
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 6

2

Today

Conditional

Loop

Abstractions

Exporting features

3

Structured programming

 In structured programming instructions can be
combined only in three ways (constructs):

s_1 c

s_2
s_1 s_2

c

s

sequential
composition

conditional loop

True False
False

True

 Each of these blocks has a single entry and exit and is
itself a (possibly empty) compound

Compound

Condition

4

Conditional

 Basic syntax:
 if c then

 s_1
 else

 s_2
 end

 c is a boolean expression (e.g., entity, query call of type
BOOLEAN)

 else-part is optional:
 if c then

 s_1
 end

Condition

Compound

Compound

5

Calculating function’s value

f (max: INTEGER; s: STRING): STRING

 do

 if s.is_equal (“Java”) then

 Result := “J**a”

 else

 if s.count > max then

 Result := “<an unreadable German word>”

 end

 end

 end

Calculate the value of:
 f (3, “Java”)

 f (20, “Immatrikulationsbestätigung”)

 f (6, “Eiffel”)

→ “J**a”
→ “<an unreadable
German word>”

→ Void

6

Write a routine...

 ... that computes the maximum of two

integers:

 max (a, b: INTEGER): INTEGER

 ... that increases time by one second inside class TIME:

class TIME
 hour, minute, second: INTEGER

 second_forth
 do ... end

 ...

end

7

Comb-like conditional

If there are more than two alternatives, you can use the
syntax:

if c_1 then

 s_1
elseif c_2 then

 s_2
...

elseif c_n then

 s_n
else

 s_e
end

instead of:

if c_1 then
 s_1
else
 if c_2 then
 s_2
 else
 ...
 if c_n then
 s_n
 else
 s_e
 end
 ...
 end
end

Condition

Compound

8

Multiple choice

If all the conditions have a specific structure, you can
use the syntax:

 inspect expression
 when const_1 then
 s_1
 when const_2 then
 s_2
 ...
 when const_n1 .. const_n2 then
 s_n
 else
 s_e
 end

Integer or character
expression

Integer or character
constant

Compound

Interval

9

Lost in conditions

Rewrite the following multiple choice:

 using a comb-like conditional

 using nested conditionals

inspect user_choice
when 0 then
 print (“Hamburger”)
when 1 then
 print (“Coke”)
else
 print (“Not on the menu!”)
end

if user_choice = 0 then
 print (“Hamburger”)
elseif user_choice = 1 then
 print (“Coke”)
else
 print (“Not on the menu !”)
end

if user_choice = 0 then
 print (“Hamburger”)
else
 if user_choice = 1 then
 print (“Coke”)
 else
 print (“Not on the menu!”)
 end
end

10

Loop: Basic form

Compound

Boolean expression

Compound

Syntax:
 from

 initialization

 until

 exit_condition
 loop

 body

 end

11

Compilation error? Runtime error?

f (x, y : INTEGER): INTEGER
 do

 from

 until (x // y)

 loop

 "Print me!"
 end

 end

Compilation
error:
integer

expression
instead of

boolean

Compilation
error:

expression
instead of
instruction

Correct

f (x, y : INTEGER): INTEGER
 local

 i : INTEGER
 do

 from i := 1
 until (True)

 loop

 i := i * x * y
 end

 end

12

Simple loop

How many times will the body of the following

loop be executed?

In Eiffel we usually start counting from 1

10

i: INTEGER
...
from
 i := 1
until
 i > 10
loop
 print (“I will not say bad things about assistants”)
 i := i + 1
end
…
from
 i := 10
until
 i < 1
loop
 print (“I will not say bad things about assistants”)
end

Caution! Loops can be infinite!

∞

13

What does this function do?

 f (n: INTEGER): INTEGER
 require
 n >= 0
 local
 i: INTEGER
 do
 from
 i := 2
 Result := 1
 until
 i > n
 loop
 Result := Result * i
 i := i + 1
 end
 end

factorial

14

invariant

 inv

Loop: More general form

Compound

Optional

Boolean expression

Boolean expression

Compound

variant

 var

Syntax:
 from

 initialization

 until

 exit_condition
 loop

 body

 end Integer expression

Optional

15

Invariant and variant

Loop invariant (do not confuse with class invariant)

 holds before and after the execution of loop body

 captures how the loop iteratively solves the
problem: e.g. “to calculate the sum of all n elements
in a list, on each iteration i (i = 1..n) the sum of
first i elements is obtained”

Loop variant

 integer expression that is nonnegative after
execution of from clause and after each execution
of loop clause and strictly decreases with each
iteration

 a loop with a correct variant can not be infinite
(why?)

16

What are the invariant and variant of

the “factorial” loop?
 from

 i := 2

 Result := 1

 invariant

 ?

 until

 i > n

 loop

 Result := Result * i
 i := i + 1

 variant

 ?

 end

i = 2; Result = 1 = 1! i = 3; Result = 2 = 2! i = 4; Result = 6 = 3!

Invariant and variant

Result = factorial (i - 1)

n – i + 2

17

Writing loops

Implement a function that calculates

Fibonacci numbers, using a loop

fibonacci (n: INTEGER): INTEGER
 -- n-th Fibonacci number

 require

 n_non_negative: n >= 0

 ensure

 first_is_zero: n = 0 implies Result = 0

 second_is_one: n = 1 implies Result = 1

 other_correct: n > 1 implies Result =
 fibonacci (n - 1) + fibonacci (n - 2)

 end

18

Writing loops (solution)

fibonacci (n: INTEGER): INTEGER
 local
 a, b, i: INTEGER
 do
 if n <= 1 then
 Result := n
 else
 from
 a := fibonacci (0)
 b := fibonacci (1)
 i := 1
 invariant
 a = fibonacci (i - 1)
 b = fibonacci (i)
 until
 i = n
 loop
 Result := a + b
 a := b
 b := Result
 i := i + 1
 variant
 n - i
 end
 end
 end

19

Abstraction

To abstract is to capture the essence behind the details
and the specifics.

The client is interested in:

 a set of services that a software module provides,
not its internal representation

 what a service does, not how it does it

hence, the class abstraction

hence, the feature abstraction

 Programming is all about finding right abstractions

 However, the abstractions we choose can sometimes
fail, and we need to find new, more suitable ones.

21

Finding the right abstractions (classes)

Suppose you want to model your room:
 class ROOM
 feature

 -- to be determined

 end

Your room probably has thousands of properties and
hundreds of things in it.

size
location

material

messy?

door

shape
computer

bed desk

furniture etc
etc etc

Therefore, we need a first abstraction: What do we
want to model?

In this case, we focus on the size, the door, the
computer and the bed.

22

Finding the right abstractions (classes)

To model the size, an attribute of type DOUBLE is
probably enough, since all we are interested in is it„s value:

class ROOM

feature

 size: DOUBLE

 -- Size of the room.

end

23

Finding the right abstractions (classes)

Now we want to model the door.

If we are only interested in the state of the door, i.e. if it
is open or closed, a simple attribute of type BOOLEAN
will do:

 class ROOM

feature

 size: DOUBLE

 -- Size of the room.

 is_door_open: BOOLEAN

 -- Is the door open or closed?

 ...

end

24

Finding the right abstractions (classes)

But what if we are also interested in what our door looks
like, or if opening the door triggers some behavior?

 Is there a daring poster on the door?

 Does the door squeak while being opened or closed?

 Is it locked?

When the door is being opened, a message will be sent
to my cell phone

In this case, it is better to model a door as a separate
class!

25

Finding the right abstractions (classes)

class ROOM
feature

 size: DOUBLE
 -- Size of the room

 -- in square meters.

 door: DOOR
 -- The room‟s door.

end

class DOOR
feature
 is_locked: BOOLEAN
 -- Is the door locked?
 is_open: BOOLEAN
 -- Is the door open?
 is_squeaking: BOOLEAN
 -- Is the door squeaking?
 has_daring_poster: BOOLEAN
 -- Is there a daring poster on
 -- the door?
 open
 -- Opens the door
 do
 -- Implementation of open,
 -- including sending a message
 end

 -- more features…
end

26

Finding the right abstractions (classes)

How would you model…

… the computer?

… the bed?

How would you model an elevator in a building?

27

Finding the right abstractions (features)

(BANK_ACCOUNT)

deposits

withdrawals

800

(BANK_ACCOUNT)

deposits

withdrawals

balance

1000 300

500

1000 300

500

invariant: balance = total (deposits) – total (withdrawals)

Which one would you choose and why?

28

Exporting features: The stolen exam

class PROFESSOR

create
 make
feature
 make (a_exam_draft: STRING)
 do
 exam_draft := a_exam_draft
 end
feature
 exam_draft: STRING
end

29

For your eyes only

class ASSISTANT

create
 make
feature
 make (a_prof: PROFESSOR)
 do
 prof := a_prof
 end
feature
 prof: PROFESSOR
feature
 review_draft
 do
 -- review prof.exam_draft
 end
end

30

Exploiting a hole in information hiding

class STUDENT

create
 make
feature
 make (a_prof: PROFESSOR; a_assi: ASSISTANT)
 do
 prof := a_prof
 assi := a_assi
 end
feature
 prof: PROFESSOR
 assi: ASSISTANT
feature
 stolen_exam: STRING
 do
 Result := prof.exam_draft
 end
end

31

Don’t try this at home!

you: STUDENT
your_prof: PROFESSOR
your_assi: ASSISTANT
stolen_exam: STRING

create your_prof.make (“top secret exam!”)
create your_assi.make (your_prof)
create you.make (your_prof, your_assistant)

stolen_exam := you.stolen_exam

32

Fixing the issue

class PROFESSOR
create
 make
feature
 make (a_exam_draft: STRING)
 do
 exam_draft := a_exam_draft
 end
feature
 exam_draft: STRING
end

{PROFESSOR, ASSISTANT}

33

The export status does matter!

class STUDENT
create
 make
feature
 make (a_prof: PROFESSOR; a_assi: ASSISTANT)
 do
 prof := a_prof
 assi := a_assi
 end
feature
 prof: PROFESSOR
 assi: ASSISTANT
feature
 stolen_exam: STRING
 do
 Result := prof.exam_draft
 end
end

Invalid call!

Result := assi.prof.exam_draft

Invalid call!

34

Exporting features

• a1.f, a1.g: valid in any client

• a1.h: invalid everywhere (including in A‟s text!)

• a1.j: valid in B, C and their descendants (invalid
in A!)

• a1.m: valid in B, C and their descendants,
as well as in A and its descendants.

Status of calls in a client with a1 of type A: class
 A

feature
 f ...
 g ...

feature {NONE}

 h, i ...

feature {B, C}

 j, k, l ...

feature {A, B, C}

 m, n…
end

35

Compilation error?

class PERSON
feature
 name: STRING
feature {BANK}
 account: BANK_ACCOUNT
feature {NONE}
 loved_one: PERSON
 think
 do
 print (“Thinking of ” + loved_one.name)
 end
 lend_100_franks
 do
 loved_one.account.transfer (account, 100)
 end
end

OK: unqualified call OK: exported to all

OK: unqualified call Error: not exported to
PERSON

36

Exporting attributes

Exporting an attribute only means giving read access

x.f := 5

Attributes of other objects can be changed only through
commands

 protecting the invariant

 no need for getter functions!

37

Example

class TEMPERATURE

feature
celsius_value: INTEGER

make_celsius (a_value: INTEGER)

 require
 above_absolute_zero: a_value >= - Celsius_zero

 do
 celsius_value := a_value

 ensure
 celsius_value_set := celsius_value = a_value

 end

...

end

38

Assigners

If you like the syntax
x.f := 5

you can declare an assigner for f

 In class TEMPERATURE
 celsius_value: INTEGER assign make_celsius

 In this case
t.celsius_value := 36

is a shortcut for
t.make_celsius (36)

 ... and it won‟t break the invariant!

39

Information hiding vs. creation routines

class PROFESSOR
create
 make
feature {None}
 make (a_exam_draft: STRING)
 do
 ...
 end
end

Can I create an object of type PROFESSOR as a client?

After creation, can I invoke feature make as a client?

40

Controlling the export status of creation routines

class PROFESSOR
create {COLLEGE_MANAGER}
 make
feature {None}
 make (a_exam_draft: STRING)
 do
 ...
 end
end

Can I create an object of type PROFESSOR as a client?
After creation, can I invoke feature make as a client?
What if I have create {NONE} make instead of
create {COLLEGE_MANAGER} make ?

