: count >= 0
end

17 Class Invariant

18

Why do we need contracts at all?

Together with tests, they are a great tool for finding bugs

They help us to reason about an O-O program at a class-
and routine-level of granularity

They are executable specifications that evolve together
with the code

Proving (part of) programs correct without executing them
is what cool people are trying to do nowadays. This is
easier to achieve if the program properties are clearly
specified through contracts

18

19

19
Pre- and postcondition example

Add pre- and postconditions to:

 smallest_power (n, bound: NATURAL): NATURAL
 -- Smallest x such that `n'^x is greater or equal `bound'.
 require
 ???
 do
 ...
 ensure
 ???
 end

20

20
One possible solution

 smallest_power (n, bound: NATURAL): NATURAL
 -- Smallest x such that `n'^x is greater or equal `bound'.
 require
 n_large_enough: n > 1
 bound_large_enough: bound > 1
 do
 ...
 ensure
 greater_equal_bound: n ^ Result >= bound
 smallest: n ^ (Result - 1) < bound
 end

21

21
Hands-on exercise

Add invariants to classes ACROBAT_WITH_BUDDY and
CURMUDGEON.

Add preconditions and postconditions to feature make in
ACROBAT_WITH_BUDDY.

22

Class ACROBAT_WITH_BUDDY

class
 ACROBAT_WITH_BUDDY

inherit
 ACROBAT
 redefine
 twirl, clap, count
 end

create
 make

feature
 make (p: ACROBAT)
 do
 -- Remember `p’ being
 -- the buddy.
 end

 clap (n: INTEGER)
 do
 -- Clap `n’ times and
 -- forward to buddy.
 end

 twirl (n: INTEGER)
 do
 -- Twirl `n’ times and
 -- forward to buddy.
 end

 count: INTEGER
 do
 -- Ask buddy and return his
 -- answer.
 end

 buddy: ACROBAT
end

23

Class CURMUDGEON

class
 CURMUDGEON

inherit
 ACROBAT
 redefine clap, twirl end

feature
 clap (n: INTEGER)
 do
 -- Say “I refuse”.
 end

 twirl (n: INTEGER)
 do
 -- Say “I refuse”.
 end
end

24

In the class text: an entity

 joe: STUDENT

In memory, during execution: an object

Entity vs. object

(COURSE)

MEMORY

(ASSISTANT)

(STUDENT) (MARK)

(PROFESSOR)

Fields

Generating class

25

class
 INTRODUCTION_TO_PROGRAMMING
inherit
 COURSE
feature
 execute
 -- Teach `joe’ programming.
 do
 -- ???
 joe.solve_all_assignments
 end

 joe: STUDENT
 -- A first year computer science student
end

INTRODUCTION_TO_PROGRAMMING

26

Initial state of a reference?

In an instance of INTRODUCTION_TO_PROGRAMMING,
may we assume that joe is attached to an instance of
STUDENT?

joe

(STUDENT)

reference

(INTRODUCTION_
TO_PROGRAMMING)

MEMORY

Where does this one
come from?

…

This object has been created
(by someone else)

27

Default of references

Initially, joe is not attached to any object:

its value is a Void reference.

joe
Void

reference
(INTRODUCTION_

TO_PROGRAMMING)

28

States of an entity

During execution, an entity can:

 Be attached to a certain object

 Have the value Void

29

 To denote a void reference: use Void keyword

 To create a new object in memory and attach x to
it: use create keyword

create x

 To find out if x is void: use the expressions

x = Void (true iff x is void)

x /= Void (true iff x is attached)

States of an entity

30

Those mean void references!

The basic mechanism of computation is feature call

x.f (a, …)

Since references may be void, x might be attached to no
object

The call is erroneous in such cases!

Apply feature f

To object to which x is
attached

Possibly with
arguments

31

Shouldn’t we assume that a declaration

 joe: STUDENT

creates an instance of STUDENT and attaches it to joe?

Why do we need to create objects?

32

Those wonderful void references!

(PERSON) (PERSON)

spouse spouse

Married persons:

(PERSON)

spouse

Unmarried person:

33

Those wonderful void references!

Imagine a DECK as a list of CARD objects

Last next reference is void to terminate the list.

(CARD)

 next next next

(CARD) (CARD)

34

Creation procedures

 Instruction create x will initialize all the fields of the
new object attached to x with default values

 What if we want some specific initialization? E.g., to
make object consistent with its class invariant?

Class CUSTOMER
…
 id: STRING
invariant
 id /= Void

id

 Use creation procedure:

create a_customer.set_id (“13400002”)

35

STOP

List one or more creation
procedures

May be used as a
regular command and as

a creation procedure

Is established by
set_id

Class CUSTOMER
create
 set_id
feature
 id: STRING
 -- Unique identifier for Current.

 set_id (a_id: STRING)
 -- Associate this customer with `a_id’.
 require
 a_id_exists: a_id /= Void
 id := a_id
 ensure
 id_set: id = a_id

 invariant
 id_exists: id /= Void
end

36

Object creation: summary

To create an object:

 If class has no create clause, use basic form:

create x

 If the class has a create clause listing one or
more procedures, use

create x.make (…)

 where make is one of the creation procedures,
and (…) stands for arguments if any.

37

Some acrobatics

class DIRECTOR
create prepare_and_play
feature
 acrobat1, acrobat2, acrobat3: ACROBAT
 friend1, friend2: ACROBAT_WITH_BUDDY
 author1: AUTHOR
 curmudgeon1: CURMUDGEON

 prepare_and_play
 do
 author1.clap (4)
 friend1.twirl (2)
 curmudgeon1.clap (7)
 acrobat2.clap (curmudgeon1.count)
 acrobat3.twirl (friend2.count)
 friend1.buddy.clap (friend1.count)
 friend2.clap (2)
 end
end

What entities are used
in this class?

What’s wrong with the
feature

prepare_and_play?

38

Some acrobatics

class DIRECTOR

create prepare_and_play

feature

 acrobat1, acrobat2, acrobat3: ACROBAT

 friend1, friend2: ACROBAT_WITH_BUDDY

 author1: AUTHOR

 curmudgeon1: CURMUDGEON

 prepare_and_play

 do

1 create acrobat1

2 create acrobat2

3 create acrobat3

4 create friend1.make_with_buddy (acrobat1)

5 create friend2.make_with_buddy (friend1)

6 create author1

7 create curmudgeon1

 end

end

Which entities are still Void
after execution of line 4?

Which of the classes
mentioned here have
creation procedures?

Why is the creation
procedure necessary?

39

Meet Teddy

