ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

Name:

Mock Exam 1

ETH Zurich
November 7,8 2011

Group:

1 Terminology (10 points)

Goal

This task will test your understanding of the object-oriented programming concepts presented so far
in the lecture. This is a multiple-choice test.

Todo

Place a check-mark in the box if the statement is true. There may be multiple true statements per
question; 0.5 points are awarded for checking a true statement or leaving a false statement un-checked,
0 points are awarded otherwise.

1. A command...

O a.
O b.
O c.

O d.

call is an instruction.
may modify an object.

may appear in the precondition and the postcondition of another command but not in the
precondition or the postcondition of a query.

may appear in the class invariant.

2. The syntax of a program...

O a.
O b.
O c.
O d.

is the set of properties of its potential executions.
can be derived from the set of its objects.
is the structure and the form of its text.

may be violated at run-time.

3. A class...

O a.

is the description of a set of possible run-time objects to which the same features are
applicable.

. can only exist at runtime.
. cannot be declared as expanded; only objects can be expanded.

. may have more than one creation procedure.



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

4. Immediately before a successful execution of a creation instruction with target x of type C...

0 a. x = Void must hold.
O b. z /= Void must hold.
[0 c. the postcondition of the creation procedure may not hold.

[0 d. the precondition of the creation procedure must hold.
5. Void references...

[0 a. cannot be the target of a successful call.

O b. are not default values for any type.

[0 c. indicate expanded objects.

O d. can be used to terminate linked structures (e.g. linked lists).

2 Design by Contract (10 Points)

2.1 Task

Your task is to fill in the contracts (preconditions, postconditions, class invariants, loop variants and
invariants) of the class CAR according to the specification given in the comments. You are not allowed
to change the class interface or the given implementation. Note that the number of dotted lines does
not indicate the number of missing contracts.

class
2 CAR
4 create

make

6

feature { NONE} —— Creation
8

make
10 —— Creates a default car.
require
12
14
16
18 do
create { LINKED_LIST [CAR_DOOR]} doors.make
20 ensure
2/
27
20 e
end

28

feature {ANY} —— Access
30

is_convertible : BOOLEAN



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

32 —— Is the car a convertible (cabriolet)? Default: no.

34 doors: LIST [CAR_DOOR)
—— The doors of the car. Number of doors must be 0, 2 or 4. Default: 0.
36
color: COLOR
38 —— The color of the car. ‘Void’ if not specified . Default: ‘Void’.

40 feature {ANY} —— Element change

42 set_convertible ( a-is-convertible : BOOLEAN)

require
44
46
48
50 do

is_convertible := a_is_convertible

52 ensure
D
5
D

end
60

set_doors (a_doors: ARRAY [CAR_DOOR))

62 require
B
B0 e
B

local
70 door_index: INTEGER

do
72 doors.wipe_out

if a_doors /= Void then
74 from
door_inder := 1
76 invariant
T
B0
B
until
84 door_index > a_doors.count
loop



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer Fall 2011

86 doors. extend (a-doors [door_indez])
door_index := door_indexr + 1
88 variant
00
1S P
O
end
96 end
ensure

98
100
102
104 end

106 set_color (a-color: COLOR)
require
108
110
112
114 do
color := a_color
116 ensure

L8
120
/P

124
invariant

126

128

130

132

3 Inheritance: A Persistence Framework (12 Points)

Read the background information, look at the class diagram and code, and then answer task 1 and
task 2.



ETHZ D-INFK

Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer

Fall 2011

3.1 Background Information

The following classes represent a simplified persistence framework. A persistence framework offers
services to store and retrieve objects. A serialization manager is used to store objects using a certain
medium (memory or file) and a certain format, like binary. Figure 1 shows the corresponding class
diagram. Listings 1, 2, 3, 4, and 5 show a few lines of code from some of these classes.

*

PERSISTENCE _
FORMAT

*

PERSISTENCE _
MEDIUM

*

BINARY
FORMAT

*

SERIALIZATION_
MANAGER

MEMORY
MEDIUM

@
BASIC >
= SERIALIZATION
SERIALIZATION _MANAGER

_MANAGER

BASIC_
BINARY
FORMAT

Figure 1: Class diagram for the persistence framework

Listing 1: class SERIALIZATION_-MANAGER
deferred class
SERIALIZATION_-MANAGER

feature —— Access

format: PERSISTENCE_FORMAT

—— The format used for serialization.

medium: PERSISTENCE_MEDIUM

—— The medium used for serialization.

retrieved_item: ANY
—— Object retrieved.

feature —— Creation
make
—— Provide format and medium for the current serializer.
deferred
ensure

format_set: format /= Void
medium_set: medium /= Void
end

feature —— Basic operations



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

store (a_object: ANY)
—— Serialize ‘a_object’ using the format and medium set for current object.

require
object_exists : a_object /= Void
deferred
end
retrieve
—— Retrieve an object using the medium and format set for current serializer .
—— Set the retrieved object in ‘retrieved_item’
deferred
end
end
Listing 2: class BASIC_SERIALIZATION_-MANAGER
class

BASIC_SERIALIZATION_-MANAGER

inherit
SERIALIZATION_-MANAGER

create make
feature —— Creation

make
—— Provide format and medium for the current serializer.
do
print (” Creating a basic serialization manager.”)
—— Other necessary initialization .
end

feature —— Basic operations

store (a_object: ANY)
—— Serialize ‘an_object’ using the format and medium set for current object.
do
print (”Serializing an object.”)
end

retrieve
—— Retrieve an object using the medium and format set for current serializer .
—— Set the retrieved object in ‘retrieved_item’
do
print (”Deserializing an object.”)
end
end

Listing 3: class PERSISTENCE_MEDIUM

deferred class
PERSISTENCE_MEDIUM

feature —— Access



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

name: STRING

—— Current persistence medium name.
feature —— Basic operations

write (a-object: ANY)
—— Write ‘a_object’ on the current medium.

require
object_exists : an_object /= Void
deferred
end
end
Listing 4: class FILE_MEDIUM
class

FILE_MEDIUM

inherit
PERSISTENCE_MEDIUM

create
make
feature —— Initialization
make
—— Create a file medium.
do
print (” Creating a file.”)
end
feature —— Basic operations

write (a-object: ANY)
—— Write ‘a_object” on the current medium.
do
print (”Writing a file.”)
end
end

Listing 5: class PERSISTENCE_FORMAT

deferred class
PERSISTENCE_FORMAT

feature —— Access

header: STRING
—— Meta—information about the serialization format.

body: STRING

—— Main serialization content.

feature —— Status setting



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

set_header (a_header: STRING)
—— Set header for serialization .

require

a_header_not_void: a-header /= Void
do

header := a_header
ensure

header_set: header = a_header
end

set_body (a-body: STRING)
—— Set body for serialization .

require
a_body_not_void: a_body /= Void
do
body := a_body
ensure
body_set: body = a_body
end
end
3.2 Task 1

Put checkmarks in the checkboxes corresponding to the correct answers. There is at least one correct
answer per question. Multiple correct answers per question are possible. The number of points for
each correctly marked statement may vary. For every incorrectly marked statement you will be taken
away 1 point. If the sum of your points is negative, you will receive 0 points.

. Suppose you want the framework to provide support for XML stored in a text file.
Which two of the following solutions seem the most appropriate to you?
a. Add one new class, namely XML FORMAT, and make it inherit from 0O
PERSISTENCE_FORMAT.
b. Add the necessary code to handle the XML format to class PERSISTENCE_FORMAT. O
In addition, add a new class named XML_SERIALIZATION_-MANAGER and make it inherit
from SERIALIZATION_-MANAGER.
c. Add three new classes, namely XML FORMAT, TEXTUAL_FORMAT, and O
XML_SERIALIZATION_-MANAGER. The first of them, XML FORMAT, will inherit
from the second, TEXTUAL_FORMAT. In addition, TEXTUAL FORMAT will inherit
from PERSISTENCE_FORMAT and XML_SERIALIZATION_MANAGER will inherit from
SERIALIZATION_-MANAGER.
d. Add one new class, TEXTUAL_FORMAT, including the necessary code to serialize data [J
in XML format, and make it inherit from PERSISTENCE_FORMAT.
e. Add two new classes, XML FORMAT and XML_SERIALIZATION_MANAGER. O
Make XML _FORMAT  inherit from  PERSISTENCE_FORMAT, and  make
XML_SERIALIZATION_-MANAGER inherit from SERIALIZATION_-MANAGER.
f. Add two new classes, XML_FORMAT and XML_SERIALIZATION_-MANAGER. Then O
add to class SERIALIZATION_-MANAGER two attributes having types XML_FORMAT
and XML_SERIALIZATION_MANAGER.

3.3 Task 2

For each code fragment below, state if it compiles or not. If it does NOT compile, explain why it
doesn’t compile. If it does compile, write down what is printed at the console. Assume assertion



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

. Suppose you have to write the code for feature store in a new
class ADVANCED_SERIALIZATION_-MANAGER that inherits from
BASIC_SERIALIZATION_MANAGER. What do you have to do to be able to reuse
the existing implementation of feature store in BASIC_SERIALIZATION_MANAGER,
and adding some code to it? The new code should be placed after the reused code.

a. In ADVANCED_SERIALIZATION_-MANAGER, use the keyword redefine after the 0O

clause inherit BASIC_ SERIALIZATION_MANAGER, and specify the new implementation

in the body of feature store.

b. In BASIC_.SERIALIZATION_MANAGER, specify the new implementation in the body O

of feature store. Nothing else is necessary because feature store is not implemented in class

SERIALIZATION_MANAGER.

c. In ADVANCED_SERIALIZATION_-MANAGER, use the keyword undefine after the [O

clause inherit BASIC_ SERIALIZATION_MANAGER, and specify the new implementation

in the body of feature store.

d. In BASIC.SERIALIZATION_MANAGER, use the keyword redefine after the clause [J

inherit BASIC_SERIALIZATION_-MANAGER, and specify the new implementation in the

body of feature store. In addition, use the keyword Precursor to reuse the implementation

from SERIALIZATION_MANAGER.

e. In ADVANCED_SERIALIZATION-MANAGER, use the keyword redefine after the O

clause inherit BASIC_.SERIALIZATION_MANAGER, and specify the new implementation

in the body of feature store. In addition, use the keyword Precursor to reuse the imple-

mentation from BASIC_SERIALIZATION_MANAGER.

f. In ADVANCED_SERIALIZATION_MANAGER, use the keyword undefine after the [O

clause inherit BASIC_ SERIALIZATION_MANAGER, and specify the new implementation

in the body of feature store. In addition, use the keyword Precursor to reuse the imple-

mentation from BASIC_.SERIALIZATION_-MANAGER.

checking is off.

1. manager_-1: SERIALIZATION_-MANAGER
manager_2: BASIC_SERIALIZATION_-MANAGER
an_object: STRING

create manager_1.make

create manager_2.make

create an_object.make_from_string (”test”)
manager-1 := manager_2

manager_1.store (an_object)

2. manager_1: SERIALIZATION_-MANAGER
an_object: STRING

create { BASIC_SERIALIZATION_MANAGER}manager-1.make

create an_object.make_from_string (”test”)
manager-1.store (an_object)



2

4

6

8

10

12

14

16

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

3. manager_-1: SERIALIZATION_-MANAGER
manager_2: BASIC_SERIALIZATION_-MANAGER
an_object: STRING

create manager_2.make

create an_object.make_from_string (”test”)
manager-1 := manager_2

manager_1.store (an_object)

4. manager-1: SERIALIZATION_-MANAGER
manager_2: BASIC_SERIALIZATION_-MANAGER
an_object: STRING

create manager_2.make

create an_object.make_from_string (”test”)
manager-2 := manager-1

manager-2.store (an_object)

4 Inversion of Linked List (10 Points)

The classes SINGLE_LINKED_LIST [G] and SINGLE-CELL [G] implement a single linked list. The
first cell of the list is stored in the attribute first of the class SINGLE_LINKED_LIST [G]. Attribute
next of class SINGLE_CELL [G] delivers the next cell . Calling next on the last cell will return a Void
reference.

Implement the feature invert of class SINGLE_LINKED_LIST [G], so that it inverts the order of
the elements in the list. For example, inverting the list [6, 2, 8, 5] results in [5, 8, 2, 6]. Do not
create new objects of type SINGLE_-CELL [G] and also do not introduce any new feature in class
SINGLE.LINKED_LIST [G] and SINGLE.CELL [G).

class
SINGLE_LINKED_LIST |[G]

feature —— Access

first : SINGLE_CELL [G]
—— Head element of the list, ‘Void’ if the list is empty

feature —— Basic operations

nvert
—— Invert the order of the elements of the list .
—— E.g. the list [6, 2, 8, 5] should become [5, 8, 2, 6].
local



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2011

18

20

2

20
1
B0

A

class
2 SINGLE_-CELL |G)

4 feature —— Access

6 next: SINGLE_.CELL [G]
—— Reference to the next generic list cell of a list
8
feature —— Element change
10
set_next (an_element: SINGLE_CELL [G])
12 —— Set ‘next’ to ‘an_element’.
ensure
14 next_set: mert = an_element

16 end

11



	Terminology (10 points)
	Design by Contract (10 Points)
	Task

	Inheritance: A Persistence Framework (12 Points)
	Background Information
	Task 1
	Task 2

	Inversion of Linked List (10 Points)

